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The community compositions of free-living and particle-associated bacteria in the Chesapeake Bay estuary
were analyzed by comparing banding patterns of stable low-molecular-weight RNA (SLMW RNA) which
include 5S rRNA and tRNA molecules. By analyzing images of autoradiographs of SLMW RNAs on polyacryl-
amide gels, band intensities of 5S rRNA were converted to binary format for transmission to a back-prop-
agating neural network (NN). The NN was trained to relate binary input to sample stations, collection times,
positions in the water column, and sample types (e.g., particle-associated versus free-living communities).
Dendrograms produced by using Euclidean distance and average and Ward’s linkage methods on data of three
independently trained NNs yielded the following results. (i) Community compositions of Chesapeake Bay water
samples varied both seasonally and spatially. (ii) Although there was no difference in the compositions of
free-living and particle-associated bacteria in the summer, these community types differed significantly in the
winter. (iii) In the summer, most bay samples had a common 121-nucleotide 5S rRNA molecule. Although this
band occurred in the top water of midbay samples, it did not occur in particle-associated communities of
bottom-water samples. (iv) Regardless of the season, midbay samples had the greatest variety of 5S rRNA sizes.
The utility of NNs for interpreting complex banding patterns in electrophoresis gels was demonstrated.

Most aquatic environments contain bacteria freely sus-
pended in the water column and bacteria associated with par-
ticulate material. These two community types provide different
metabolic contributions to the total bacterial community de-
pending on environmental conditions. In oligotrophic ocean
waters, free-living bacteria can dominate in numbers and bio-
mass and account for most of the secondary production (13).
However, in environments that are characterized by substantial
particle loads, attached bacteria make more significant contri-
butions in cell numbers and total productivity (13, 20). In
addition, they can exhibit morphological and metabolic char-
acteristics that are distinct from those of freely suspended
bacteria (7, 15, 29).

The Chesapeake Bay is a eutrophic estuary characterized by
significant amounts of organic and inorganic particulate mate-
rial. Typically, particle loads are greater in the upper bay due
to the large influx of fresh water. The bay exhibits seasonal
circulation patterns, with a highly stratified water column in
the summer followed by vertical mixing in the cooler winter
months. It contains extensive, abundant, and active bacterial
communities, which degrade phytodetritus and contribute to
the formation of anoxic zones in bottom waters of the midbay
region during the summer. Tritiated thymidine uptake exper-
iments have shown that attached bacteria make a relatively
minor contribution to total bacterial secondary production in
the Chesapeake Bay (12). However, attached bacteria were

found to be more active on a per-cell basis in summer, and they
made significant contributions to the hydrolysis of a model
dipeptide, MCA-leucine (14).

To determine the community compositions of attached and
free-living bacteria, Bidle and Fletcher (6) used filtration to
separate particle-associated from free-living bacteria. Compo-
sitions of these communities were compared by using stable
low-molecular-weight RNA (SLMW RNA) analysis, which
provides a first-order analysis of communities and demon-
strates significant differences in community composition. In
this approach, extracted SLMW RNA was labeled with 32P,
separated on a high-resolution polyacrylamide gel by electro-
phoresis, and exposed to X-ray film. By examining the banding
patterns in the 107-to-131-nucleotide (nt) range, they estab-
lished that the community compositions of free-living and par-
ticle-associated bacteria were discernibly different for samples
collected in the Chesapeake Bay in the winter. Whether or not
these communities were truly representative of those of the
bay, or whether these communities change with seasonal cir-
culation of the bay waters, was not determined.

In comparing the genetic composition of bacterial commu-
nities by SLMW RNA analysis, it is difficult to interpret the
complex banding patterns of these molecules. Decoding the
patterns is hindered by inherent errors of the electrophoresis
method, such as those due to gel warping, under- and over-
loading of the gel lanes, and under- and overexposure of the
X-ray film. Recently, molecular biology software has enabled
researchers to convert autoradiographs, photographs, and/or
gels to digitized images so that the images can be modified and
enhanced. Moreover, software can convert images to numeri-
cal data so that banding patterns in gel lanes can be statistically
analyzed. This study uses numerical data and cluster analysis
methods to compare SLMW RNA molecules extracted from
water samples of the Chesapeake Bay. We assumed that sam-
ples having a low degree of similarity in the 5S RNA region of
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the gel have dissimilar community compositions. The validity
of the cluster analysis was assessed by determining the robust-
ness of group memberships by different linkage methods. How-
ever, band intensities could not be used for cluster analysis,
because group memberships of replicate samples and molecu-
lar-weight standards were inconsistent (data not shown).
Therefore, a neural computing approach was used to produce
numerical data for cluster analysis.

Neural computing deals with the study of artificial neural
networks (NNs), which through the process of learning, stor-
ing, and supplying information model natural neural systems
(1, 3). Artificial NNs are constructed by using computer soft-
ware and consist of layers of neurons which make independent
computations and pass on their outputs to other neurons (24).
Each neuron in a layer is connected to neurons in the next
layer so that the output of each neuron affects the activation of
all neurons to which it is connected. Neurons are adaptable
and, through the process of learning from examples, store
knowledge and make it available for use (1). In a training
technique called error back propagation (27), a pattern is pre-
sented to an input layer of a network, and the network pro-
duces output based on the sum of the weighted inputs (33).
When the pattern of the output layer is compared to target
values, the errors between them are computed. An error func-
tion is used to readjust the weights of each neuron (3). This
iterative process continues until the errors fall below a desig-
nated tolerance level (24). The adjusted weights form a trained
network which can be used to recognize patterns.

The focus of this study was to compare the community com-
positions of free-living and particle-associated bacteria col-
lected from the Chesapeake Bay by using SLMW RNA anal-
ysis. Community comparisons were made at different depths of
the water column, as well as at stations separated by consid-
erable distances. To determine whether or not the community
compositions of Chesapeake Bay water samples were affected
by season, we compared samples taken in the summer to those
taken in the winter (6). Here, we report on a novel approach
for comparing SLMW RNA bands of bacterial communities by
using data from trained NNs. Cluster analysis using different
linkage methods on these data revealed robust community
memberships which could not be obtained otherwise.

(This work was presented in part at the 96th and 97th Gen-
eral Meetings [1996 and 1997] of the American Society for
Microbiology.)

MATERIALS AND METHODS

Sample collection. Environmental samples were collected at three locations
along the middle axis of the Chesapeake Bay at latitudes 39°20.789N, 38°34.009N,
and 37°16.219N on 13 to 15 June 1994 aboard the R/V Cape Henlopen (Fig. 1).
Collecting stations were designated N3, M3, and S3, representing the upper,
middle, and lower bay, respectively. At each station, water was collected at two
different depths by using 10-liter Niskin bottles attached to a General Oceanics
(Miami, Fla.) rosette. Water collection depths were 1 m below the surface and
1 m above the bottom and were designated top and bottom water, respectively.
Total depths of bottom-water samples were 10.4, 12.5, and 11.0 m for stations
N3, M3, and S3, respectively.

All water samples were processed immediately after collection. To separate
the particle-associated and free-living communities, each water sample was fil-
tered under a vacuum (200 to 500 mm of Hg) onto a 3.0-mm-pore-size polycar-
bonate filter (47 mm; Millipore, Bedford, Mass.) until saturation. Microorgan-
isms retained on the 3-mm-pore-size filters were operationally defined as the
particle-associated community. The filtrate (,3.0-mm pore size) was then col-
lected onto 0.22-mm-pore-size Sterivex filters (Millipore) until saturation, by
using a peristaltic pump (30). These filters were prepared in duplicate and
contained the free-living community. Total bacteria at all stations were harvested
by filtering water onto 0.22-mm-pore-size Sterivex filters until saturation. All
filters were frozen on dry ice immediately after processing until the return to the
laboratory the next morning. At this point, they were stored at 220 or 280°C.

Determination of cell numbers. Total and free-living bacteria numbers for
each sample were determined directly by microscopy as acridine orange direct
counts (AODC) (6).

Extraction, labeling, and electrophoresis of SLMW RNA. Extraction of total
RNA from filters was based on the procedure of Hoefle (16) and has been
previously described (6). All solutions, glassware, and other working materials
were rendered RNAse free according to standard procedures (28).

For the particle-associated population, one 3-ml-pore-size filter was cut into
small pieces with a clean, sterile scalpel and a glass plate and put into a 15-ml
Corex centrifuge tube containing 3.0 ml of extraction buffer (50 mM sodium
acetate [NaOAc]–10 mM EDTA–1% [wt/vol] sodium dodecyl sulfate [pH 5.1]).
Filter pieces were heated at 100°C for 5 min in extraction buffer and removed
with sterile forceps. Cell extracts were immediately extracted with an equal
volume of 60°C phenol (containing 0.1% [wt/vol] 8-hydroxyquinoline and equil-
ibrated with 50 mM NaOAc [pH 5.2] until the phenol pH reached ,5.2) for 10
min at 60°C. The extract was chilled on ice for at least 2 min, and samples were
centrifuged at 12,000 3 g for 2 min. Aqueous material was extracted in a fresh
tube with an equal volume of 60°C phenol-chloroform (4:1) for 5 min and
subsequently put on ice for 2 min. Phases were separated by centrifugation (at

FIG. 1. Map of the Chesapeake Bay showing summer (solid circle) and
winter (solid diamond) sampling stations. Samplings from stations N3, M3, and
S3 were performed in June 1994. Stations 908 and 756, representing a December
1992 study (6), are shown for comparison.
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12,000 3 g for 2 min). Aqueous material was extracted twice more, once with 200
ml of 2.0 M NaOAc and 2 ml of CHCl3, and once with 2 ml of CHCl3. Final
extracts were precipitated with 2.8 volumes of precipitation mixture (100%
ethanol-NaOAc-MgCl2 in a ratio of 100:10:1) at 220°C. Precipitated RNAs were
collected by centrifugation (at 12,000 3 g for 20 min) and washed with 70%
ethanol. Clean RNAs were dried in a SpeedyVac Concentrator (Savant Instru-
ments, Inc., Farmingdale, N.Y.), resuspended in diethyl pyrocarbonate-treated
distilled, deionized water, and quantified with a spectrophotometer. The ex-
tracted RNAs were stored at 280°C.

Total RNAs from free-living and total communities, harvested onto Sterivex
filters, were extracted by using the same procedures as for the particle-associated
bacteria, except for the following. With a 3.0-ml syringe (Becton Dickinson,
Cockeysville, Md.), 2.0 ml of extraction buffer was added to the Sterivex housing
and recapped with a luer-lock mechanism (30). Filters were heated to 100°C for
5 min. Lysate was withdrawn with a clean syringe and put into a 15-ml Corex
tube. Filters were rinsed with 1.0 ml of 50 mM NaOAc–10 mM EDTA (pH 5.2).
All subsequent steps were identical to those used for the particle-associated
community.

Total RNAs precipitated from all environmental samples were 39-end labeled
with cytidine-39,59-[59-32P]bisphosphate (Amersham, Arlington Heights, Ill.) by
using T4 RNA ligase (United States Biochemical, Cleveland, Ohio) as previously
described (6). The amount of incorporated label (labeling efficiency) was deter-
mined according to standard procedures (28). Five-microliter aliquots of each
labeling reaction were pipetted onto two separate Whatman GF/C filters. One of
the filters was rinsed (three times) under a vacuum with 5% trichloroacetic
acid–20 mM sodium pyrophosphate and represented incorporated label. The
other filter, representing total label, was not rinsed. Filters were counted in a
Beckman LS 1801 scintillation counter to determine labeling efficiency and
specific activities of labeled total RNA. Radioactively labeled RNA was sepa-
rated from unincorporated label by using Sephadex G-50 spin columns (28).

Equal counts of labeled RNA were subjected to denaturing, high-power poly-
acrylamide gel electrophoresis. Forty thousand counts per minute was loaded per
lane for all samples, except for molecular-weight markers, for which 500 cpm was
loaded. In cases where there was less than 40,000 total cpm, all the sample was
loaded. The weight corresponding to 40,000 cpm was ca. 0.1 to 0.2 mg, while
5,000 cpm was ca. 0.02 mg of RNA. Polyacrylamide gels (14% polyacrylamide;
size, 550 by 170 by 0.4 mm; acrylamide-N*,N-methylene bisacrylamide ratio, 29:1
[wt/wt]; 7 M urea in TBE buffer [100 mM Tris–83 mM boric acid–1 mM EDTA,
pH 8.5]) were run by using a Sequi-sen sequencing gel apparatus (Bio-Rad,
Hercules, Calif.) according to the method of Bidle and Fletcher (6).

Commercially available 5S rRNA, tRNATyr, and tRNAPhe from Escherichia
coli MRE600 (Boehringer Mannheim, Indianapolis, Ind.) were used as molecu-
lar-weight markers. They represent 120, 85, and 76 nt, respectively, and corre-
spond to the three different size classes of SLMW RNA seen, namely, 5S rRNA,
tRNA class 2, and tRNA class 1. The 5S rRNA hydrosylate, tRNATyr, and
tRNAPhe were mixed together in the proportions 1:0.2:0.2, at a total of 1.0
ng/lane.

Data for the NN. Autoradiographs were scanned with an image densitometer
at a resolution of 600 dpi (Bio-Rad GS-7000) (Fig. 2), and the data were
transmitted to a computer (Power Macintosh 7200/120). These images were

imported and unwarped by using fingerprinting software (PPC MA Fingerprint-
ing 1.0; Bio-Rad). Once the molecular-weight standards were identified and
calibrated, the defined intensities of all bands (which are expressed as percent-
ages by the software and ranged from 72 to 75% in our analysis) were computed.
These bands were linked to molecular-weight standards and exported as text files
at each intensity. A C11 software program was developed to extract band
intensity values in the range of 107 and 131 nt. To account for lane-to-lane and
gel-to-gel variations, the summed intensities of each band were normalized to
local minima and maxima by using a spreadsheet program (Excel; Microsoft
Corp.). Normalized gel data also included control data, which consisted of 24
randomly generated gel lanes. The limits of the random numbers were set by the
maximum and minimum values of the normalized band intensity data.

Input data for training the NN were generated by converting the normalized
gel data to 6-digit binary numbers. For example, if the summed and normalized
intensity of the 107-nt band was 1.31, this number was rounded to an integer and
converted to its binary form, 000001. Input data for an entire lane consisted of
25 6-digit binary numbers ordered by size, e.g., from 131 to 107 nt.

Output data for training the NN related input data to collection stations and
times, position in the water column, and sample type and were coded as a 10-digit
binary number. The first 3 digits refer to the collection station, the next 2 digits
refer to time, the next 3 digits refer to position, and the final 3 digits refer to
sample type. The collection stations were coded 000, 010, 011, 100, 101, 111, and
001, corresponding to stations 908, 756, M3, N3, and S3, randomly generated
data, and molecular-weight-standard data, respectively. Time was coded 00, 01,
11, and 00, corresponding to winter, summer, randomly generated data, and
molecular-weight-standard data, respectively. Position was coded 01, 10, 11, and
00, corresponding to top and bottom sampling positions, randomly generated
data, and molecular-weight-standard data, respectively. Sample type was coded
001, 011, 010, 100, and 000, corresponding to particle-associated, free-living, and
total bacterial samples, randomly generated data, and molecular-weight-stan-
dard data, respectively.

Input and output data used for training the NN consisted of the 25 6-digit
input binary numbers and the 10-digit binary output data. Data used for testing
the NN consisted of the 25 6-digit binary numbers only. To conform with the
formatting requirements of the NN program, spaces were inserted between each
digit.

NN software. A back-propagating NN, adapted from the work of Rao and Rao
(24), was designed as a stand-alone application for the Macintosh by using C11

software (Symantec, Release 5, Cupertino, Calif.). A binhex and binary version
of this application is available through an anonymous ftp at inlet.geol.sc.edu. The
NN repository directory (/pub/Neural Network) also contains a “neural.readme”
file, which describes how to extract the application and what files are needed to
make the back-propagating network work (e.g., training.dat and test.dat).

A schematic model of a three-layer NN is shown in Fig. 3. The input layer was
defined by the number of binary inputs. For this study, 150 input neurons were
needed for the 150 binary digits, representing the band intensities of SLMW
RNA molecules from the analysis of one gel lane. The number of neurons in the
output layer was defined by the binary digits representing the output data. In this
study, 10 binary digits coded for station, position, sample type, and collection
time of each sample. The number of neurons in the hidden layer is defined by the

FIG. 2. Strategy for community analysis of 5S rRNA molecules collected from the Chesapeake Bay. Separate cluster analyses were conducted to compare data
obtained from the NN with data obtained by combining band intensities of replicate samples. Data obtained from the trained NN were based on the values of the hidden
layer (e.g., j1 to j75 in Fig. 3) for each sample.
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user when the NN is trained. In this study, 75 neurons were used to represent the
hidden layer, based on the recommendations of Masters (22).

The value of any neuron in the network can be computed by using the equation

f ~x! 5 1/~1 1 e2~x!! (1)

where x is the sum of the weights times the inputs (22, 24). For example, in Fig.
3, the value of neuron j1 is as follows:

j1 5 1/~1 1 ~e~2~~w1,1zi1!1~w1,2zi2!1~w1,nzin!!!!

The weights of the hidden layer are generated randomly during the first cycle of
training. For subsequent cycles, the weights are adjusted and the values of the
neurons are recalculated for the input and output data.The cycles end when the
mean square error of the input and out put data is less than the user-defined
threshold, or when the maximum number of cycles has been reached. The
adjusted sets of weights for matrained network which can be used to recognize
SLMW RNA molecules. The hidden layer was used as data for cluster analysis.
This was accomplished by importing the adjusted weights to a spreadsheet and
calculating the numerical values of the 75 neurons (equation 1) for each gellane.

Numerical analysis. To evaluate the similarity among samples collected from
different stations, times, and positions in the water columns, and under different
processing conditions (e.g., free-living, particle-associated, and total communi-
ties), cluster analysis was performed by using the Euclidean distance coefficient
and Ward’s and average linkage clustering methods (SPSS, Inc.). Different clus-
tering methods were used to determine the robustness of group memberships
(10). To determine which SLMW RNA molecules were common to the clusters,
normalized gel data were imported into Transform 3.01 software (Spyglass, Inc.,
Savoy, Ill.).

RESULTS

Bacterial numbers. Total bacterial numbers ranged from
2.3 3 106 to 5.8 3 106 cells/ml. Bacterial numbers were dom-
inated by free-living bacteria at all stations and times exam-
ined, except in the upper bay (station N3) (Table 1). At sta-
tions M3 and S3, free-living bacteria accounted for .90% of
the total bacteria for both top and bottom water. However,
bacteria attached to particles made a greater contribution at
station N3, accounting for 55 and 46% of the total bacteria for
top and bottom water, respectively. Typically, particle loads
were concentrated in the upper-bay regions, primarily due to
the high degree of freshwater influx from the Susquehanna
River.

RNA analysis and labeling. RNA extracted from natural
samples was of high quality as determined by UV spectropho-
tometry. All sample types yielded A260/A280 values of 1.6 to 2.0,
indicating that contaminating material was minimal. Total
RNA yields varied depending on the sample type and the total
number of cells collected per filter. Total and free-living com-

munity samples yielded the most RNA per filter, 1.9 to 18.3
and 4.7 to 17.4 mg, respectively. This was presumably due to
high cell numbers on the Sterivex filters (109/filter). Normal-
ized RNA amounts per cell for total and free-living bacteria
were 2.0 to 4.1 and 0.8 to 4.1 fg per cell, respectively. Particle-
associated samples had much lower numbers of cells per filter
(107 to 108) and, therefore, the total RNA recovered was less
(0.5 to 2.2 mg). Normalized RNA per cell for bacteria associ-
ated with particles was 8.7 to 81.5 fg/cell.

Up to 2.0 mg of total extracted RNA was 39-end labeled with
cytidine-39,59-[59-32P]bisphosphate. Labeling efficiencies were
much higher for samples collected in the midbay and lower-bay
stations, probably due to lack of humic material in the water
column. In general, 1 order of magnitude more label was
incorporated into corresponding samples from stations M3 and
S3 than from station N3. The highest labeling efficiency seen
for environmental samples was ca. 20 to 26%. For comparison,
5S rRNA marker from E. coli MRE600 labeled at ca. 89%. All
labeled RNA from environmental sources had specific activi-
ties of 105 cpm/mg of RNA.

Autoradiographs of SLMW RNA molecules extracted from
the Chesapeake Bay in the summer are shown in Fig. 4. The
SLMW RNA molecules are clearly separated into three major
classes of molecules: 5S rRNAs, and both class 2 and class 1
tRNAs. Molecular size ranges of bacterial 5S rRNA are 107 to
131 nt, while class 2 and class 1 tRNAs range from 83 to 96 and
72 to 79 nt, respectively (31, 32).

NN computation. The NN was independently trained on
three occasions to evaluate its performance and to obtain the
adjusted weights of the hidden layer. The training mode took
between 30 and 35 min with an error threshold, learning rate,
momentum parameter, and noise factor of 0.001, 0.5, 0, and 0,
respectively. Details concerning the operating parameters of
the NN are available elsewhere (24, 33). The NN converged to
the error threshold after 25 to 30 cycles, examining 1,875 to
2,250 patterns. After the NN converged to the error threshold,
the NN was tested with data consisting of the 25 6-digit binary
numbers. On all occasions, the NN correctly related collection
stations and times, positions in the water column, and sample
types (data not shown).

Cluster analysis. Dendrograms showing the relationship of
microbial communities and their corresponding 5S rRNA gel
images are shown in Fig. 5. The dendrograms represent the
analysis of the data from one hidden layer. Most of the samples

FIG. 3. Schematic model of three-layer neural NN used. i1 to in, j1 to jm, and
o1 to oz represent the neurons of the input, hidden, and output layers, respec-
tively. w1,1 to wn,n and y1,1 to yz,m represent the weights between the input and
hidden layers and between the hidden layer and output layer, respectively.

TABLE 1. Bacterial abundances at stations N3, M3, and S3 in
the Chesapeake Bay during June 1994

Station and location
in water column

105 Cells/ml (mean 6 SD) % of total

FL PA FL PA

N3
Top 12 6 1.9 14 6 6.2 46.2 53.8
Bottom 12 6 8.3 11 6 4.9 53.3 46.7

M3
Top 56 6 12 2.7 6 1.3 95.4 4.6
Bottom 27 6 11 2.2 6 1.0 92.5 7.5

S3
Top 41 6 6.6 0.9 6 0.8 97.9 2.1
Bottom 29 6 3.7 1.8 6 0.6 94.2 5.8

a Data are given for different depths and geographic locations. Bacterial num-
bers were determined by acridine orange direct counts (AODC), as previously
described (6). FL, free-living bacteria; PA, particle-associated bacteria. Stations
N3, M3, and S3 are in the upper, mid-, and lower bay, respectively.
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had robust group memberships. Duplicate samples, samples
from the same station which had been independently pro-
cessed, molecular-weight standards, and randomly generated
samples clustered as separate and distinct groups. Based on the
composition of the clusters, group memberships appeared to
be determined by station rather than by time, position, and
type. However, in some cases, station and type or station and
position influenced the clustering (see below). Comparison of
the clusters to their corresponding gel lanes revealed which
bands, or group of bands, were common to the clusters (Fig. 5).

We compared these dendrograms (Fig. 5) to those obtained
by analyzing the data from two independently trained NNs
(data not shown). Although weights of the hidden layer
changed every time the NN was trained, these data yielded
similar but not identical dendrograms, indicating that group
memberships for most samples were robust. To investigate the
relationship between clusters in the dendrograms and sample
membership, letter values were assigned to predominant clus-
ters and the community characteristics describing each cluster
were examined. A summary of this analysis is shown in Table
2.

Winter samples were represented by clusters A, B, and D
(Table 2). Cluster A was composed of free-living and total
communities extracted from top and bottom waters of the
upper bay and midbay. All samples in this cluster contained 5S
rRNA bands of 115 and 109 nt. Secondary 5S rRNA bands,
defined as bands that occurred frequently, included 5S rRNA
bands of 110, 117, 120, and 122 nt. Clusters B and D consisted
of particle-associated communities from the midbay and upper
bay, respectively. Cluster B differed from cluster D in that the
former was composed of top-water samples only, while the
latter was composed of both top- and bottom-water samples.
All samples in cluster B had a 5S rRNA band of 121 nt.
Secondary 5S rRNA bands for cluster B were 117, 119, and 120
nt. All samples of cluster D contained a dominant 5S rRNA
band of 122 nt. Although two of four samples of cluster B

contained this band, there was little overlap in community
compositions with cluster D.

Summer samples were represented by clusters C, E, and F
(Table 2). Community types had little influence on group
memberships for these samples, indicating that there was no
difference in the composition of free-living or particle-associ-
ated communities. With the exception of cluster C, which con-
sisted of midbay samples, position in the water column had no
effect on group membership, indicating that the community
composition was homogeneous in the water column of the
upper- and lower-bay regions. In dendrograms based on the
data of two of the three trained NNs, cluster C occurred as two
independent clusters, C1 and C2 (data not shown). Samples
from cluster C1 were from the top of the water column, while
samples from cluster C2 were from the bottom of the water
column. Particle-associated bacteria from cluster C2 were the
only samples in the summer that did not contain a 121-nt 5S
rRNA band. Differences in the community composition of
these subclusters were presumably due to the presence of an-
oxic zones in the bottom waters of the Chesapeake Bay during
the summer. Subtle discrepancies in band intensities of the
rRNA molecules may also explain these differences. The com-
munity compositions of subclusters C1 and C2 were similar in
that they contained 120- and 122-nt 5S rRNA bands, with
secondary bands of 110, 121, and 123 nt. Samples of clusters E
and F represent the upper and lower bay, respectively, and
often clustered together. All samples in clusters E and F con-
tained a common 121-nt 5S rRNA band. Clusters E and F
differed from one another by having secondary rRNA bands of
116 and 119 nt, and of 120 nt, respectively.

Comparison of dendrograms using different clustering data.
To ensure that cluster analyses using NN data corresponded to
cluster analyses using normalized band intensity data, dendro-
grams were compared. Since clustering of band intensity data
was inconsistent, replicate samples were combined. Combining
band intensity data resulted in considerable loss of informa-

FIG. 4. Autoradiographs showing SLMW RNA banding patterns of summer water samples. Total RNAs were extracted, 39-end labeled with T4 RNA ligase, and
run on denaturing, high-resolution one-dimensional 14% polyacrylamide gels. Results are shown for upper (N3)-, mid (M3)-, and lower (S3)-bay locations, top (Tp)
and bottom (Bm) water. To, total bacterial community; Fl, free-living community; Pa, particle-associated community; M, molecular-weight markers (5S rRNA,
tRNATyr, and tRNAPhe from E. coli at 120, 85, and 76 nt, respectively). The three classes of SLMW RNAs are indicated.
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tion, as can be seen in the gel images (Fig. 6). Overall, group
memberships were similar to those obtained by using NN data
(Fig. 5). For example, samples representing summer stations
from the upper and lower bay grouped together, having similar
5S rRNA bands to those observed in clusters E and F (Table
2). Particle-associated communities in the winter formed a
cluster corresponding to clusters B and D from the mid- and
lower-bay regions, respectively. Winter water samples from the
midbay formed a cluster corresponding to cluster A (Table 2).
Summer samples from the midbay grouped together, corre-

sponding to cluster C (Table 2). Based on these comparisons,
NN data yielded results similar to those obtained by combining
replicate normalized band intensity data, but without loss of
information pertaining to 5S rRNA molecules.

DISCUSSION

SLMW RNA analysis focuses on stable RNA molecules
involved in protein synthesis and cell maintenance. By using
this analysis method, we were able to monitor active cells in the
community, avoiding the bias associated with conventional cul-
turing methods (26). SLMW RNA analysis has additional ad-
vantages: (i) SLMW RNA molecules in bacterial cells remain
chemically unchanged regardless of the physiological state of
the bacteria (16); (ii) independently extracted environmental
samples have identical SLMW RNA banding patterns (6, 18);
(iii) SLMW RNA molecules can be extracted from phyloge-
netically diverse bacterial organisms (6, 17); and (iv) SLMW
RNA analysis targets the whole community without the biases
created by PCR or sequence-specific probes.

It is also important to note that SLMW RNA banding pat-
terns may not be an absolute representation of abundances of
all bacterial types within a community for several reasons.
First, RNA concentrations will be highest in the most active
community members. Second, extraction efficiencies of RNA
vary in different types of bacterial cells. Third, RNA concen-
tration may also be a function of changes in the level of rRNA
pools during starvation and recovery (21). For example, organ-
isms under high-nutrient conditions or possessing strong ad-
aptational responses to starvation may contain more ribosomes
and may appear to be the dominant 5S rRNA band of a
sample. Nonetheless, SLMW RNA analysis provides a method
to compare the compositions of physiologically active micro-
bial communities and demonstrate significant differences in
community composition.

For the NN analysis, we focused on the 5S rRNA bands to
provide a first-order comparison of complex communities. 5S
rRNA is highly conserved and similar for closely related or-
ganisms, but significant differences in the molecular weight of
5S rRNA molecules indicate that organisms are distantly re-
lated. NN and cluster analyses based on 5S rRNA alone clearly
demonstrated differences in complex communities, which was
the objective of this study. Analysis of tRNA may be used to
differentiate among more closely related organisms and can be
included in future studies. Although adequate resolution of
tRNA in gels becomes very difficult in diverse, complex com-
munities, image analysis techniques may enable second-order
analysis of communities containing more closely related organ-
isms.

RNA extracted from water samples was of high quality
based on UV spectrophotometric analyses. Normalizing of the
RNA yields on a per-cell basis was based on the assumption
that RNA was from eubacterial sources. Higher RNA levels
per cell were observed for particle-associated communities
than for total and free-living counterparts (total bacteria, 2.0 to
4.1 fg/cell; free-living bacteria, 0.8 to 4.1 fg/cell; particle-asso-
ciated bacteria, 8.7 to 81.5 fg/cell), with values resembling
those seen for bacteria with high nutritional status. For com-
parison, E. coli B/r in balanced growth in glucose minimal
medium at 37°C has ca. 60 fg of RNA per cell (23). This
observation supported the previous finding (12) that bacteria
associated with particulate material are more active on a per-
cell basis than their free-living counterparts. However, it is also
possible that RNA concentrations per cell appeared to be
higher for attached cells because their numbers were underes-

FIG. 5. Dendrograms showing the relationship of microbial communities
from the Chesapeake Bay and their corresponding 5S rRNA digitized gel images.
The similarity scores of the 75 samples were determined by calculating the
squared Euclidean distance and clustering the data by using average (A) and
Ward’s (B) distance linkage methods. The 24 randomly generated samples are
represented by the letter R. Each 5S rRNA molecule is represented by a box in
the gel image, whose shade is determined by the intensity of the band; open and
solid boxes represent low and high intensities, respectively. E, station 908; F,
station 756; h, station N3; ■, station M3; Ç, station S3; å, molecular weight
standards.
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timated; microscopic counts of particle-associated cells may be
low if cells are obscured by particulate material or aggregates.

To confirm that the extracted RNA was derived essentially
from bacteria, we probed our total RNA samples with domain-
specific oligonucleotide probes specific to the 16S rRNAs and
tried to evaluate the percentage contribution of eubacterial,
eucaryotic, and archaeal domains. Total RNA hybridized to
the eubacterial and eucaryotic probes, but quantification was
not possible due to the nature of the membrane used (25). The
most probable eucaryotic source of nucleic acids would be
phytoplankton due to spring blooms. However, our extraction
protocols did not appear to release algal RNA. RNA could be
extracted from pure algal cultures only when rigorous mechan-
ical manipulation was used to break the cell walls.

This study confirms previous observations (6, 12) that free-
living bacteria dominate Chesapeake Bay bacterial communi-
ties in terms of numbers and that they make up large percent-
ages of the total bacterial population. For example, in mid- and
lower-bay stations, free-living bacteria comprised .90% of the
total bacteria per sample, while in upper-bay samples, ca. 50%
of the total community were free living. Similar observations
were made in the winter, with free-living bacteria in the upper
bay making up 79 and 65% of the total bacteria in top and
bottom waters, respectively (6). The high percentages of par-
ticle-associated bacteria in the upper-bay samples were prob-
ably due, at least in part, to higher particle loads brought in by
the Susquehanna River and other large freshwater tributaries
emptying into the bay.

A primary objective was to determine whether or not free-
living and particle-associated bacterial communities differed in
their compositions in summer, as had been observed in sam-
ples taken in the winter (6). Cluster analyses of free-living and
particle-associated bacteria in the summer suggested that there
was no difference between community types. These results are
in contrast to those obtained with winter water samples (6). In
the winter, free-living bacterial communities exhibited consid-
erable similarities in composition from the mid- to the upper
bay, while those communities associated with particulate ma-
terial were discernibly different, as indicated by their indepen-
dent and robust clusters (i.e., clusters B and D in Table 2).
Cluster analyses revealed that there was little overlap in com-
munity compositions of winter and summer samples. These
findings suggest that the compositions of free-living communi-
ties in the Bay change seasonally, in response to hydrographic
conditions. Particle-associated bacteria are dependent not only
on hydrographic conditions but also on the nature of particu-
late matter they attach to. The composition of particle-associ-

ated bacterial communities in the upper- and lower-bay sam-
ples are different (i.e., clusters B and D in Table 2) because the
nature of particulate matter presumably selects for the growth
of specific bacterial communities. Free-living communities are
homogeneous because vertical mixing in the winter provides
stable hydrographic conditions and dissolved organic material
(DOM) which promotes bacterial proliferation.

In the summer, the Chesapeake Bay becomes highly strati-
fied, resulting in active bacterial communities that degrade
phytodetritus. Degradation of the phytodetritus results in the
formation of anoxic zones in the bottom waters of the midbay.
Since attached bacteria degrade particulate organic matter
(POM) (9, 29), decaying algal materials select for organisms
that can break down POM via exohydrosylases. It is possible
that the organisms breaking down POM are also assimilating
DOM and releasing progeny into the water column as the

FIG. 6. Dendrograms showing the relationships of microbial communities
from the Chesapeake Bay and their corresponding 5S rRNA gel images. Each
sample represents the sum of combined replicates. The similarity scores of the 20
samples were determined by calculating the squared Euclidean distance and
clustering the data by using average (A) and Ward’s (B) distance linkage meth-
ods. Labeling of the dendrograms and gel images is the same as for Fig. 5.

TABLE 2. Microbial community characteristics of water samples collected from different positions and locations in the Chesapeake Bay
during the winter (1992) and summer (1994)a

Clusterb
Season Community type Position Locationc

Winter Summer Free-living Particle-associated Total Top Bottom Upper Mid Lowerd

A 1 2 1 2 1 1 1 1 1 ND
B 1 2 2 1 2 1 2 2 1 ND
C1 2 1 1 1 1 2 1 2 1 2
C2 2 1 1 1 1 1 2 2 1 2
D 1 2 2 1 2 1 1 1 2 ND
E 2 1 1 1 1 1 1 1 2 1
F 2 1 1 1 2 1 1 2 2 1

a The data were based on dendrograms generated by using the Euclidean distance coefficient with average and Ward’s linkage methods on three independently
trained NNs.

b Clusters A to F refer to samples that have consistent group membership (see text).
c Upper, stations 908 and N3; mid, stations 756 and M3; lower, station S3.
d ND, not determined.
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particulate material is degraded (2). Based on this hypothesis,
there should be little difference between free-living and parti-
cle-associated bacteria because bacteria move freely between
these two habitats. Since the composition of POM changes
with successive phytoplankton blooms, it is possible that the
composition of these summer communities fluctuates with
changing amounts and types of POM and/or DOM. Further
studies elaborating on the effects of POMs and DOMs on the
compositions of free-living and particle-associated communi-
ties are needed for full understanding of the dynamics of bac-
terial communities in the Chesapeake Bay in the summer.

The community composition of summer midbay samples was
different from those of summer upper- or lower-bay samples.
Moreover, summer midbay samples had more similarity to
winter samples taken from the same region (i.e., station 756 in
Bidle and Fletcher [6]) than to samples taken at the same time.
Comparisons of the 5S rRNA bands (Fig. 5) suggest that the
community composition in the midbay was quite stable, varying
slightly between seasons, possibly due to minor influxes of
freshwater, changing particle loads, and/or the establishment
or dissolution of an anoxic zone in the summer. Regardless of
collection time, midbay samples tended to have a greater va-
riety of 5S rRNA bands than the other stations, indicating that
no one group of bacteria dominated the community. The ap-
parent stability of the community composition may have been
due to a variety of different sources of POM and/or DOM or
another factor(s) not known at this time.

Most summer samples contained a 5S RNA band of 121 nt
(Fig. 5) which occurred at a high intensity. This finding sug-
gests that a bacterium or groups of phylogenetically related
bacteria are dominant members of the summer communities,
although sequencing of molecules is required to confirm
whether they are derived from the same or closely related
organisms. The presence of specific, preferred carbon sources
may account for certain bacteria becoming dominant. It has
been established that monosaccharides and dissolved free
amino acids, derived from living and decaying phytoplankton
populations, contribute to bacterial productivity in the spring
and summer months (4). The fact that some bacteria incorpo-
rate monosaccharides ca. 16-fold more than dissolved free
amino acids suggests that monosaccharides may be a preferred
carbon source in the Chesapeake Bay (4). Therefore, it is
possible that the 121-nt band represents a community that
rapidly utilized preferred carbon sources such as monosaccha-
rides, outcompeting other bacteria.

NNs have traditionally been used to recognize patterns in
data that are impossible to substantiate by standard statistical
methods (22). In particular, NNs are useful for analyzing fuzzy,
noisy, chaotic, and/or unpredictably nonlinear data (22). The
application of NNs to the recognition of patterns in molecular
biology is relatively new. For example, NNs have been used to
identify the restriction enzyme patterns of Escherichia coli
O157:H7 (8), the pyrolysis mass spectra of Mycobacterium tu-
berculosis complex species (11), the promoter sites of E. coli
(19), and the fatty acids of marine heterotrophic bacteria (5).

In this study, NNs were trained to recognize SLMW RNA
banding patterns produced by polyacrylamide gel electro-
phoresis. To our knowledge, this is the first study to use data
from the hidden layer for examining the banding patterns of
molecules produced by electrophoresis. We used three inde-
pendently trained NNs to determine if data from the hidden
layers would produce similar clusters when statistically ana-
lyzed. Cluster memberships of the samples were robust and
similar regardless of which hidden layer was used for cluster
analysis, indicating that our approach was valid. The dendro-
grams were similar, but not identical, for different hidden-layer

data because the weights changed every time the NN was
trained. Moreover, the weights were randomized in the first
training cycle. We calculated the hidden layer data for each gel
lane by using equation 1. By performing cluster analyses and
determining group members of the clusters, we determined
which SLMW RNA bands were common to particular clusters.
Most clusters had one to four bands in common, indicating
similarities with respect to bacterial composition of the sam-
ples. The described method for analyzing the complex banding
patterns of SLMW RNA molecules may be applied to a wide
variety of molecular biology problems where interpretation of
the data is confused by noise and uncertainty is a factor.

In summary, the application of NNs allowed for interpreta-
tion of complex gel data and determination of microbial com-
munity changes in the Chesapeake Bay. The compositions of
microbial communities of the Chesapeake Bay vary both sea-
sonally and spatially. In winter, the community compositions of
particle-associated bacteria are dissimilar, presumably due to
differences in the nature of particulate debris from the tribu-
taries. Conversely, the community compositions of free-living
bacteria were similar, presumably because vertical mixing of
the bay waters distributed autochthonous sources of organic
material into the water column. In the summer, there was no
apparent difference between community types, presumably be-
cause the same organisms degrading POM were also assimi-
lating DOM and producing free-living and/or attached prog-
eny. It is possible that certain bacteria become dominant
members of natural communities in the presence of preferred
carbon sources.
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