Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1966 Jul;185(2):323–354. doi: 10.1113/jphysiol.1966.sp007989

Factors affecting the distribution of iodide and bromide in the central nervous system*

L Z Bito, M W B Bradbury, H Davson
PMCID: PMC1395813  PMID: 16992225

Abstract

1. Even when a steady level of 131I- is maintained in the blood for long periods, the uptake by brain and spinal cord is very small, and the possibility that this is due to an active transport of I- from brain-tissue to blood has been examined.

2. Most of the phenomena, however, can be explained on the basis of a slow passive diffusion across the blood—brain barrier associated with an active transport of 131I- out of the c.s.f. across the choroid plexuses, so that, except possibly for the spinal cord, active transport from central nervous parenchyma into the blood need not be postulated. If it does occur, it contributes very little to the net exchanges between the three compartments, plasma, c.s.f. and extracellular fluid.

3. The steady-state distribution of bromide between plasma and c.s.f. is normally such that the concentration in the c.s.f. is only some 70% of that in plasma; it has been shown that this is most probably due to an active transport of Br- across the choroid plexuses.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW C. F., DOMEK N. S., GOLDBERG M. A., ROTH L. J. Extracellular brain space measured by S35 sulfate. Arch Neurol. 1961 Jul;5:102–110. doi: 10.1001/archneur.1961.00450130104012. [DOI] [PubMed] [Google Scholar]
  2. BECKER B. Cerebrospinal fluid iodide. Am J Physiol. 1961 Dec;201:1149–1151. doi: 10.1152/ajplegacy.1961.201.6.1149. [DOI] [PubMed] [Google Scholar]
  3. Bradbury M. W., Davson H. The transport of potassium between blood, cerebrospinal fluid and brain. J Physiol. 1965 Nov;181(1):151–174. doi: 10.1113/jphysiol.1965.sp007752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVSON H. A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J Physiol. 1955 Jul 28;129(1):111–133. doi: 10.1113/jphysiol.1955.sp005341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAVSON H. Adsorption of thiocyanate to the plasma proteins; with special reference to the distribution of this ion between aqueous humour and plasma. Br J Ophthalmol. 1955 Nov;39(11):681–684. doi: 10.1136/bjo.39.11.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVSON H., DUKE-ELDER W. S., MAURICE D. M. Changes in ionic distribution following dialysis of aqueous humour against plasma. J Physiol. 1949 Aug;109(1-2):32–40. doi: 10.1113/jphysiol.1949.sp004366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAVSON H., POLLAY M. The turnover of 24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier. J Physiol. 1963 Jul;167:247–255. doi: 10.1113/jphysiol.1963.sp007145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVSON H., SPAZIANI E. The blood-brain barrier and the extracellular space of brain. J Physiol. 1959 Dec;149:135–143. doi: 10.1113/jphysiol.1959.sp006330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KIBLER R. F., O'NEILL R. P., ROBIN E. D. INTRACELLULAR ACID-BASE RELATIONS OF DOG BRAIN WITH REFERENCE TO THE BRAIN EXTRACELLULAR VOLUME. J Clin Invest. 1964 Mar;43:431–443. doi: 10.1172/JCI104928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LLOYD B. B., TAYLOR K. B. Genesis of human cerebrospinal fluid. J Appl Physiol. 1959 May;14(3):401–404. doi: 10.1152/jappl.1959.14.3.401. [DOI] [PubMed] [Google Scholar]
  11. Oldendorf W. H., Kitano M., Shimizu S., Oldendorf S. Z. Hematocrit of the human cranial blood pool. Circ Res. 1965 Dec;17(6):532–539. doi: 10.1161/01.res.17.6.532. [DOI] [PubMed] [Google Scholar]
  12. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  13. POLLAY M., DAVSON H. The passage of certain substances out of the cerebrosphinal fluid. Brain. 1963 Mar;86:137–150. doi: 10.1093/brain/86.1.137. [DOI] [PubMed] [Google Scholar]
  14. REED D. J., WOODBURY D. M. KINETICS OF MOVEMENT OF IODIDE, SUCROSE, INULIN AND RADIO-IODINATED SERUM ALBUMIN IN THE CENTRAL NERVOUS SYSTEM AND CEREBROSPINAL FLUID OF THE RAT. J Physiol. 1963 Dec;169:816–850. doi: 10.1113/jphysiol.1963.sp007298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WELCH K. Active transport of iodide by choroid plexus of the rabbit in vitro. Am J Physiol. 1962 Apr;202:757–760. doi: 10.1152/ajplegacy.1962.202.4.757. [DOI] [PubMed] [Google Scholar]
  16. WYNGAARDEN J. B., STANBURY J. B., RAPP B. The effects of iodine, perchlorate, thiocyanate, and nitrate administration upon the iodide concentrating mechanism of the rat thyroid. Endocrinology. 1953 May;52(5):568–574. doi: 10.1210/endo-52-5-568. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES