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A linkage disequilibrium map is expressed in linkage disequilibrium
(LD) units (LDU) discriminating blocks of conserved LD that have
additive distances and locations monotonic with physical (kb) and
genetic (cM) maps. There is remarkable agreement between LDU
steps and sites of meiotic recombination in the one body of data
informative for crossing over, and good agreement with another
method that defines blocks without assigning an LD location to
each marker. The map may be constructed from haplotypes or
diplotypes, and efficiency estimated from the empirical variance of
LD is substantially greater for the � metric based on evolutionary
theory than for the absolute correlation r, and for the LD map
compared with its physical counterpart. The empirical variance is
nearly three times as great for the worst alternative (r and kb map)
as for the most efficient approach (� and LD map). According to the
empirical variances, blocks are best defined by zero distance
between included markers. Because block size is algorithm-depen-
dent and highly variable, the number of markers required for
positional cloning is minimized by uniform spacing on the LD map,
which is estimated to have �1 LDU per locus, but with much
variation among regions. No alternative representation of linkage
disequilibrium (some of which are loosely called maps) has these
properties, suggesting that LD maps are optimal for positional
cloning of genes determining disease susceptibility.

The human linkage map began half a century ago (1, 2),
revealing that two or more genetic entities may be con-

founded in a single clinical entity (3). Differential diagnosis
through linkage became the cornerstone of medical genetics,
driving techniques that mapped many genes and led to the
Human Genome Project. Linkage disequilibrium (LD), the
association between alleles of closely linked genes, has a much
shorter history. It began in evolutionary theory (4) but was soon
used to localize the effect on disease susceptibility (or other trait)
of a sequence not previously annotated (positional cloning).
Novel ideas generated a new vocabulary. A haplotype specifies
markers on one member of a pair of homologous chromosomes
(5). A diplotype is a set of haplotype pairs with the same genotype
to which a vector of probabilities may be assigned, summing to
1 for each diplotype (6). In this vector, the probability corre-
sponding to the ith haplotype (perhaps conditional on family or
other information) is the chance that a haplotype drawn at
random from that individual be i. For example, the diplotype
with genotype Aa Bb is the union of AB�ab and Ab�aB, and its
probability vector corresponds to the four possible haplotypes. A
phased diplotype is a unique pair of haplotypes identified by
somatic cell hybridization or inferred by family study, the other
elements of the probability vector being 0 (or, loosely, very
small). An LD map is constructed from a physical map with
additive units (LDU) for use in positional cloning by enhancing
the resolution of the linkage map, for identifying sequences
predisposing to recombination, and for discriminating other
processes and events in population history (7). A haplotype map
is at best an LD map with haplotype annotation. Many questions
remain unanswered about the optimal construction of LD maps,
discrimination of high-LD blocks and low-LD steps, measure-
ment of interpopulational differences, and application to posi-
tional cloning. Here we address the first two questions by
diplotype analysis.

Materials and Methods
We analyzed two bodies of recently published data on which
current ideas of LD blocks are based. Jeffreys et al. (8) selected
a 216-kb segment of the class II region of the MHC in 6p21.3.
They typed 296 single-nucleotide polymorphisms (SNPs) in a
panel of 50 unrelated north-European British semen donors. The
three largest LD blocks coincided with regions of low meiotic
recombination, separated by peaks of recombination frequency
with a standard deviation of only 300 bp. Daly et al. (9) typed 103
SNPs in 617 kb on chromosome 5q31. By latent variable analysis,
they delimited 11 LD blocks of tens to hundreds of kb in 129
parent–child trios from a European-derived population. We
sampled only parents for diplotypes. These small, densely
mapped regions are useful to determine the operating charac-
teristics of LD mapping, with results so simple that application
to whole chromosomes now requires only that the sequence be
finished and that SNPs be typed at high resolution whether for
haplotypes or diplotypes.

We used samples of diplotypes between pairs of markers to fit
the Malecot equation and construct LD maps by the interval
method (7). These and other options are available in LDMAP,
which performed the analyses reported here (http:��cedar.
genetics.soton.ac.uk�public�html�). This approach to LD map
construction is an extension of the Malecot model for the decline
of association with distance d with expected value � � (1 �
L)Me��d � L, where M is 1 for monophyletic origin and �1
otherwise, L describes residual association at large distance, and
�d equals the product of recombination and time (10). This
equation includes both expected decline of LD after a bottleneck
and expected increase through drift and mutation. Because L is
the asymptote, it is not observed in a small region, and the block
structure revealed by a high density of SNPs distorts a direct
estimate of L. Instead of direct estimation, L may be predicted
as the K�-weighted mean absolute value of a standard normal
deviate with information K� � n[Q(1 � R)�R(1 � Q)] for n
diplotypes of two loci with allele frequencies Q � R, 1 � Q (7).
Corresponding to the test of LD by �1

2 � �2K�, the empirical
variance based on the composite likelihood is V � �K�(�̂ ��)2�
(m � k), where �̂ is an empirical estimate of �, m is the number
of marker pairs, and k is the number of parameters estimated by
minimizing the weighted sum of squares. Taking L at its pre-
dicted value, we test the hypothesis that M � 1 by �1

2 � ��(m
� 2)V, where � is the excess in the weighted sums of squares
under the subhypothesis with only � estimated and V is the
empirical variance when M and � are both estimated. The
argument has been generalized to any measure � of pairwise LD
(10). Although composite likelihood violates the independence
assumption, it does not favor one choice of � over another (11).

LD map construction depends on obtaining an estimate �i for
the ith interval between adjacent pairs of k SNPs (i � 1, . . . ,
k � 1). Pairwise association data between all SNPs which span
the interval being estimated provide some information about �i,
although information is negligible at large distance. The LD map
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is constructed iteratively with a map location in LDU � ��idi,
where di is the ith distance in kb between adjacent SNPs (7).
After convergence to � � 1, each �i is multiplied by this estimate
of �, thereby scaling the LD map so that 1 LDU corresponds to
the ‘‘swept radius’’ 1�� to which LD useful for positional cloning
extends (10). The composite likelihood and M and L estimates
are unchanged by this scaling, which assures that the expected
value of � conforms to (1 � L)Me�D � L, where D is distance
in LDU. Estimates of �i recover LD blocks and give useful
estimates of distance in the LD map, but they do not have the
optimality of maximum likelihood.

Results
To establish benchmarks, we tested subhypotheses of the
Malecot model on the physical maps used by the authors (8, 9).
The values of L are significantly greater than predicted from the
information weight, contrary to experience with SNPs at much
lower resolution (10). Obviously the three parameters of the
Malecot model cannot accurately describe block structure in the
physical map. Both sequences are short, the sample sizes are
relatively small, and the blocks are too prominent to estimate L
directly. The values of M are significantly �1, suggesting that the
frequency of the rarest haplotype was not 0 after the last major
bottleneck (Table 1).

Block structure is evident in both samples, corresponding well
but not perfectly with the different algorithms used by the
authors (Figs. 1 and 2). The three major steps in 6p21.3 coincide
with hot spots of meiotic recombination. The density of SNPs

within steps is not high enough to localize LD cold spots with the
same precision as the corresponding recombination hot spots,
which were estimated to span �2 kb (8). If the LD cold spot turns
out to be wider, there are at least three possible explanations (7).
First, the LD mapping algorithm may not have the necessary
precision. Second, there may be multiple recombination hot
spots within a small region. Third, the location of current hot
spots may be affected by mutations, insertions, and deletions in
recombinogenic sequences and may therefore be more variable
in LD than in current recombination.

The � metric is unique in being a probability based on
evolutionary theory and applicable to random or selected sam-
ples (12). As expected, � fits association data considerably better
than alternative metrics, whether each is weighted by its infor-
mation on the null hypothesis that � � 0 or the alternative
hypothesis H1 of the Malecot model (10). However, previous
trials were at low resolution and might not apply to the samples
analyzed here. We therefore compare � with r, the absolute value
of the correlation with information n on the null hypothesis (10).
The necessary and sufficient condition for � � 1 is that one of
the haplotype frequencies be 0, consistent with absence in
founders. On the contrary, r � 1 only if the two off-diagonal
frequencies are 0, a coincidence unlikely to characterize
founders. As expected, estimates of M are much less for r than
for �, the parameters are inconsistent (Table 2), and the residual
(error) variance is much greater whether distance is measured in
kb or LDU (Table 3). Use of metrics other than � introduces
extraneous variation in measurement of LD, requiring a larger
sample to achieve the same power in positional cloning. Only
part of the variance is due to sampling and inversely proportional
to sample size, whereas � and LDU reduce the evolutionary
variance that is independent of sample size. Therefore the cost
of an inefficient metric is systematically underestimated in Table
3: Even larger sample sizes would be required and might not be
sufficient to compete with the optimal metric. Evolutionary
variance and error in the model usually inflate V, requiring its
incorporation in tests of significance. The 6p21.3 region is
exceptional in reducing V below 1, reflecting correlation of the
�i at high density. This will be increasingly observed in LD maps
at high resolution.

As a final test of the LD maps, we varied the minimal value
of �i from 0 to 0.001. The variance increases at high values.
Setting the minimum to 0 gives the best results (Table 4). The
estimate of L agrees with its predicted value for 5q31, but not for
6p21.3. The latter greatly enriches the number of SNPs around
intense recombination hot spots, and so neighboring blocks are
confounded with L. There is agreement between recombination

Table 1. Tests of M � 1 for physical map

Data � M L df �K�(�̂ � �)2 �1
2

6p21.3 0.1214 (1) (0.190) 43,657 54,457
3,998

0.0195 0.510 (0.190) 43,656 49,888
5q31 0.0047 (1) (0.079) 5,252 27,097

92
0.0041 0.917 (0.079) 5,251 26,628

Parameters fixed by hypothesis are in parentheses.

Fig. 1. Graph of the LD map of 6p21.3 (A) and meiotic recombination (B)
reported by Jeffreys et al. (8), oriented from pter to qter. The dotted line is a
rough estimate of recombination within the major blocks defined by recom-
bination hot spots as centimorgan (cM)�Mb � 0.04. Such low levels make
definition of the small steps arbitrary and, therefore, of doubtful utility for
positional cloning.

Fig. 2. Graph of the LD map of 5q31 (A) and comparison with the 11 blocks
(B) inferred from latent variables by Daly et al. (9). This is a more typical region,
not selected by recombination hot spots. It illustrates the high frequency of
small steps (e.g., between blocks 2 and 3, 5 and 6, and 8 and 9) and, therefore,
the subjectivity of block definition. It remains to be established whether
splitting or lumping is more favorable to positional cloning, or irrelevant.
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hot spots (8) and the LD cold spots indicated in Fig. 1.
Agreement with the less well defined blocks in 5q31 is more
approximate (Fig. 2), but cannot be evaluated in the absence of
recombination evidence and a justification of the latent variable
used to define steps (9). Every author so far has used a different
criterion to define blocks. The optimal definition depends on
unknown utility to complement information in LD maps, which
reveal block structure but do not specify block definition.

The standard error of LD map length if the observations were
not autocorrelated and the Malecot model for the physical map
were exact would be SE(�)	di, where the standard error SE (�)
incorporates the empirical variance. This is an underestimate
when the assumptions are incorrect, and so we shall not rely on
it. The lengths of the 6p21.3 and 5q31 regions are 9.84 and 2.51
LDU, respectively. Altogether, 12.35 LDU and 832.32 kb are
spanned. If the genomic length is 3 
 106 kb, the corresponding
length in LDU is 44,514. On such fragmentary evidence there is
�1 LDU per locus, but with much variation among regions. The
6p21.3 region was chosen with the knowledge that it contains the
TAP2 recombination hot spot (13), but the estimated genetic
length of 0.22 cM agrees closely with the predicted value for a
segment of 216 kb with 0.89 cM�Mb on the male map (8). The
estimated time back to founders if � � 0.0022 is t � 9.84
LDU�0.0022 � 4,473 generations or roughly 100,000 years, in
good agreement with a bottleneck caused by migration out of
Africa at about that time.

Discussion
The data of Jeffreys et al. (8) are unique in providing indepen-
dent evidence of recombination hot spots that coincide with
steps between blocks. This may well be true generally and
depend on specific sequences enhancing recombination. How-
ever, chance and selective sweeps may also create blocks sepa-
rated by steps. Expansion of a young haplotype gives little
opportunity for diversification by mutation or recombination
compared with older haplotypes that would be replaced in a
complete sweep, destroying evidence that a block was created by

recent selection or drift rather than low recombination (14). In
the absence of a rationale for precise definition, at least five
schools compete for attention. Splitters declare a block when �
exceeds a small threshold, whereas lumpers set the threshold
higher. Steppers prefer large blocks punctuated by steps that may
span several markers. Blockers look within steps for small blocks
even if only between adjacent markers. Monophysites prefer
equal numbers of markers per LDU regardless of block defini-
tion. These contending schools cannot be expected to choose the
same markers to scan the genome or a candidate region.

Elsewhere, the efficiency of � to fit the Malecot model has
been demonstrated by comparison with six other metrics in eight
bodies of data (10). This does not exhaust the unlimited number
of metrics that can be used, among which � is unique in being a
probability that is a simple function of the haplotype frequencies
for two diallelic loci, founded on an evolutionary theory that
allows LD to increase or decrease by recombination and muta-
tion (10). In random samples, � is numerically equal to 0 �
D� � 1, defined (but not as a probability) by Devlin and Risch
(15). In case-control samples D� diverges from � and is inefficient
(15), whereas � is efficient for all values of the enrichment factor
� defined as c�f, where c is the ratio of cases to controls and f
is the ratio of affected to normal in the general population (12).
Allowing for �, � approaches the � metric as � increases (11).
The general formula is � � �D��min[QR, Q(1 � R), (1 � Q)R,
(1 � Q)(1 � R)], where allele frequencies Q and R and
covariance D in random samples are estimated from the enrich-
ment factor �, which equals 1 in random samples and exceeds 1
in case-control samples. Then D� in the sense of Devlin and Risch
is the value � would take for � � 1, which is not appropriate for
case-control samples. Originally, D� was defined as a two-valued
function (16–18), and its continued use is ambiguous. Multial-
lelic measures of LD have also been proposed, without theoret-
ical support (19).

Because alternatives to � have no theoretical appeal and have
been shown to fit the Malecot model less well for the kb map, we
have examined only one alternative to � for constructing an LD
map. The evidence presented in Table 3 demonstrates the
advantage of � over the absolute value of the correlation r to
construct an LD map and of LDU to represent variation of LD
with physical location. A recent paper (20) compared D� in the
Devlin and Risch sense (equal to � in a random sample) with r
(denoted by �) and concluded that the latter is less affected by

Table 2. Comparison of � and r for distance in kb and LDU

Data Metric Map length � M L df �K�(�̂ � �)2

6p21.3 � 215.65 kb 0.0195 0.510 0.190 43,656 49,888
r 215.65 kb 0.0257 0.175 0.114 43,656 58,260
� 9.84 LDU 1 0.865 0.190 43,361 37,757
r 12.69 LDU 1 0.322 0.114 43,361 50,312

5q31 � 616.67 kb 0.0041 0.917 0.079 5,251 26,628
r 616.67 kb 0.0038 0.488 0.055 5,251 56,240
� 2.51 LDU 1 0.916 0.079 5,149 16,612
r 2.62 LDU 1 0.515 0.055 5,149 47,481

L � predicted value.

Table 3. Empirical variance, sample size, and efficiency for �
and r

Data Metric

Empirical
variance Sample size* Efficiency

kb LDU kb LDU kb LDU

6p21.3 � 1.143 0.871 1.31N N 0.76 1.00
r 1.334 1.160 1.53N 1.33N 0.65 0.75

5q31 � 5.071 3.226 1.57N N 0.64 1.00
r 10.710 9.221 3.32N 2.86N 0.30 0.35

Total � 6.214 4.097 1.52N N 0.66 1.00
r 12.045 10.382 2.94N 2.53N 0.34 0.39

*Lower bound cN to the number required for same power as � metric with
LD map (c � 1), where N is the sample size for LDU with � metric.

Table 4. Goodness of fit of minimal �i for LD map

Data Minimal �i LDU M �K�(�̂ � �)2

6p21.3 0 9.84 0.865 37,757
0.0001 9.86 0.868 37,763
0.001 9.63 0.861 37,828

5q31 0 2.51 0.916 16,612
0.0001 2.52 0.918 16,646
0.001 2.55 0.926 17,096

17006 � www.pnas.org�cgi�doi�10.1073�pnas.012672899 Zhang et al.



sample size and high allele frequencies. This inference was based
on the sampling variance, neglecting evolutionary variance. The
sampling variance of r under H0 is the reciprocal of sample size,
and r under H1 is relatively free of confounding with allele
frequencies. On the contrary, its larger evolutionary variance is
notoriously sensitive to allele frequencies (15, 18, 19). Use of r
stems from a theory that assumed no LD in founders (21),
whereas application to real populations allows LD to increase by
drift or decrease by recombination after a bottleneck in founders
(10). The relevant theory was derived in terms of the probability
�, and so far has not been extended to r. Both measures are
biased by the asymptote with predicted value Lp, which is smaller
for r than for �. This bias is removed in the Malecot model for
multiple pairs, and the low efficiency of r is then apparent.
Consideration of each LD pair in isolation from flanking mark-
ers does not give a sound basis either for LD mapping or
positional cloning, and should be avoided in any extension to
haplotypes.

The superiority of � does not generalize to positional cloning
of an oligogene, where the gene frequency Q of a causal SNP is
unknown and the constraint of Q less than or equal to the
frequency R of a predictive SNP cannot be enforced or �

estimated directly. Whatever statistic is used for positional
cloning, equal spacing of predictive SNPs on the LD map should
be more efficient than either equal representation of arbitrarily
defined blocks of unequal size or equal spacing on the physical
map to which markers are primarily annotated, and so optimal
construction of both maps is essential. In the absence of additive
LD units, diagrams to indicate blocks and intervening steps are
not maps in the postmedieval sense and do not provide either
efficient choice of markers or a scale on which genes for disease
susceptibility may be localized (22, 23).

We have not touched on the many problems of positional
cloning by multiple haplotypes (18, 24, 25). The arbitrary choice
of an arbitrary number and types of markers has discouraged use
of haplotypes, for which no optimal statistic has been identified.
A popular paradigm suggests a candidate region by linkage or
functional assay, narrows the region by LD, and confirms this
evidence by some unspecified analysis of haplotypes. Whatever
form this extension takes, it will benefit from a reliable map in
LD units.
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