Abstract
The metabolism of atmospheric methane in a forest soil was studied by radiotracer techniques. Maximum (sup14)CH(inf4) oxidation (163.5 pmol of C cm(sup-3) h(sup-1)) and (sup14)C assimilation (50.3 pmol of C cm(sup-3) h(sup-1)) occurred at the A(inf2) horizon located 15 to 18 cm below the soil surface. At this depth, 31 to 43% of the atmospheric methane oxidized was assimilated into microbial biomass; the remaining methane was recovered as (sup14)CO(inf2). Methane-derived carbon was incorporated into all major cell macromolecules by the soil microorganisms (50% as proteins, 19% as nucleic acids and polysaccharides, and 5% as lipids). The percentage of methane assimilated (carbon conversion efficiency) remained constant at temperatures between 5 and 20(deg)C, followed by a decrease at 30(deg)C. The carbon conversion efficiency did not increase at methane concentrations between 1.7 and 1,000 ppm. In contrast, the overall methane oxidation activity increased at elevated methane concentrations, with an apparent K(infm) of 21 ppm (31 nM CH(inf4)) and a V(infmax) of 188 pmol of CH(inf4) cm(sup-3) h(sup-1). Methane oxidizers from soil depths with maximum methanotrophic activity respired approximately 1 to 3% of the assimilated methane-derived carbon per day. This apparent endogenous respiration did not change significantly in the absence of methane. Similarly, the potential for oxidation of atmospheric methane was relatively insensitive to methane starvation. Soil samples from depths above and below the zone with maximum atmospheric methane oxidation activity showed a dramatic increase in the turnover of the methane assimilated (>20 times increase). Physical disturbance such as sieving or mixing of soil samples decreased methane oxidation and assimilation by 50 to 58% but did not alter the carbon conversion efficiency. Ammonia addition (0.1 or 1.0 (mu)mol g [fresh weight](sup-1)) decreased both methane oxidation and carbon conversion efficiency. This resulted in a dramatic decrease in methane assimilation (85 to 99%). In addition, ammonia-treated soil showed up to 10 times greater turnover of the assimilated methane-derived carbon (relative to untreated soil). The results suggest a potential for microbial growth on atmospheric methane. However, growth was regulated strongly by soil parameters other than the methane concentration. The pattern observed for metabolism of atmospheric methane in soils was not consistent with the physiology of known methanotrophic bacteria.
Full Text
The Full Text of this article is available as a PDF (119.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamsen A. P., King G. M. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl Environ Microbiol. 1993 Feb;59(2):485–490. doi: 10.1128/aem.59.2.485-490.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anthony C. Bacterial oxidation of methane and methanol. Adv Microb Physiol. 1986;27:113–210. doi: 10.1016/s0065-2911(08)60305-7. [DOI] [PubMed] [Google Scholar]
- Hanson R. S., Hanson T. E. Methanotrophic bacteria. Microbiol Rev. 1996 Jun;60(2):439–471. doi: 10.1128/mr.60.2.439-471.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iversen N., Blackburn T. H. Seasonal rates of methane oxidation in anoxic marine sediments. Appl Environ Microbiol. 1981 Jun;41(6):1295–1300. doi: 10.1128/aem.41.6.1295-1300.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones R. D., Morita R. Y. Methane Oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol. 1983 Feb;45(2):401–410. doi: 10.1128/aem.45.2.401-410.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch A. L. Quantitative aspects of cellular turnover. Antonie Van Leeuwenhoek. 1991 Oct-Nov;60(3-4):175–191. doi: 10.1007/BF00430364. [DOI] [PubMed] [Google Scholar]
- Roslev P., King G. M. Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl Environ Microbiol. 1995 Apr;61(4):1563–1570. doi: 10.1128/aem.61.4.1563-1570.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roslev P., King G. M. Survival and Recovery of Methanotrophic Bacteria Starved under Oxic and Anoxic Conditions. Appl Environ Microbiol. 1994 Jul;60(7):2602–2608. doi: 10.1128/aem.60.7.2602-2608.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell J. B., Cook G. M. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev. 1995 Mar;59(1):48–62. doi: 10.1128/mr.59.1.48-62.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnell S., King G. M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microbiol. 1994 Oct;60(10):3514–3521. doi: 10.1128/aem.60.10.3514-3521.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnell S., King G. M. Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol. 1996 Sep;62(9):3203–3209. doi: 10.1128/aem.62.9.3203-3209.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whalen S. C., Reeburgh W. S., Sandbeck K. A. Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol. 1990 Nov;56(11):3405–3411. doi: 10.1128/aem.56.11.3405-3411.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
