Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2999–3004. doi: 10.1128/aem.62.8.2999-3004.1996

Inhibition of Sulfate Respiration by 1,8-Dihydroxyanthraquinone and Other Anthraquinone Derivatives

FB I Cooling, C L Maloney, E Nagel, J Tabinowski, J M Odom
PMCID: PMC1388923  PMID: 16535385

Abstract

Derivatives of 9,10-anthracenedione, or anthraquinone, were shown to inhibit respiratory sulfate reduction by pure cultures of sulfate-reducing bacteria, as well as by crude enrichment cultures. Structure-activity studies showed that an increasing degree of substitution of the anthraquinone nucleus resulted in increasing 50% inhibition (I(inf50)) values for sulfate respiration. Addition of charged ring substituents also resulted in an increase in the I(inf50) concentration. Experiments carried out with 1,8-dihydroxyanthraquinone demonstrated inhibition of hydrogen-dependent sulfate respiration but not hydrogen-dependent sulfite or thiosulfate respiration. Addition of pyruvate resulted in stimulation of sulfate-dependent hydrogen oxidation in the presence of the anthraquinone. These observations, together with a direct demonstration of uncoupling in French press vesicle preparations, suggest that the underlying mechanism of inhibition is uncoupling of ATP synthesis from electron transfer reactions. The low I(inf50) values for inhibition (0.5 to 10 (mu)M) and the relatively low general toxicity of anthraquinones suggest that these compounds may be useful for inhibition of sulfide generation in situations which are incompatible with the use of broadly toxic biocides.

Full Text

The Full Text of this article is available as a PDF (199.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anke H., Kolthoum I., Laatsch H. Metabolic products of microorganisms. 192. The anthraquinones of the Aspergillus glaucus group. II. Biological activity. Arch Microbiol. 1980 Jul;126(3):231–236. doi: 10.1007/BF00409925. [DOI] [PubMed] [Google Scholar]
  2. Anke H., Kolthoum I., Zähner H., Laatsch H. Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Arch Microbiol. 1980 Jul;126(3):223–230. doi: 10.1007/BF00409924. [DOI] [PubMed] [Google Scholar]
  3. Barton L. L., Le Gall J., Peck H. D., Jr Phosphorylation coupled to oxidation of hydrogen with fumarate in extracts of the sulfate reducing bacterium, Desulfovibrio gigas. Biochem Biophys Res Commun. 1970 Nov 25;41(4):1036–1042. doi: 10.1016/0006-291x(70)90189-0. [DOI] [PubMed] [Google Scholar]
  4. Hamilton W. A. Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol. 1985;39:195–217. doi: 10.1146/annurev.mi.39.100185.001211. [DOI] [PubMed] [Google Scholar]
  5. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karukstis K. K., Moision R. M., Johansen S. K., Birkeland K. E., Cohen S. M. Alternative measures of photosystem II electron transfer inhibition in anthraquinone-treated chloroplasts. Photochem Photobiol. 1992 Jan;55(1):125–132. doi: 10.1111/j.1751-1097.1992.tb04218.x. [DOI] [PubMed] [Google Scholar]
  7. Kavanagh F. Activities of Twenty-two Antibacterial Substances against Nine Species of Bacteria. J Bacteriol. 1947 Dec;54(6):761–766. [PMC free article] [PubMed] [Google Scholar]
  8. Nelemans F. A. Clinical and toxicological aspects of anthraquinone laxatives. Pharmacology. 1976;14 (Suppl 1):73–77. doi: 10.1159/000136687. [DOI] [PubMed] [Google Scholar]
  9. Odom J. M., Jessie K., Knodel E., Emptage M. Immunological cross-reactivities of adenosine-5'-phosphosulfate reductases from sulfate-reducing and sulfide-oxidizing bacteria. Appl Environ Microbiol. 1991 Mar;57(3):727–733. doi: 10.1128/aem.57.3.727-733.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PECK H. D., Jr The role of adenosine-5'-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem. 1962 Jan;237:198–203. [PubMed] [Google Scholar]
  11. Prestera T., Prochaska H. J., Talalay P. Inhibition of NAD(P)H:(quinone-acceptor) oxidoreductase by cibacron blue and related anthraquinone dyes: a structure-activity study. Biochemistry. 1992 Jan 28;31(3):824–833. doi: 10.1021/bi00118a027. [DOI] [PubMed] [Google Scholar]
  12. SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES