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The indices of species diversity used by plant and animal ecologists are not appropriate for bacterial
diversity because of the inherent difficulty of defining a bacterial species. Arbitrary cutoff points to define a
species or biotype lead to severe statistical problems. We suggest in this paper that a mean dissimilarity-based
index without any attempt to define a species provides a statistically sound measurement of bacterial diversity.

Species diversity has been a key concept in ecological liter-
ature. A large number of diversity indices have been suggested
and used by ecologists and mathematicians (e.g., references 12
and 14). Relatively few microbial ecologists have used quanti-
tative measures of microbial diversity. The situation is, how-
ever, changing rapidly, with the number of papers making use
of diversity indices in microbial ecology increasing consider-
ably (e.g., references 3, 10, 11, 13, 16–18). Most microbial
ecologists have borrowed diversity indices from plant and an-
imal ecologists, the most popular ones being the Shannon
index and Simpson’s index (12) of diversity. There is a basic
difficulty, however, in applying these indices to bacterial com-
munities. These indices need a clear definition of species and
an unambiguous identification of each individual, both of
which are difficult in bacteriology. These difficulties have been
acknowledged (16, 18), but the use of these indices continues,
probably for the lack of better alternatives.
Studies of bacterial diversity differ from each other in the

way of obtaining isolates, mode of characterization, clustering
methods used for grouping or identification, the level of sim-
ilarities or distances used to define a species or biotype, and
the diversity measures used. Diversity measured by one
method of characterization cannot be readily compared with
that measured by other modes of characterization. We have
not addressed such problems here. In this paper, we restrict
our attention only to the statistical problems associated with
bacterial diversity measurements and suggest alternatives. We
first lay down a set of criteria for an ideal diversity index, test
the commonly used diversity indices against these criteria, and
then suggest an alternative approach to diversity measurement
which satisfies these conditions and which is more suitable for
bacterial communities.
Framework for selection. An ideal diversity index for bacte-

rial communities should satisfy the following conditions, al-
though it would be difficult for a single index to equally satisfy
all.
(i) The index should reflect three important dimensions of

diversity, viz. (i) the species richness or the number of different
biotypes, (ii) their relative abundances, and (iii) the differences
or the taxonomic distances between the biotypes.
(ii) The index should not be based on an arbitrary choice of

any parameter, such as the similarity level at which a group of
isolates is recognized as a species or a biotype. If such a pa-
rameter is essential, it should be statistically justified, and the

index should not be sensitive to small changes in this param-
eter.
(iii) The index should not be disproportionately sensitive to

possible errors and variability of test results.
(iv) Since samples of microbial communities are necessarily

incomplete, very small in comparison with the size of the eco-
system, and destructive (9), the index should not be unreason-
ably sensitive to the sample size.
Indices of species richness and rarefaction curves are inad-

equate and inappropriate for bacterial communities. Simpson’s
index, the Shannon index, and evenness indices give enough
weighting to the relative abundances along with species rich-
ness but fail to take into account the taxonomic distances
between species, individuals, or any other appropriate unit. An
information-based index would treat a community of four dif-
ferent biotypes of coliforms identical to another community
consisting of one species of coliforms, one of actinomycetes,
one of myxobacteria, and one of archaebacteria, whereas we
feel that the latter should be treated as more diverse. The
index therefore should consider the taxonomic distances. This
concept is not new and has been addressed by mathematicians
(14).
Both species richness and relative abundance indices are

based on correct identification to the species level, which is
seldom possible in bacteriology. Therefore, instead of attempt-
ing species identification, most researchers subject the charac-
terization data to cluster analysis and identify groups of iso-
lates that lie close to each other. In order to identify groups, it
is often necessary to choose a cutoff level of similarity above
which isolates fall in one group. This cutoff point is arbitrary
and most often appears without a justification. For example,
with physiological characterization, cutoff points of 80% (18),
75% (2), and 60% (6) similarities and 0.005 U of Ch12 taxo-
nomic distance (3) have been used. With restriction fragment
length polymorphism patterns for characterization, Leach et
al. (11) used 85% similarity as a cutoff point, whereas van
Berkum et al. (19) used 70% similarity as a cutoff point. With
fatty acid methyl ester analysis, Boehm et al. (4) used a simi-
larity index of $0.5 to define a species, whereas Ka et al. (8)
used a similarity index of $0.6 to identify a species.
The choice of a cutoff point is crucial in species-based di-

versity measurements. The number of species as well as spe-
cies-based indices would decrease by lowering the cutoff sim-
ilarities. This decrease is nonlinear and often unpredictable, as
shown by an analysis of four different sets of data (Fig. 1). If
distinct flat regions are obtained in this curve, one can choose
a cutoff point at the center of the flat portion. Because of the
local plateau, small changes in the cutoff point or errors and
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variabilities of test results which affect the similarity values will
not affect the diversity index. All sets of data, however, may not
give distinct plateaus. Furthermore, the positions of plateaus in
each set of data could be different, and therefore this approach
is unlikely to give a generalizable solution. It may be possible
to reach an agreement for an arbitrary but universally accepted
cutoff point. This may apparently lead to a standard definition
of a species, but for the communities in which this cutoff lies in
a steep region of the curve, test errors and variabilities can lead
to disproportionately larger errors in the diversity index, thus
violating the third condition. The cutoff points of Ka et al. (8)
and Leach et al. (11), for example, do not lie on plateaus,
although they are not in the steepest portion of the curve. The
use of cutoff similarities to define species thus suffers from
several statistical problems.
Diversity without species: a novel approach. Since most of

the problems in measuring bacterial species diversity arise
from the difficulties of defining species, diversity indices which
do not need a species or any other taxonomic level as a unit
should be preferred. A simple alternative is to use the mean
taxonomic distance (Dmean) between all pairs of isolates as a
diversity index (14):

Dmean 5
( d(i, j)
S(S 1 1)/2

where d(i, j) is the taxonomic distance between the ith and jth
isolate and S is the total number of isolates. Distance or dis-
similarity can be defined as (1 2 Ssm) or (1 2SJ) for binary
characterization data, where Ssm is the simple matching coef-
ficient and SJ is the Jaccard coefficient of similarity (15). Eu-
clidean distance, 1 2 r (where r is the correlation coefficient
between test scores of two isolates), or 1 2 nucleic acid ho-
mologies can also be used. The mean dissimilarity determined
by any of the above methods reflects all of the three dimen-
sions of diversity. It generally increases with increasing number
of distinct biotypes and decreases if one biotype dominates the
community, thus reflecting both richness and relative abun-
dances. It reflects the taxonomic distances directly and does
not involve any arbitrary parameter. Dissimilarity measures are
thus promising candidates as bacterial diversity indices.
Dissimilarity coefficients are, however, not free of problems.

A large mean dissimilarity can be obtained by a small number
of distantly related biotypes or a large number of moderately
related ones. For example, a bipolar community having only
two biotypes which are equally abundant and completely dis-
similar will have a mean (1 2 Ssm) of 0.5. A hypothetical
community generated by randomizing binary test results with
equal probabilities of positive and negative results also gives a
mean (1 2 Ssm) of 0.5. This is counterintuitive. A bipolar
community with only two diametrically opposite types should

FIG. 1. Effect of the choice of the cutoff dissimilarity value on the diversity measures with four sets of data. If the cutoff point lies in a steep portion of the curve,
the indices become highly sensitive to errors. The four sets of data differ in the locations and extent of steep and flat regions. Simpson’s index (1) is less sensitive to
a change in cutoff point than are the Shannon index (■) and species richness (p). (A) Data from Leach et al. (11). (B) Data from Ka et al. (8). (C) Data on 40 isolates
of Acinetobacter sp. from Dhakephalkar (5). (D) Data on earthworm gut flora from Marathe and Patil (12a).
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be much less diverse than the randomized results community in
which most of the isolates would have a unique set of charac-
teristics.
The problem can be resolved easily. Although the bipolar

and the randomized communities show identical mean Ssm,
the bipolar community has much higher variance around the
mean. The diversity index therefore should include the mean
dissimilarity along with the variance. The mean provides the
diversity measure per se, and the variance gives additional
useful information about the community. A large mean accom-
panied by small variance indicates a large number of moder-
ately dissimilar biotypes. A large mean accompanied by large
variance can be interpreted as a community with a few domi-
nant biotypes that are taxonomically distinct. Dominance of a
single biotype will result in a small mean and small variance.
The dissimilarity-based indices with binary data are sensitive

to the proportion of positive results, since the proportion de-
cides the probabilities of positive and negative matches. The
simple dissimilarity coefficient (1 2 Ssm) is maximum at equal
proportions of positive and negative results and decreases as
the ratios become skewed in either direction. The Jaccard
dissimilarities decrease monotonically with the proportion of
positive results, since this index ignores the negative matches.
A normalization of the index against the effect of the propor-
tion of positive results is therefore needed. This can be
achieved by dividing the empirical mean dissimilarity by the
expected dissimilarity of a randomized community at the given
proportion of positive results.
When using (1 2 Ssm), a normalized index would be

D 5
Dmean

[a2 1 (1 2 a)2]

where a is the fraction of positive tests. Similarly, with (12 SJ)
the normalized index becomes

D5
Dmean

a2/[1 2 (1 2 a)2]

Both of the mean dissimilarity indices show sample size
invariance (Fig. 2) for n . 20 when tested against hypothetical
as well as factual data. The dissimilarity-based measures of
diversity thus satisfy all of the conditions laid down at the
beginning to a greater or lesser extent. Expression of all of the
information of a community in a single number is essentially a
reduction in information, and therefore no single index reflects
all aspects of diversity. However, the approach suggested here
is particularly suitable for bacterial communities and has sev-
eral merits which the indices borrowed from eukaryotic com-
munities lack.
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FIG. 2. Sample size invariance of Dmean and datum variance (Dvar) accord-
ing to Jaccard dissimilarities. Both of the values remain stable after a sample size
of 20. Symbols for sets of data are as follows: ■, set 1 mean; 1, set 1 variance;
p, set 2 mean; h, set 2 variance; 3, set 3 mean; å, set 3 variance. Data for set 1
were obtained from P. Dhakephalkar (5). Data for sets 2 and 3 were computer-
generated fictitious data.
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