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Spores from Cry1 strains of Bacillus thuringiensis bound fluorescein isothiocyanate-labeled antibodies
specific for the 65-kDa activated Cry 1Ac toxin, whereas spores from Bacillus cereus and Cry2 strains of B.
thuringiensis did not. The Cry1 spores could be activated for germination by alkaline conditions (pH 10.3),
whereas Cry2 spores could not. Once the surrounding exosporia had been removed or permeabilized, Cry1

spores were able to bind the toxin receptor(s) from insect gut brush border membrane vesicle preparations,
and their germination rates were increased ca. threefold in the presence of brush border membrane vesicles.
A model is presented whereby in the soil the Cry toxins on the spore surface are protected by the exosporium
while in the gut they are exposed and available for binding to the insect receptors. This model explains why the
disulfide-rich C terminus of the cry genes is so highly conserved even though it is removed during the
processing of the protoxin to the activated toxin. It also highlights the trade-off resulting from having Cry
toxins located on the spore surface, i.e., decreased spore resistance versus enhanced insect pathogenesis.

Bacillus thuringiensis is an aerobic spore-forming bacterium
that produces parasporal protein inclusions concomitant with
sporulation. These inclusions are called insecticidal crystal pro-
teins (ICPs) because they are often crystalline and often insec-
ticidal. During insect pathogenesis, the crystals are ingested by
susceptible larvae and then solubilized and activated (2, 14),
whereupon the active toxin binds to one or more membrane
receptors located on the cells lining the gut (17, 28, 35). A
single crystal may contain one million protein subunits (10)
held together by interchain disulfide bonds, and thus the cleav-
age of those disulfide bonds is a critical step in crystal solubi-
lization (10).
Many thousands of B. thuringiensis strains have been isolated

(22), and they exhibit a great diversity in the spectrum of their
insect toxicities (15, 21). Höfte and Whiteley (15) analyzed the
nucleotide sequences of 42 crystal (cry) genes. Four major
classes of cry genes and Cry proteins were recognized and
designated CryI, CryII, CryIII, and CryIV depending on host
specificity and the degree of amino acid sequence homology
(15). Many B. thuringiensis strains contain multiple cry genes.
B. thuringiensis HD-73 is comparatively unusual in that it pro-
duces crystals from only a single Cry1Ac gene.
For the CryI toxins, the C-terminal portion of the 133-kDa

protoxin is removed by proteolysis, leaving an active toxin of
ca. 65 kDa. The active toxin, located in the N-terminal half of
the protoxin, binds to the insect receptors (17, 28). The func-
tion of the C-terminal half is less well understood, even though
its amino acid sequences are more highly conserved than those
in the N-terminal half, which contains the active toxin (15).
What is the functional significance of the C terminus? One
explanation is that all of the cysteine residues of the protoxin
are located in the C-terminal half and the disulfide bonds
formed by these cysteines are essential for crystal formation
and the distinctive alkaline solubility of insecticidal crystals
(10). A second explanation is that during spore formation,
some of the ICPs are incorporated on the spore surface rather

than being packaged into crystals (2). Presumably, this attach-
ment occurs by disulfide interchange between ICPs and the
disulfide-rich spore coat proteins. Thus, the C terminus also
serves as a spore attachment structure. The present paper
provides evidence for ICP-spore attachment and then shows
how these Cry1 spores differ physiologically from Cry2 spores.
In particular, Cry1 spores recognize specific insect receptors
and probably play a key role in insect pathogenesis. In the
process, we also provide an attractive raison d’etre for the
exosporia often observed surrounding B. cereus and B. thurin-
giensis spores.

MATERIALS AND METHODS

Organisms and culture conditions. B. thuringiensis HD-1 was isolated from a
concentrated spore-crystal slurry (Abbott Laboratories, North Chicago, Ill.),
while HD-73 and SHP 2-17 were obtained from Howard Dulmage and Phyllis
Martin, respectively. Bacillus cereus HWT was obtained from Harlyn Halvorson.
All strains were grown to sporulation (3 days) in a glucose-yeast extract-salts
medium (26) at room temperature, whereupon the spores and crystals were
purified by NaBr density gradient centrifugation (1).
Cry2 strains of HD-1 and HD-73 were selected on the basis that their spores

were no longer activated at pH 10.3. Purified spores were incubated with 0.1 M
Na2CO3 and 50 mM 2-mercaptoethanol (pH 10.3) at room temperature for 30
min, washed three times with 50 mM Tris (pH 7.6), and resuspended in the same
Tris buffer. L-Alanine and adenosine were added at final concentrations of 10
and 1 mM, respectively, whereupon the spores were incubated at room temper-
ature for 30 min, heated at 808C for 10 min, and plated on tryptic soy agar (TSA)
and TSA containing 5% NaCl. On TSA, wild-type (crystal plus) strains of B.
thuringiensis form large colonies with smeared margins while the crystal-free
mutants appear as smaller colonies with sharp borders. On TSA with 5% NaCl,
the first visible colonies are highly enriched for Cry2mutants. Individual colonies
were picked and transferred to fresh glucose-yeast extract-salts medium for
testing. After sporulation, the cultures were checked for spore and crystal pro-
duction by phase-contrast microscopy. The Cry2 spores did not react with anti-
Cry fluorescein isothiocyanate (FITC)-labeled antibodies, whole cultures were
nontoxic toManduca sexta larvae, and when analyzed by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), the spores did not have de-
tectable bands at 130 to 135 kDa.
Crystal violet stain (0.1% crystal violet dissolved in ethanol and then diluted

10-fold with water) was used to help distinguish the crystals from other spore-
related particles such as poly-b-hydroxybutyrate. In phase-contrast microscopy,
the crystals and vegetative cells stained orange, the exosporia stained violet (12),
and phase-bright spores and poly-b-hydroxybutyrate granules were unstained.
Preparation of HD-73 activated toxin. Purified crystals were dissolved in 0.1 M

Na2CO3–50 mM 2-mercaptoethanol (pH 10.3) for 30 min at room temperature.
After centrifugation, trypsin was added to the supernatant at 1 mg/ml for diges-
tion overnight at room temperature with shaking. The 60- to 65-kDa fragment
was purified on a Sephadex G-100 column with phosphate-buffered saline (PBS;
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100 mM NaCl, 20 mM phosphate [pH 7.5]) as the eluant. Toxin purity was
checked by SDS-PAGE, and toxin activity (50% lethal concentration) was mea-
sured with M. sexta larvae (10). Fractions with the same molecular weight were
pooled, adjusted to a protein concentration of ca. 400 mg/ml, aliquoted, and
stored at 2708C.
Preparation of anti-HD-73 active toxin serum and fluorescence-labeled anti-

bodies. Rabbit polyclonal antiserum to the HD-73 activated toxin was prepared
by the University of Nebraska Antibody Core Research Facility. The antibody
fraction was purified by ammonium sulfate precipitation. Saturated ammonium
sulfate was added to 1 volume of the serum to bring the final ammonium sulfate
concentration to 33% saturation. After 1 h on ice, the serum was centrifuged for
10 min at 3,0003 g, whereupon the supernatant was removed, adjusted to an
ammonium sulfate concentration of 50% saturation, and incubated overnight at
48C. After centrifugation, the pellet was resuspended in 0.5 volume of PBS,
dialyzed overnight against three changes of PBS, and clarified by centrifugation
for 15 min at 27,000 3 g. This supernatant was our antiserum preparation. It was
then diluted ninefold with 30 mM sodium carbonate (pH 9.3), and 50 ml of 20
mM fluorescein isothiocyanate (FITC, isomer I; Sigma, St. Louis, Mo.) in car-
bonate buffer was added. After 1 h at room temperature, excess FITC was
removed by dialysis against PBS.
Immunofluorescence microscopy.We used the methods described by Lam and

Mutharia (18) for immunofluorescence microscopy. Briefly, spores were heat
fixed on glass slides and incubated with 5 ml of 1:100 FITC-antibody for 5 min in
the dark. Free antibodies were washed away with PBS. A mounting fluid con-
sisting of glycerol and 0.5 M carbonate (pH 9.6) (10:90) was used to enhance the
fluorescence. Photographs were taken with a Leitz DM RB phase and fluores-
cence microscope at a magnification of 31,000.
Exosporium removal. Exosporia were removed or permeabilized by treatment

in a Braun homogenizer. An ice-cold suspension (10 ml) of NaBr-purified spores
was mixed with 10 g of 0.10-mm-diameter glass beads and homogenized twice for
30 s at 4,000 rpm, with cooling on ice for 5 min between homogenizations. This
procedure causes some spore breakage, and, accordingly, the treated spores were
repurified on NaBr gradients prior to use. The extent of exosporium removal was
monitored by phase-contrast microscopy following staining with crystal violet.
Spore germination. For heat activation, we generally used the methods of

Aronson and Fitz-James (3). Concentrated spores in 50 mM Tris (pH 7.6) were
heated at 658C for 25 min and then adjusted to an optical density at 660 nm of
0.6 with the same buffer. For alkali activation, spores were incubated with 0.1 M
sodium carbonate–50 mM 2-mercaptoethanol (pH 10.3) for 30 min at room
temperature, washed three times with 50 mM Tris buffer (pH 7.6), and resus-
pended in the same buffer. To start the germination, 3 ml of spore suspension
was mixed in a cuvette with L-alanine and adenosine at final concentrations of 0.5
and 0.05 mM, respectively. The drop in the optical density at 660 nm (27) was
recorded every 4 min. In some experiments, the spore suspensions (3 ml) were
also supplemented with 30 ml of brush border membrane vesicles (BBMVs) (ca.
8 mg of protein per ml) or 30 ml of activated toxin (2 mg/ml in PBS).
Purification of toxin receptors from BBMVs by spore affinity. BBMVs were

prepared from M. sexta larvae as described by Wolfersberger et al. (38) and
stored frozen. Toxin receptors were purified from BBMVs on the basis of their
ability to bind purified, alkali-activated HD-73 spores. After alkali treatment as
described above, the spores were repurified on NaBr gradients (1). The spore
pellet was washed and resuspended in buffer 1 (17), containing 10 mM Tris (pH
8), 150 mM KCl, and 1 mM phenylmethylsulfonyl fluoride. BBMVs (5 mg/ml)
were solubilized in buffer 1 containing 50 mM 3-[(3-cholamidopropyl)dimethyl-
ammonio]-1-propanesulfonate (CHAPS) detergent (17), whereupon the CHAPS
concentration was reduced to #8 mM by dialysis against buffer 1 containing 0.2
mM phenylmethylsulfonyl fluoride (17). The alkali-treated spores and solubi-
lized BBMVs were mixed on ice for 40 min, whereupon the spores were collected
by centrifugation, washed four times in buffer 1, resuspended in 0.2 M N-
acetylgalactosamine on ice for 30 min, and centrifuged again. The supernatants
were then analyzed by SDS-PAGE (7.5% polyacrylamide). After electrophoresis,
the proteins were transferred to polyvinylidene difluoride membranes, blocked
with 5% dry milk in TBST buffer (10 mM Tris, 150 mM NaCl, 0.25% Tween 20
[pH 7.4]), and incubated in sequence with the activated HD73 toxin, primary
antibody against the activated toxin, and secondary antibody conjugated with
alkaline phosphatase. Color was developed with the AP substrate kit II (Vector
Laboratories, Burlingame, Calif.). As a control, duplicate membranes were run
with and without incubation with activated toxin. As an additional control, spores
from a Cry2 strain of HD-73 were used instead of the wild-type Cry1 HD-73
spores.

RESULTS

Fluorescent detection of spore toxin. Fluorescent antibodies
produced in response to the 65-kDa activated toxin from B.
thuringiensis HD-73 reacted with purified spores of the same
strain (Fig. 1). Juxtaposition of the phase-contrast (Fig. 1A)
and fluorescent (Fig. 1B) micrographs from the same field of
view shows that the antibodies reacted with all the spores
present, including both phase-bright and phase-dark spores.

The toxin-specific antibodies also reacted with spores from
HD-1 and SHP2-17. They did not react with vegetative cells or
with spores from B. cereus HWT or a Cry2 strain of HD-73
(Fig. 1D).
The strong antibody binding shown in Fig. 1B used alkali-

treated Cry1 spores. Spores which had been pretreated in a
Braun homogenizer also exhibited strong antibody binding
(data not shown). Pretreatment either with alkali or by me-
chanical shear was necessary because untreated native spores
bound antibody infrequently and with a greatly reduced fluo-
rescent intensity. Braun homogenization, like passage through
a French press, uses mechanical shear to remove the exospo-
rium surrounding some Bacillus spores (23). Presumably, an
intact exosporium prevents antibody access to toxin located on
the spore surface.
Alkaline activation of spore germination. Reversible heat

activation is a common characteristic of Bacillus spores (16).
However, B. thuringiensis spores can also be activated by alka-
line conditions. Wilson and Benoit (37) showed that HD-1
spores were activated by 0.1 M potassium carbonate (pH 10).
We have confirmed their observations with spores from HD-73
(Table 1) and SHP 2-17 (data not shown). Alkali activation was
found only in spores produced by Cry1 strains of B. thuringien-
sis. With wild-type Cry1 spores (Table 1), germination rates

FIG. 1. Binding of crystal-specific FITC-labeled antibodies to alkali-activated
HD-73 spores (A and B) and spores from Cry2 HD-73 (C and D). (A and C)
Phase-contrast microscopy; (B and D) fluorescence microscopy. Magnification,
31,000 for all panels.

TABLE 1. Germination efficiency of heat- and alkali-
activated spores

Spore type

% Germinationa of:

Heat-activated
spores

Alkali-
activated
spores

Untreated
spores

B. thuringiensis
HD-73 Cry1 52 53 10
HD-73 Cry2 72 20 2
HD-73 Cry1 (0.5% ethanol) 52 13 —b

HD-73 Cry1 (BBMV) — 83 —

B. cereus
Cry2 65 ,1 2
Cry2 (BBMV) 66 — —

a Percent germination after 20 min. Germination was triggered by adding
L-alanine and adenosine at T0 and measured as the percent drop in optical
density at 660 nm (27) at 4-min intervals. Values reported are the means of three
to five experiments.
b—, not done.
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following heat activation and those following alkaline activa-
tion were roughly equivalent. However, alkali activation was
irreversible. The spores were still activated 3 to 4 weeks later
(irreversible), whereas the heat-activated spores had returned
to their native, nonactivated form within 24 h (reversible). We
observed no alkali activation of B. cereus spores and little alkali
activation of spores from Cry2 strains of HD-73 (Table 1).
However, as observed by others (2, 4), spores from Cry1

strains of B. thuringiensis appeared to germinate more slowly
than those from their Cry2 counterparts following heat acti-
vation.
Ethanol inhibition of alkali-activated spore germination.

Evidence that activation by heat and activation by alkali con-
stitute distinct pathways is provided by their different sensitiv-
ities toward ethanol (Table 1). The germination of heat-acti-
vated spores was not influenced by ethanol (up to 2%),
whereas the germination of alkali-activated spores was re-
tarded fourfold by 0.5% ethanol (Table 1) and prevented en-
tirely by 1% ethanol. Note that the ethanol was added with the
L-alanine and adenosine germinants; it was not present during
activation.
BBMVs and spores. Our evidence for specific binding be-

tween spores and insect receptors is twofold. The first part
comes from the effect of insect BBMVs on the germination of
Cry1 spores. For alkali-activated Cry1 spores, BBMVs from
M. sexta increased both the rate (Fig. 2) and completeness
(Table 1) of germination. When triggered by L-alanine and
adenosine, germination rates were ca. three times faster in the
presence of BBMVs than in their absence. BBMVs had no
effect on heat-activated B. cereus spores (Table 1).
Purification of toxin receptor by spore binding. The stimu-

latory effect of BBMVs on spore germination suggested that
HD-73 spores recognized one or more sites on the BBMVs,
possibly coinciding with the Cry1Ac-binding sites on the
BBMVs. The second part of our evidence for a spore-insect
recognition system comes from the usefulness of spores in
purifying a known (17, 28) toxin receptor from solubilized
BBMVs. Figure 3 shows that purified HD-73 spores bound a
protein of 115 to 120 kDa from solubilized BBMVs (Fig. 3,
lanes 2 and 3). The protein was able to bind Cry1 spores but
not Cry2 spores (compare lanes 2 and 5). The toxin-binding
ability of this 115-kDa protein was shown by its presence in
lane 2 (with toxin) and absence whenever the 65-kDa toxin was
omitted in the blotting sequence. Also, as a step in the purifi-
cation process, this protein was released from the spores by 0.2

M N-acetylgalactosamine. It could also be removed from the
spores by extraction with 1.0% SDS. Therefore, we presume
that the 115- to 120-kDa protein is identical to the aminopep-
tidase N receptor identified from M. sexta (17, 28).
We also detected a weak protein band at ca. 133 kDa that

reacted with toxin-specific antibodies (Fig. 3). It was present
(Fig. 3, lanes 2 to 4) in samples containing Cry1 spores and
absent (lanes 5 and 6) in samples containing Cry2 spores.
Presumably, this band is the 133-kDa protoxin which has been
extracted from the Cry1 spores.
Physiological differences between Cry1 and Cry2 spores.

While the precise nature of toxin attachment in Cry1 spores
has not been determined, it is probably covalent. The spores
were harvested from 35% (wt/wt) sodium bromide, washed
four times, and then given two 1-min pulses in a Braun ho-
mogenizer prior to use. Because disulfide bonding is such an
important characteristic of both B. thuringiensis crystals (10)
and spore coat proteins (39), we think it likely that the C
terminus of the Cry1Ac toxin is anchored to the spore via
heterologous disulfide bonding. An intact coat is considered
critical for the exceptional resistance properties of bacterial
spores (2), and, not surprisingly, the presence of crystal toxin
embedded in the spore coat alters the physiology and resis-
tance properties of the spore in many ways. Table 2 summa-
rizes the differences between Cry1 and Cry2 spores. These
differences are extensive. Thus, in terms of the distinction
between B. cereus and B. thuringiensis, B. thuringiensis has ac-
quired a plasmid and a crystal and also a modified spore.

FIG. 2. Effect of insect BBMV preparations on germination rates of alkali-
activated Cry1 HD-73 spores. The germinants (L-alanine and adenosine) were
added at T0. Symbols: å, germinants only; w, germinants plus BBMVs; 3,
germinants plus both BBMVs and 65-kDa activated toxin; h, no germinants.
OD660, optical density at 660 nm.

FIG. 3. Purification of toxin receptors from BBMVs by spore affinity. The
Western blots (immunoblots) were incubated with 65-kDa activated toxin and
the indicated primary and secondary antibodies. Lanes: 1, CHAPS-solubilized
BBMVs, no spores; 2, solubilized BBMVs mixed with alkali-treated HD-73
spores; 3, solubilized BBMVs premixed with activated HD-73 toxin and then
mixed with alkali-treated HD-73 spores; 4, HD-73 spores alone, no BBMVs; 5,
solubilized BBMVs mixed with alkali-treated Cry2 HD-73 spores; 6, Cry2

HD-73 spores alone, no BBMVs. Molecular mass marker indicates 120 kDa.

TABLE 2. Physiological differences between spores formed in the
presence and absence of insecticidal crystalsa

Spore characteristic

Presence and/or
value in:

Reference(s)
Cry1

spores
Cry2

spores

Protoxin on surface Yes No 4, 31, 32 and this study
Heat resistance Lowerb High 9, 33
UV resistance Lower High 6, 8, 13, 25
Osmotic resistance Lowerb High 9
Germination in 0.25 M
acetate

No Yes 34

Heat activation Yes Yes 16, 26
Alkali (pH 10) activation Yes No 5, 37 and this study
Binding of insect BBMVs Yes No This study
Spore coat dimensions Thin Thick 4

a Cry2 spore data include data from B. thuringiensis and B. cereus spores.
b Cry1 spore data are from B. thuringiensis subsp. israelensis.
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DISCUSSION

We have shown that spores from Cry1 strains of B. thurin-
giensis (i) can be alkali activated, (ii) have crystal toxin attached
to their surface, (iii) have the N-terminal portion of that toxin
available for functional interactions, (iv) bind specific toxin
receptors in insect BBMVs, and (v) are stimulated ca. three-
fold in their rate of germination by binding to insect BBMVs.
The first two findings are not novel. The existence of alkali
activation (37) and its positive correlation with crystal produc-
tion (5) have been reported by Benoit and colleagues. Simi-
larly, the presence of crystal antigens on Cry1 spores has been
reported many times previously (4, 19, 31, 32). In particular,
Aronson’s laboratory has worked extensively on the surface
localization of toxin (4) as it pertains to the differences ob-
served between Cry1 and Cry2 spores (2). With regard to the
significance of having Cry toxin on the spores, one study em-
phasized the evolutionary origins of crystals (arising from over-
production of spore coat proteins [33]) while another empha-
sized bacterial survival in a soil environment (4).
However, the rationale for alkali activation and surface lo-

calization of toxin has never before focused on the trade-off
between spore resistance and insect pathogenesis. In this pa-
per, we have shown that the N-terminal “business end” of the
toxin is exposed on the spore surface and oriented toward the
exterior. As a consequence, Cry1 spores can interact with both
BBMVs (Fig. 2 and 3) and anti-65-kDa antibodies (Fig. 1). The
survival value of such an arrangement explains why the cys-
teine-rich C terminus of Cry toxins is so highly conserved (15)
even though it does not contribute to the actual 65-kDa insec-
ticidal toxin. In terms of trade-offs, an improved capacity for
insect pathogenesis would compensate for a spore which had
multiple defects (Table 2) in coping with environmental ex-
tremes (30).
With regard to insect pathogenesis, the implications of our

findings are fivefold. (i) Lepidopteran larvae fall into three
types depending on their response to the active components of
B. thuringiensis (7). Larvae of types 1 and 2 are rapidly killed by
crystals alone, whereas larvae of type 3 require both spores and
crystals for pathogenesis (7, 20). The pH in the midgut of most
healthy Lepidopteran larvae is 10 to 10.5 (14, 36), and B.
thuringiensis is not an alkalophile (36). However, the dormant
spores would be activated at the alkaline gut pH (36, 37) and
then triggered for germination by binding to the gut receptors.
Thus, the spores could contribute to the overall toxin load (29)
as well as providing invasive vegetative cells (24) ready to
participate in pathogenesis as soon as the gut pH drops suffi-
ciently (14, 36). This mechanism would ensure that the spores
germinate in the right place at the right time. Increasing the
rate of spore germination may be critical because of the com-
paratively short transit time for food passing through the larval
gut.
(ii) In comparison with B. cereus, most B. thuringiensis spores

germinate slowly (4). Aronson et al. (2) analyzed these differ-
ences between B. cereus and B. thuringiensis and concluded that
“for some reason the germination mechanism is defective” in
Cry1 spores. They further suggested that the correct germi-
nants had not yet been found for B. thuringiensis. We suggest
that those germinants are located in the insect gut receptors.
Thus, the host specificity of the insecticidal crystals would
correspond directly to the host specificity for spore germina-
tion.
(iii) If the Cry proteins on the spore surface are needed to

trigger spore germination in the insect gut, they would need to
be protected while the spore remains dormant in the soil. The
exosporium would serve this purpose. It is a complex mem-

brane loosely surrounding the spore. Its presence is species
specific (23), but it is commonly found on spores from B.
cereus, B. anthracis, and B. thuringiensis (11, 12, 23). The ex-
osporium from B. cereus (23) contains 52% protein, 20% poly-
saccharide, 12.5% neutral lipid, and 5.5% phospholipid. Its
function is currently unknown. We suggest that one function of
exosporia is to protect the Cry proteins on the spore surface.
To achieve reproducible binding to either BBMVs (Fig. 2 or 3)
or toxin-directed antibodies (Fig. 1), we had to use spores
which had been homogenized or alkali activated. In the soil,
the Cry proteins would be protected within the exosporium.
However, once the exosporium has been removed or perme-
abilized, as in the highly alkaline, reducing, and proteolytic
larval midgut, the newly exposed Cry toxins would be available
to participate in pathogenesis. Thus, the presence of an exo-
sporium would be correlated with toxin production or a recent
history of toxin production. Of course, this suggestion regard-
ing the survival value of exosporia is not exclusive. There may
be other advantages to a spore having an exosporium.
(iv) A great many “nontoxic” strains of B. thuringiensis exist.

In one study (22), 8,916 isolates were obtained from soil sam-
ples, with fully 40% of them being nontoxic. SHP2-17 was one
of those nontoxic strains (22), and we confirmed that purified
SHP2-17 crystals were completely nontoxic toM. sexta larvae at
the highest concentration tested (10). Why would bacteria pro-
duce noninsecticidal protein crystals (10, 21)? Our present
data show that SHP2-17 spores can be alkali activated and that
they do contain cross-reacting Cry protein antigens on their
surface. Thus, in these cases, the role of the Cry proteins in
triggering spore germination may be more important than the
production of an insecticidal crystal.
(v) It is likely that many millions of B. thuringiensis strains

actually exist (21). If we assume that each of these strains
resembles HD-1 and HD-73 in having Cry proteins embedded
on the spore surface, we can visualize this continuum of mil-
lions of spore types as the bacterial equivalent of clonal selec-
tion in the immune system. Memory B cells have surface an-
tibodies and are triggered for cell division by binding the
corresponding antigen; B. thuringiensis spores have surface Cry
toxins and are triggered for spore germination by binding the
corresponding insect receptor.
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