Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jun;63(6):2246–2251. doi: 10.1128/aem.63.6.2246-2251.1997

Occurrence of a Highly Heat-Sensitive Spore Subpopulation of Bacillus coagulans STCC 4522 and Its Conversion to a More Heat-Stable Form

A Palop, F J Sala, S Condon
PMCID: PMC1389180  PMID: 16535625

Abstract

The profile of the survival curves, at different heating temperatures, of B. coagulans STCC 4522 sporulated at 52(deg)C has been studied, focusing on the early moments of treatment. A highly heat-sensitive spore subpopulation that includes more than 90% of the total spore population has been found. This heat-sensitive spore fraction was inactivated after 2 s of treatment at 111(deg)C. Its heat resistance was as much as 200-fold lower than that of the heat-resistant spore fraction (D(inf111(deg)C) of 0.01 min for the heat-sensitive spore fraction compared with D(inf111(deg)C) of 2 min for the heat-resistant fraction). The shape of the survival curve at 108.5(deg)C was modified after a sublethal heat shock at 80(deg)C for 3.5 h, resulting in a straight-line survival curve. The temperature of treatment also influenced the shape of the survival curves. The conversion of the highly heat-sensitive spore subpopulation to a more heat-stable form is discussed.

Full Text

The Full Text of this article is available as a PDF (180.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDERTON G., THOMPSON P. A., SNELL N. HEAT ADAPTATION AND ION EXCHANGE IN BACILLUS MEGATERIUM SPORES. Science. 1964 Jan 10;143(3602):141–143. doi: 10.1126/science.143.3602.141. [DOI] [PubMed] [Google Scholar]
  2. Abraham G., Debray E., Candau Y., Piar G. Mathematical Model of Thermal Destruction of Bacillus stearothermophilus Spores. Appl Environ Microbiol. 1990 Oct;56(10):3073–3080. doi: 10.1128/aem.56.10.3073-3080.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaman T. C., Pankratz H. S., Gerhardt P. Heat shock affects permeability and resistance of Bacillus stearothermophilus spores. Appl Environ Microbiol. 1988 Oct;54(10):2515–2520. doi: 10.1128/aem.54.10.2515-2520.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COOK A. M., BROWN M. R. THE RELATION BETWEEN HEAT ACTIVATION AND COLONY FORMATION FOR THE SPORES OF BACILLUS STEAROTHERMOPHILUS. J Pharm Pharmacol. 1964 Nov;16:725–732. doi: 10.1111/j.2042-7158.1964.tb07396.x. [DOI] [PubMed] [Google Scholar]
  5. Dominguez J. M., Acebal C., Jimenez J., de la Mata I., Macarron R., Castillon M. P. Mechanisms of thermoinactivation of endoglucanase I from Trichoderma reesei QM 9414. Biochem J. 1992 Oct 15;287(Pt 2):583–588. doi: 10.1042/bj2870583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FRANK H. A., CAMPBELL L. L., Jr The nonlogarithmic rate of thermal destruction of spores of Bacillus coagulans. Appl Microbiol. 1957 Jul;5(4):243–248. doi: 10.1128/am.5.4.243-248.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feeherry F. E., Munsey D. T., Rowley D. B. Thermal inactivation and injury of Bacillus stearothermophilus spores. Appl Environ Microbiol. 1987 Feb;53(2):365–370. doi: 10.1128/aem.53.2.365-370.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Han Y. W. Death rates of bacterial spores: nonlinear survivor curves. Can J Microbiol. 1975 Oct;21(10):1464–1467. doi: 10.1139/m75-217. [DOI] [PubMed] [Google Scholar]
  9. Han Y. W., Zhang H. I., Krochta J. M. Death rates of bacterial spores: mathematical models. Can J Microbiol. 1976 Feb;22(2):295–300. doi: 10.1139/m76-040. [DOI] [PubMed] [Google Scholar]
  10. Klibanov A. M. Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol. 1983;29:1–28. doi: 10.1016/s0065-2164(08)70352-6. [DOI] [PubMed] [Google Scholar]
  11. Prokop A., Humphrey A. E. Mechanism of thermal death of bacterial spores: electron-microscopic observations. Folia Microbiol (Praha) 1972;17(6):437–445. doi: 10.1007/BF02872728. [DOI] [PubMed] [Google Scholar]
  12. SHULL J. J., CARGO G. T., ERNST R. R. KINETICS OF HEAT ACTIVATION AND OF THERMAL DEATH OF BACTERIAL SPORES. Appl Microbiol. 1963 Nov;11:485–487. doi: 10.1128/am.11.6.485-487.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Violet M., Meunier J. C. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem J. 1989 Nov 1;263(3):665–670. doi: 10.1042/bj2630665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zale S. E., Klibanov A. M. Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry. 1986 Sep 23;25(19):5432–5444. doi: 10.1021/bi00367a014. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES