Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3413–3423. doi: 10.1128/aem.62.9.3413-3423.1996

Utility of Microcosm Studies for Predicting Phylloplane Bacterium Population Sizes in the Field

L L Kinkel, M Wilson, S E Lindow
PMCID: PMC1388943  PMID: 16535405

Abstract

Population sizes of two ice nucleation-active strains of Pseudomonas syringae were compared on leaves in controlled environments and in the field to determine the ability of microcosm studies to predict plant habitat preferences in the field. The P. syringae strains investigated were the parental strains of recombinant deletion mutant strains deficient in ice nucleation activity that had been field tested for their ability to control plant frost injury. The population size of the P. syringae strains was measured after inoculation at three field locations on up to 40 of the same plant species that were studied in the growth chamber. There was seldom a significant relationship between the mean population size of a given P. syringae strain incubated under either wet or dry conditions in microcosms and the mean population size which could be recovered from the same species when inoculated in the field. Specifically, on some plant species, the population size recovered from leaves in the field was substantially greater than from that species in a controlled environment, while for other plant species field populations were significantly smaller than those observed under controlled conditions. Population sizes of inoculated P. syringae strains, however, were frequently highly positively correlated with the indigenous bacterial population size on the same plant species in the field, suggesting that the ability of a particular plant species to support introduced bacterial strains is correlated with its ability to support large bacterial populations or that indigenous bacteria enhance the survival of introduced strains. Microcosm studies therefore seem most effective at assessing possible differences between parental and recombinant strains under a given environmental regime but are limited in their ability to predict the specific population sizes or plant habitat preferences of bacteria on leaves under field conditions.

Full Text

The Full Text of this article is available as a PDF (264.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angle J. S., Levin M. A., Gagliardi J. V., McIntosh M. S. Validation of Microcosms for Examining the Survival of Pseudomonas aureofaciens (lacZY) in Soil. Appl Environ Microbiol. 1995 Aug;61(8):2835–2839. doi: 10.1128/aem.61.8.2835-2839.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bainton N. J., Bycroft B. W., Chhabra S. R., Stead P., Gledhill L., Hill P. J., Rees C. E., Winson M. K., Salmond G. P., Stewart G. S. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene. 1992 Jul 1;116(1):87–91. doi: 10.1016/0378-1119(92)90633-z. [DOI] [PubMed] [Google Scholar]
  3. Bosworth A. H., Williams M. K., Albrecht K. A., Kwiatkowski R., Beynon J., Hankinson T. R., Ronson C. W., Cannon F., Wacek T. J., Triplett E. W. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl Environ Microbiol. 1994 Oct;60(10):3815–3832. doi: 10.1128/aem.60.10.3815-3832.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colwell R. R. Risk assessment in environmental biotechnology. Curr Opin Biotechnol. 1991 Jun;2(3):470–475. doi: 10.1016/s0958-1669(05)80158-2. [DOI] [PubMed] [Google Scholar]
  5. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  6. Drahos D. J. Field testing of genetically engineered microorganisms. Biotechnol Adv. 1991;9(2):157–171. doi: 10.1016/0734-9750(91)90001-c. [DOI] [PubMed] [Google Scholar]
  7. Fuqua W. C., Winans S. C., Greenberg E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994 Jan;176(2):269–275. doi: 10.1128/jb.176.2.269-275.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hwang I., Li P. L., Zhang L., Piper K. R., Cook D. M., Tate M. E., Farrand S. K. TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4639–4643. doi: 10.1073/pnas.91.11.4639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  10. Kidambi S. P., Ripp S., Miller R. V. Evidence for phage-mediated gene transfer among Pseudomonas aeruginosa strains on the phylloplane. Appl Environ Microbiol. 1994 Feb;60(2):496–500. doi: 10.1128/aem.60.2.496-500.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leahy J. G., Colwell R. R. Microbial degradation of hydrocarbons in the environment. Microbiol Rev. 1990 Sep;54(3):305–315. doi: 10.1128/mr.54.3.305-315.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lindow S. E., Arny D. C., Upper C. D. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol. 1982 Oct;70(4):1084–1089. doi: 10.1104/pp.70.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindow S. E., Arny D. C., Upper C. D. Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol. 1978 Dec;36(6):831–838. doi: 10.1128/aem.36.6.831-838.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orser C., Staskawicz B. J., Panopoulos N. J., Dahlbeck D., Lindow S. E. Cloning and expression of bacterial ice nucleation genes in Escherichia coli. J Bacteriol. 1985 Oct;164(1):359–366. doi: 10.1128/jb.164.1.359-366.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paau A. S. Improvement of Rhizobium inoculants by mutation, genetic engineering and formulation. Biotechnol Adv. 1991;9(2):173–184. doi: 10.1016/0734-9750(91)90002-d. [DOI] [PubMed] [Google Scholar]
  16. Pierson L. S., 3rd, Keppenne V. D., Wood D. W. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol. 1994 Jul;176(13):3966–3974. doi: 10.1128/jb.176.13.3966-3974.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pirhonen M., Flego D., Heikinheimo R., Palva E. T. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 1993 Jun;12(6):2467–2476. doi: 10.1002/j.1460-2075.1993.tb05901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilson M., Lindow S. E. Coexistence among Epiphytic Bacterial Populations Mediated through Nutritional Resource Partitioning. Appl Environ Microbiol. 1994 Dec;60(12):4468–4477. doi: 10.1128/aem.60.12.4468-4477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson M., Lindow S. E. Ecological Similarity and Coexistence of Epiphytic Ice-Nucleating (Ice) Pseudomonas syringae Strains and a Non-Ice-Nucleating (Ice) Biological Control Agent. Appl Environ Microbiol. 1994 Sep;60(9):3128–3137. doi: 10.1128/aem.60.9.3128-3137.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilson M., Lindow S. E. Effect of phenotypic plasticity on epiphytic survival and colonization by Pseudomonas syringae. Appl Environ Microbiol. 1993 Feb;59(2):410–416. doi: 10.1128/aem.59.2.410-416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wilson M., Lindow S. E. Enhanced Epiphytic Coexistence of Near-Isogenic Salicylate-Catabolizing and Non-Salicylate-Catabolizing Pseudomonas putida Strains after Exogenous Salicylate Application. Appl Environ Microbiol. 1995 Mar;61(3):1073–1076. doi: 10.1128/aem.61.3.1073-1076.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilson M., Lindow S. E. Inoculum Density-Dependent Mortality and Colonization of the Phyllosphere by Pseudomonas syringae. Appl Environ Microbiol. 1994 Jul;60(7):2232–2237. doi: 10.1128/aem.60.7.2232-2237.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilson M., Lindow S. E. Release of recombinant microorganisms. Annu Rev Microbiol. 1993;47:913–944. doi: 10.1146/annurev.mi.47.100193.004405. [DOI] [PubMed] [Google Scholar]
  24. Wilson M., Savka M. A., Hwang I., Farrand S. K., Lindow S. E. Altered Epiphytic Colonization of Mannityl Opine-Producing Transgenic Tobacco Plants by a Mannityl Opine-Catabolizing Strain of Pseudomonas syringae. Appl Environ Microbiol. 1995 Jun;61(6):2151–2158. doi: 10.1128/aem.61.6.2151-2158.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES