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A chemical reaction network for the regulation of the quinic acid
(qa) gene cluster of Neurospora crassa is proposed. An efficient
Monte Carlo method for walking through the parameter space of
possible chemical reaction networks is developed to identify an
ensemble of deterministic kinetics models with rate constants
consistent with RNA and protein profiling data. This method was
successful in identifying a model ensemble fitting available RNA
profiling data on the qa gene cluster.

W ith genome sequencing projects supplying an almost com-
plete inventory of the building blocks of life, functional

genomics is now facing the challenge of ‘‘re-assembling the
pieces’’ (1, 2). Time-dependent mRNA (3) and protein profiling
(4), protein–protein (5–8) and protein–DNA (9) interaction
mapping, and the in vitro reconstruction of reaction networks
(10, 11) are providing insight into the topology and kinetics of
a living cell’s full biochemical and gene regulatory circuitry. For
the first time, it is now possible to place a particular biological
circuit like those describing carbon metabolism, transcription,
cell cycle, or the biological clock in simple eukaryotes in a larger
context, and to examine the coupling of these circuits (12).

New tools in computational biology are needed to identify
these reaction networks by using well studied subcircuits like
those for carbon metabolism, cell cycle, or the biological clock
as a launch point into the entire circuit of a living cell. The qa
gene cluster of Neurospora crassa and the GAL gene cluster of
Saccharomyces cerevisiae in carbon metabolism have served as
early paradigms for eukaryotic gene regulation (13, 14) and are
prime candidates for taking a genomic perspective on biological
circuits. Mechanisms of regulation in the qa and GAL clusters
with their transcriptional activator and repressors are also shared
with many other regulatory networks. Because of their relative
simplicity, they also provide an opportunity to test new genomic
approaches to identifying chemical reaction networks or biolog-
ical circuits that underlie many fundamental biological processes
(15). Three opportunities exist now for identifying and refining
biological circuits: the accumulation of transcriptional profiling
data (3), a growing number of approaches to modeling gene
regulation (11, 15–21), and the ability to carry out the in vitro
reconstruction of biological circuits with a diversity of emergent
properties including bistable (10) and oscillatory activity (11).

However, initially, the profiling data will be scarce and the
unknown parameters plentiful. Identification of the parameters
in a reaction network is further complicated by the facts that the
data are noisy and that our knowledge of the underlying reaction
network’s topology and of its participating molecular species is
incomplete, even in well studied networks like those for the
�-switch, lac operon, trp operon, or GAL cluster. To circumvent
these difficulties, we present a statistical modeling approach
called the ensemble method of circuit identification, which bases
its predictions not on a single poorly parameterized circuit, but
rather on a statistical ensemble (22) of ‘‘all’’ such circuit models
consistent with existing profiling data. Our approach thus pro-
vides quantitative prediction capabilities, and, most importantly,

it permits us to guide the design of new experiments, which
further constrain the model ensemble, consistent with the pro-
filing data.

In this report, we develop a simple reaction network for the
regulation of the qa cluster and use RNA profiling information
to identify the network. As described (14, 23, 24), the qa cluster
is composed of five structural genes and two regulatory genes, as
shown in Fig. 1. The qa cluster is induced by shift to quinic acid
as the sole carbon source. Three of the genes (qa-2, qa-3, and
qa-4) in the cluster encode enzymes involved in the catabolism
of quinic acid, ultimately for entry into the Krebs cycle. One
gene, qa-y, encodes a permease allowing quinic acid into the cell,
and another gene, qa-x, encodes an unknown function. All seven
genes in the cluster are transcriptionally activated by the product
of qa-1F, and the activator is repressed by the product of qa-1S.
The cluster is glucose- and sucrose-repressed (23). Our model is
based on the gene regulation scheme in Fig. 2, which is taken
from ref. 23, in which qa-1F activates expression of all genes in
the qa cluster and qa-1S represses the activator.

Materials and Methods
Strains and Media. The N. crassa wild-type strain 74–OR23–1 A
(#987, Fungal Genetics Stock Center, Kansas City, KS) was used
in these experiments. RNA was isolated from conidia germi-
nated as shake cultures for 12 h at 25°C on 1.5% sucrose Fries
minimal medium (25) and shifted from 0 to 8 h on 0.3% quinic
acid Fries medium. All plasmids used to generate probes for
RNA hybridization were grown in Escherichia coli strain JM101.

DNA and RNA Isolation. Plasmid DNA was prepared as in ref. 26.
N. crassa total RNA was isolated as in ref. 27.

RNA Hybridization. Total RNA was fractionated by electrophore-
sis on agarose gels containing formaldehyde and transferred to
Nytran TM, hybridized in 6� SSPE [standard saline phosphate�
EDTA (0.18 M NaCl/10 mM phosphate, pH 7.4/1 mM EDTA)]�
2� Denhardt’s solution�0.1% SDS�50% formamide at 42°C,
and rinsed as recommended (Schleicher & Schuell). Six DNA
fragments were labeled with 32P (28) from the qa cluster (29) and
the histone gene (H3) of N. crassa as a standard (30). Densito-
metric analysis of autoradiograms was performed on the Mo-
lecular Dynamics 300A. Northern blots were stripped in 50%
formamide�2� SSPE at 65°C, as recommended (Schleicher &
Schuell), and reprobed.

Biological Circuit Model
Chemical reaction networks have been proposed for the � phage
switch (31), signaling networks (15), the cell cycle in S. cerevisiae
(32), and carbon metabolism (21, 33). Our model is a chemical

Abbreviation: MC, Monte Carlo.

§To whom correspondence should be addressed. E-mail: arnold@uga.edu.

16904–16909 � PNAS � December 24, 2002 � vol. 99 � no. 26 www.pnas.org�cgi�doi�10.1073�pnas.262658899



reaction network based on a rate equation framework (15), as
follows:

dmx

dt
� �mx �

�x pFQ�t�
1 � �x pS

n � �x,
dpx

dt
� ��x px � mx. [1]

Here, mx and px denote the mRNA and protein product
concentration of gene x, where x stands for the activator
F (� qa-1F), the repressor S (� qa-1S), and the five structural
genes sg (� qa-x, qa-y, qa-2, qa-3, and qa-4). All message levels
mx are assumed to decay with the same rate constant 1�� and the
model time t, and all mx and px have been rescaled so that all
rescaled translation and mRNA decay rate constants are unity;
hence, the dimensionless time t in Eq. 1 is related to the physical
time t(phys) by t � t(phys)��. Possible qa cluster activation by
additional, not explicitly included promoter species (14) is
modeled by constant basal transcription rates, with rescaled rate
coefficients denoted by �x. The rescaled protein decay rates are
given by �x. We assume that the concentration of free inducer
molecules Q, i.e., quinic acid, decays exponentially according to
Q(t) � Q0exp(�	t) or is constant, 	 � 0, over time t, where 	 is
the rescaled decay constant and Q0 is the initial concentration of
inducer in the media. The rate of transcription is proportional to
the level of inducer and activator protein, with rescaled rate
constants denoted by �x. The repressor interacts with the acti-
vator, and the effect of the repressor on transcriptional activation
is captured in the repressor effects �x. Transcription of the
repressor gene is assumed to be unrepressed, i.e., we set �S � 0.
The Hill exponent n is a shape parameter controlling the
cooperative effect of the repressor on transcription rates. The
model does not include posttranscriptional regulation.

Steady-state solutions of Eq. 1 for constant inducer in the
media (i.e., 	 � 0 and Q � Q0) can be found and local stability
analysis performed. For a Hill exponent of n � 1, the steady state
is

msg
�o� � �sg psg

�o� �
�sg pF

�o�Q0

1 � �sg pS
�o� � �sg,

mS
�o� � �SpS

�o� � �SpF
�o�Q0 � �S, mF

�o� � pF
�o�, [2]

where pF
(o) is the unique, positive, stable solution to ApF

(o)2
� BpF

(o)

� C � 0, with A � �f1�F�SQ0; B � �F � �S�F�f1 � �f1�S�FQ0 �
�FQ0; C � ��F � �F�S�f1; and �f1 � �F��S.

Ensemble Method for Identifying Kinetics Models
As in the study of most biological circuits, for the foreseeable
future, biologically realistic models are likely to be parameter
rich and data poor, even with the advent of RNA and protein
profiling. The approach we take to sidestep this problem is one
drawn from statistical mechanics (34) and using Monte Carlo
(MC) simulation methods (35–38), which have found increas-
ingly wide application in biology (39). Instead of trying to
identify one model, the goal is to identify an ensemble of models
consistent with, and constrained by, the available RNA and
protein profiling data based on MC simulation techniques. This
is termed the ensemble method for circuit identification. We will
first give a simplified overview of the method, followed by a full
technical description.

Suppose the model and its solution are completely specified by
a certain array of parameters that are initially unknown, but are

to be constrained by the available experimental data. This array
of unknown model parameters is referred to below as the ‘‘model
parameter vector �,’’ or, for short, the ‘‘model �.’’ The basic idea
of the ensemble method is to generate an ‘‘experimentally
constrained’’ random sample of such �s, in such a manner that
those �s that yield model predictions ‘‘most consistent’’ with the
experimental data are the most likely to be collected into the
sample. A model’s ‘‘degree of consistency’’ with the experimen-
tal data is quantified in terms of a certain figure of merit that
measures ‘‘how closely’’ the model’s prediction for observed
quantities matches the experimental data.

The ensemble simulation starts from an initial � that is chosen
completely randomly, i.e., without any constraint by experimen-
tal data. The simulation then proceeds as a random walk in the
‘‘space’’ of all possible �, as follows: From the random walk’s
current � location in the model parameter space, a new � is
constructed by a certain random ‘‘proposal’’ procedure. If the
proposed new � improves the figure of merit, it is automatically
accepted and becomes the next � point visited by the random
walk. If the proposed new � worsens the figure of merit, the
proposal is accepted with a certain probability, Paccept, 	1 or
rejected with probability 1 � Paccept. If accepted, the proposed
new � becomes the next point visited by the random walk; if
rejected, the next point visited is identical to the current point,
i.e., the random walk does not move. Eventually, this random
walk settles into a steady state where almost all �s visited are
consistent with the experimental data. A large sample of such �
vectors, visited by the random walk in steady state, represents the
model ensemble.

We now turn to the full technical description of the ensemble
method. Let the unknown parameters in the model be denoted
by the M-tuple � :� (�1, . . . , �M). For the kinetics models
explored here, � comprises the unknown rate coefficients for all
reactions r � 1, 2 , . . . , MR, e.g., in Eq. 1, and all unknown initial
concentrations [s]t�0 for all intracellular species s � 1, 2, . . . , MS.
Our desired ensemble is then formally described in terms of a
probability distribution Q(�) on the � space of all models.

Next, let Y :� (Y1, . . . , YD) denote the D-tuple of all
experimental observables, which have been measured in one or
a series of ME time-dependent profiling experiments, labeled by
e � {1, . . . , ME}, where, in each experiment the concentrations
[s] of certain species s are measured at time points t. Different
experiments e are distinguished by differing externally controlled
and quantitatively known experimental conditions that include,
for example, the carbon source and their concentrations, feed-

Fig. 2. Regulatory gene control. Arrows indicate RNA transcripts controlled
by the protein products (thin lines) of the qa-1F activator and the qa-1S
repressor. qa-SG is the five structural genes.

Fig. 1. Gene organization in the qa cluster of N. crassa, two regulatory
genes, and five structural genes.
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ing�starvation schedules, choice of measurement time points,
and functional presence or absence of certain genes or proteins,
as controlled by gene knockout or enzyme inhibition experi-
ments. If, for example, some linear measure of concentration is
used, our data vector Y would comprise components

Yl :� Ys,t,e :� 
s�t,e�
s��ref�, [3]

with some (known or unknown) reference concentration [s](ref)

like, e.g., the maximum [s] level during observation. Alterna-
tively, we may want to use a log-concentration measure (3), Yl :�
Ys,t,e :� ln([s]t,e�[s](ref)). Here l :� (s, t, e) and s � S� labels the
MS� different molecular species, with S� denoting the subset of all
species whose time-dependent concentrations actually have been
observed. Typically, S� is only a subset (generally a small one!)
of the set S of all MS participating species in the network. With
t � (t1, . . . , tMT) labeling the MT different time points at which
concentration measurements have been taken, the dimension-
ality of our data vector Y is then

D � MS�MTME. [4]

Now, let F(�) :� (F1(�), . . . , FD(�)) denote the correspond-
ing vector of predicted values for the observables Y in a given
model �. For the above-described set of observables Ys,t,e, the
predicted values Fl(�) � Fs,t,e(�) are calculated from � by
solving the circuit’s system of rate equations for the rate coef-
ficients and initial conditions comprised in � and by then
extracting from that solution the linear or log-concentration
measure for each observed species s at each observation time
point t in each experiment e.

It is reasonable to assume (but not fundamental to our
ensemble method!) that the probability distribution P(Y�
) of the
data Y, given their corresponding mean values 
 � (
1, . . . , 
D),
is representable as a multivariate Gaussian, without error correla-
tions between different data points Yl. Hence, we will use the
following

P�Y�
� � const � exp
��2�2�

� const � exp���
l

�Yl 
 
l�
2��2�l

2��, [5]

with 
l and �l denoting the mean and standard deviation of the
observable Yl. If multiple realizations of each profiling experi-
ment are performed, then the full variance–covariance matrix
can be estimated and used in Eq. 5 in lieu of �l

2. Based on prior
experience with Northern blots, we assume relative standard
deviations �l�
l 
 0.2 � 0.3 in the simulations reported below.
Heteroscedasticity has been reported not to be an issue (40).

A given P(Y�
) does of course not uniquely determine the
model ensemble Q(�). There is an infinite manifold of Q(�) that
is consistent with the data distribution P(Y�
), and we have to
make reasonable choices. The simplest choice, which we have
adopted here, is to take the likelihood as the posterior (with
uniform prior) distribution (41), i.e.,

Q��� � P�Y�F������ � W����� � � 
 1exp��H����,

[6]

with a weight W(�) :� P(Y�F(�)) and normalization factor � :�
��W(�), where �� denotes integration over all components of
�. To emphasize the analogy to the Boltzmann factor in
statistical physics, we have also introduced here the analogue of
a Hamiltonian or energy function, H(�) :� �ln W(�) (34).
More systematic approaches to constructing Q(�) can also be
used, e.g., a posterior probability derived from Bayesian infer-
ence and maximum entropy considerations (41–44). For the

present proof-of-principle applications, we will limit ourselves to
the choices for P and Q given above.

In standard data-fitting methods, such as maximum likeli-
hood, least-squares fitting, and maximum entropy approaches,
one would attempt to construct the correct model by finding a
unique � that maximizes Q(�). Because of the large number of
unknown model parameters, the (initial) scarcity of experimen-
tal data, and the substantial uncertainties in the data, such
approaches are bound to fail in the present context. Our basic
philosophy here is that one should not attempt to find a unique
�, unless it is warranted by the quantity and quality of the
underlying data. Rather, one should admit all � as possible
candidates for the correct model with a probability distribution
Q(�) that reasonably reflects a �s degree of consistency with the
data. The weight W(�) provides a convenient measure of the
degree of consistency of the model � with the experimental data,
and, thus, serves as our figure of merit.

For any ensemble of the general form Q(�) :� ��1W(�) with
an analytically known or numerically calculable weight function
W(�) [having a normalization � � ��W(�)], we can evaluate
the ensemble average of any quantity G(�),

�G�.��
Q� :� �
�

G���Q��� � ��
�

G���W�������
�

W����,

[7]

as well as, for example, its probability distribution p[G,Q](g): �
��(g � G(.))�[Q]. This is achieved by a well established MC
method from statistical physics (35–38) in which random samples
of � � (�1, . . . ,�I), distributed according to Q(�) are generated
numerically, e.g., by a Metropolis-type (35–38) random walk
Markov chain procedure. The desired expectation �G(.)�[Q] is
then given, up to controllable statistical sampling errors, by

�G�.��I :� I�1 �
i�1

I

G��i� [8]

over the MC sample, i.e., by the Ergodic Theorem, limI3� �G(.)�I
� �G(.)�[Q]. Specifically, in our simulations, the basic random
updating step in our Markov chain, from a given � to the next,
��, proceeds as follows: (i) select with equal probability one of
the � components, �m, with m � {1, . . . , M}; (ii) propose
an update from �m to ��m :� �m � �m, where �m is drawn
with constant probability from an interval [��m

(max), �m
(max)] with

some maximum step width �m
(max); (iii) accept the proposed step

with the standard Metropolis acceptance probability Paccept(�3
��) � min[1, Q(��)�Q(�)], where �� :� (�1, . . . , ��m, . . . , �M).
If the proposed step to �� is accepted, set the ‘‘next’’ � in the
Markov chain �� � ��; else, �� � �.

A crucial point here is that only the weight function W(�), but
not the normalization factor �, needs to be evaluated in gen-
erating the MC sample, because only ratios Q(��)�Q(�) �
W(��)�W(�) enter into the Metropolis acceptance probability
Paccept. Each such updating step does require a completely new
solution of the reaction network model to evaluate the new
weight W(��) for the proposed new ��.

In the following, we will apply the ensemble approach to the
kinetics model, Eq. 1, where � � (�1, . . ., �M) comprises (i) the
initial concentrations mx,0 and px,0 of the seven mRNA and seven
protein species; (ii) the quinic acid initial concentration Q0 and
decay rate constant 	; and (iii) the rate coefficients �x, �x, �x, and
�x, where the (fixed) �S � 0 is excluded and, for the five structural
genes, all five �x are set to the same value �sg, because the sg
proteins do not act back on any other species in our model and,
hence, �sg does not affect the model predictions for any mea-
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sured mRNA species. Assuming a fixed Hill exponent n � 1 and
a given, fixed mRNA lifetime � � 60 min, there are, hence, 25
unknown rate constant parameters and 14 initial conditions, i.e.,
a total of M � 39 �-variables, in our model, to be fitted to only
D � 42 data points (MS� � 6 mRNAs � MT � 7 time points �
ME � 1 experiment) from Fig. 3.

The model Eq. 1 was solved using the fourth-order Runge-
Kutta method (45) with time step h � 3.0 min to compute the
model solution Fl(�) in Eq. 6. For Yl in Eq. 6, we used the linear
concentration measures given by the pixel-count data extracted
from Fig. 3, with the maximum mRNA level as the reference
[s](ref) in Eq. 3 for each measured mRNA species s. At the
beginning of the MC random walk, � was randomly initialized,
with each component �m drawn from a wide but finite interval
Im :� [�m

(lo), �m
(hi)]. A typical walk in � space consisted then of

104 MC ‘‘warm-up’’ steps, to equilibrate the Markov chain,
followed by 104-step MC accumulation steps, with all compo-
nents of � and all corresponding solutions for the time-
dependent species concentrations sampled after every 102 steps.

Results
In experimental studies of the mRNA levels of the qa-1F gene,
the level of activator mRNA increases for 4 h, decreases slightly
by 8 h, and continues to decrease noticeably by 10 h (Fig. 3; ref.
24). At 10 h, the message level is 38% of that at 4 h. The
qualitative mRNA dynamics of the qa structural genes is quite
similar to the dynamics of qa-1F in Fig. 3. At present, there are

no measurements of the mRNA levels of qa-1S. Using the
ensemble method described in the previous section, we find that
there is a set of models � that captures this gene expression
dynamic quite well.

The ensemble Q(�) represents a complex object in a high-
dimensional parameter space. In Fig. 4, we show projections of
the ensemble into three arbitrarily chosen 2D � planes, dis-
played as scatter plots of an MC sample. Important interrelations
between the parameters can be revealed by such projections. For
example, the ensemble appears quite constraining for the rates
of protein turnover and induction, as shown in the second and
third plane. The basal rates of transcription, shown in the first
plane, are much more diffuse and correlated.

In Fig. 5 we show ensemble averages of the numerical solutions
of Eq. 1, obtained from the MC sample whose projections are
shown in Fig. 4. The dots in Fig. 5 are the experimental data
derived from Fig. 3. The shaded areas at each time t are centered
around the ensemble averages �[s]t,e� of the respective species
concentrations [s]t,e and comprise 4 ensemble standard devia-
tions of [s]t,e. As Fig. 5 shows, with a few exceptions, these shaded
‘‘ensemble’’ areas cover the experimental data, shown by the
dots. Fig. 5 also shows some of the corresponding ensemble
predictions for as-yet-unobserved protein time evolutions.

From a microscopic point of view, chemical reactions proceed
by a stochastic process involving discrete, random collision
events between discrete molecules (or discrete quasimolecular
entities such as the gene activator binding sites on a chromo-
some). A deterministic model like Eq. 1 captures this stochastic
dynamics only approximately (46), at the level of statistical
averages, thereby neglecting fluctuation effects arising from the
discreteness of molecules and molecular collisions. Such fluctu-
ation effects can be important in systems where the total number
of molecules of a species is small. For example, it has been shown
that fluctuation effects arising in the stochastic dynamics of gene
expression (47, 48) may provide an explanation for the phenom-
enon of phenotypic switching. Binding of a free inducer molecule
(i.e., quinic acid in the cell), activator, and repressor to the
activator, gene, or repressor, is likely to be a stochastic process
subject to substantial f luctuations, because of the small number
reactant molecules in the cell (24, 49).

Following ref. 46, we can construct a corresponding stochastic
model based on the deterministic model Eq. 1, the circuit in
shown Fig. 2, and the parameter estimates provided by the
above-described MC sample of model � vectors. In this corre-
sponding model, the number of molecules of each species is
treated as a stochastically evolving integer, and time is advanced
in discrete steps of random lengths, from one collision event to
the next, with a time step length distribution determined by the
molecular collision rates. The resulting stochastic model has the
structure of a discrete-time denumerable Markov chain (50).

Different realizations of the random trajectories of such a
stochastic model are shown in Fig. 6. The results in Fig. 6 indicate
that the dynamics of the total number of molecules, e.g., for the
qa-1F gene product, NmF, behave qualitatively like the experi-
mentally observed and also like the above-described determin-
istic model dynamics, with maximal expression being reached at
�4 h. The fact that both the deterministic (Eq. 1) and stochastic

Fig. 3. RNA profiles (or Northern blots) for six genes in the qa cluster
together with that of the histone (H3) as a control at 30 min, 60 min, 90 min,
2 h, 4 h, 6 h, and 8 h. Sizes of some messages are indicated on the right.

Fig. 4. Projections of an MC sample of �, drawn from Q(�), into three
distinct � planes.
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models show dynamics in accordance the with experimental data
suggests that the gene regulation scheme shown in Fig. 2 is
indeed the key molecular mechanism in the gene regulation of
the qa cluster.

Discussion
Simple gene regulation schemes like the one in Fig. 2 are at the
core of more complex biological circuits, and they represent a
model of how we can think of the functioning of the cell. From
such a circuit, a formal model (deterministic or stochastic) can
be derived and compared with the temporal dynamics of the
RNAs and proteins in the cell. Traditional fitting practices for
kinetics models are unlikely to be successful because the models
are parameter rich, but the scientist is data poor when the
information is derived from profiling experiments. Borrowing
from Boltzmann’s original ideas in statistical mechanics (34), we
are taking the approach of identifying an ensemble of models,
rather than trying to find one or a few solutions to an ill
conditioned fitting problem. To implement this approach com-
putationally, we initiate a random walk (in particular, the
realization of a Markov chain) in the model parameter (�) space,
guided by some figure of merit that quantifies the deviation of
the model from the data. Once this random walk settles into a
steady state, typically after a few thousand steps in the parameter
space, the ensemble of models is realized by the steady state or
stationary walk consistent with the data (Fig. 4). This ensemble
(or distribution of fitted models on the parameter space) cap-
tures what we know about the biological circuit. This ensemble
method of circuit identification allows us to see not only what
parameters in the model are well specified (or poorly specified)
by providing higher moments (i.e., variances) and (joint) distri-
butions, but it also provides us insights into what are likely to be
the most informative new experiments to reduce the uncertainty
in our model specification. For example, the basal transcription

Fig. 5. Comparison of experimental and ensemble model dynamics of mRNAs of the qa cluster. The dots are the data derived from Fig. 3. The shadowed areas
enclose 4 ensemble standard deviations of mx, for x � F, S, sg, centered around the ensemble mean of mx. Also shown are the corresponding ensemble predictions
for several protein levels px.

Fig. 6. Dynamics of the total number of qa-1F mRNA molecules, obtained by
simulations of the stochastic model corresponding to Eq. 1, as described in the
text. Different realizations of the stochastic model trajectory generate patterns
with maxima located near 4 h in accordance with experimental data in Fig. 3.
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rates shown in Fig. 4 are poorly constrained by the present
experimental data, suggesting the need for additional early-time
(	30 min) measurements.

We have successfully used the ensemble method to model
profiling data on one of the classic eukaryotic biological circuits,
the qa gene cluster. The model Eq. 1 is only the first step for a
model of gene regulation in the qa cluster designed to explain
existing data. As more profiling data are obtained under a
variety of external control conditions, other features could be
added to the model, including, for example, coupling to other
circuits, such as aromatic amino acid biosynthesis (33, 51).
Coupling of such circuits can lead to a richer repertoire of circuit
dynamics (15). It has also been argued that translational control
may play an important role in the qa gene cluster regulation (14),
a feature not included in the current model. The model sum-
marized in Eq. 1 can be extended to study this and other potential
complications to yield experimental predictions about possible
emergent properties in the biological circuit (15). For example,
under some conditions (49, 52), stochastic simulation of this
scheme may show oscillatory dynamics or switch-like behavior.

This raises the question of whether or not deterministic kinetics
models could be used to predict conditions for an oscillatory
response of the qa cluster.

Biological circuits such as the qa cluster can be perturbed in
a variety of ways. Profiling data will be obtained under varying
and�or time-dependent sucrose and QA levels, and in circuits
modified by gene knockout and�or enzyme poisoning. By means
of a single, joint �2 function, all such perturbation experiments
can be immediately incorporated into the ensemble approach
and treated on equal footing, thus leading to systematic refine-
ments and extensions of the circuit model. Extension of the
ensemble approach to stochastic reaction kinetics modeling (46)
is in principle straightforward. The ensemble method of model
identification provides us with a versatile tool, allowing direct
inspection of whether a new model ‘‘works’’ in adequately
representing the data. A flexible and adaptable fitting tool is key
to a detailed understanding of biological circuits because the
resulting ensemble models can be used to guide the construction
of new costly experiments to extend our understanding of
particular real circuits in a genomic context and to maximize the
likely information gain from such new experiments.
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