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The present experiment arranged a series of inverted U-shaped feedback functions relating reinforcer
rate to response rate to test whether responding was consistent with an optimization account or with
a one-to-one relation of response rate to reinforcer rate such as linear system theory’s rate equation or
Herrnstein’s hyperbola. Reinforcer rate was arranged according to a quadratic equation with
a maximum at a unique response rate. The experiment consisted of two phases, during which 6
Long Evans rats lever pressed for food. In the first phase of the experiment, the rats responded on six
fixed-interval-plus-quadratic-feedback schedules, and in the second phase the rats responded on three
variable-interval-plus-quadratic-feedback schedules. Responding in both phases was inconsistent with
a one-to-one relation of response rate to reinforcer rate. Instead, different response rates were obtained
at equivalent reinforcer rates. Responding did vary directly with the vertex of the feedback function in
both phases, a finding consistent with optimization of reinforcer rate. The present results suggest that
the feedback function relating reinforcer rate to response rate imposed by a reinforcement schedule
can be an important determinant of behavior. Furthermore, the present experiment illustrates the
benefit of arranging feedback functions to investigate assumptions about the variables that control
schedule performance.
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_______________________________________________________________________________

Behavior can be conceptualized as the out-
come of a feedback system wherein respond-
ing produces environmental changes that then
affect responding, that then produces further
environmental changes, and so on (Baum,
1973, 1981; McDowell & Wixted, 1986, 1988).
Baum (1981) described an optimization ac-
count based on the concept of behavior as the
outcome of a feedback system. According to
Baum’s optimization account, behavior is
adjusted to maximize net gain, where net gain
is defined as the benefits obtained from
responding (e.g., reinforcer rate) minus the
costs of responding (e.g., response effort).
Baum concluded that this cost-benefit optimi-
zation account provided a better description of
single-schedule variable-interval (VI) and vari-
able-ratio (VR) performance than did the
matching law (Herrnstein, 1970). More recent
results from negative slope schedules, howev-

er, have been taken as strong evidence against
optimization accounts of single-schedule per-
formance (Jacobs & Hackenberg, 2000; Reed
& Schachtman, 1989, 1991; Vaughan & Miller,
1984). On negative slope schedules, pigeons
(Vaughan & Miller, 1984), rats (Reed &
Schachtman, 1989, 1991), and humans (Jacobs
& Hackenberg, 2000) typically respond at rates
higher than necessary to maximize reinforcer
rate, a finding inconsistent with optimization
accounts that predict maximization of overall
reinforcer rate.

The use of negative slope schedules as tests
of optimization derives from the feedback
function relating reinforcer rate and response
rate arranged by the schedules. Negative slope
schedules arrange an inverted U-shaped re-
lation of reinforcer rate to response rate. The
dotted plot in Figure 1 illustrates the feedback
function arranged by negative slope schedules.
Negative slope schedules are constructed
using linear VI schedules in combination with
a fixed-ratio (FR) subtraction constraint. For
response rates that are, on average, greater
than 1 divided by the mean interreinforcer
interval (IRI) of the linear VI schedule,
reinforcer rate decreases linearly as response
rate increases. Over the range of response
rates less than 1 divided by the mean IRI,
reinforcer rate is an increasing function of
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response rates. Thus negative slope schedules
arrange a bitonic relation between reinforcer
rate and response rate such that reinforcer
rate first increases to a unique maximum and
then decreases as a function of increasing
response rate, providing a clear reference
point for testing optimization accounts.

An alternative to the optimization account
of Baum (1981) that retains the notion of
behavior as the outcome of a feedback system
is an extension of the account provided by
McDowell and Wixted (1986, 1988) for VR
responding. According to McDowell and
Wixted, stable state responding on VR sched-
ules results from the interaction of two
relations. One relation is the quantitative
relation of response rate to reinforcer rate
that is a property of the organism and the
second is the quantitative relation of reinforc-
er rate to response rate imposed by the
schedule of reinforcement. Specifically, McDo-
well and Wixted proposed that stable-state VR
responding results from the interaction of

linear system theory’s rate equation (McDo-
well & Kessel, 1979) and the VR feedback
function. The linear system theory rate equa-
tion can be written as:

R ~ ln me l=r z b
� �� �{1

, ð1Þ

where R represents response rate, r represents
reinforcer rate, and m and b are parameters
that must be estimated from fitting. Equation
1 states that response rate is an increasing,
negatively accelerated function of reinforcer
rate, given appropriate values of m and b.

The feedback function for VR schedules can
be written as:

r ~
R

�nn
, ð2Þ

where r and R are as defined previously and n̄
represents the average response requirement.
Equation 2 states that reinforcer rate is a linear
function of response rate with slope 1/n̄ and
intercept 0.

Fig. 1. Reinforcer rate as a function of response rate on negative slope schedules.
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According to McDowell and Wixted (1988),
an initial level of responding produces an
initial reinforcer rate according to Equation 2,
which then feeds back into Equation 1 to
produce a new response rate, which then
generates a new reinforcer rate according to
Equation 2, and so on until responding
stabilizes at the intersection of the two
equations. This process is shown graphically
in the top panel of Figure 2. Responding
begins at the open circle and produces a re-
inforcer rate denoted by the horizontal line
extending to the VR feedback function (dot-
ted line), which produces a new response rate
according to Equation 1 (solid curve) in-
dicated by the vertical line, and so on until
responding stabilizes at the level denoted by
the filled circle.

The account described by McDowell and
Wixted (1988) can be extended to any
schedule of reinforcement for which the
feedback function can be specified. For
example, if an animal is exposed to a series
of negative slope schedules, responding
should stabilize at the intersection of the
negative slope schedule feedback functions
and Equation 1 as depicted in the bottom
panel of Figure 2. Because the general form of
Equation 1 is equivalent to Herrnstein’s
(1970) hyperbola, data from negative slope
schedules that are consistent with Herrnstein’s
hyperbola are also consistent with McDowell
and Wixted’s account. Thus data such as those
collected by Vaughan and Miller (1984), which
those authors noted are consistent with Herrn-
stein’s hyperbola, are also consistent with
McDowell and Wixted’s account.

One criticism of negative slope schedules as
tests of optimization is that the apex of the
feedback function typically occurs at very low
response rates (e.g., for a negative slope
schedule constructed using a linear VI 30-s
schedule, the apex occurs at two responses per
minute; see Figure 1). The present experiment
sought to arrange a schedule using a bitonic
feedback function that avoided this criticism
of negative slope schedules. It arranged an
inverted U-shaped feedback function for
which the response rate at which reinforcer
rate was maximized could be varied over a wide
range. Additionally, the feedback function was
chosen such that all positive response rates
produced a positive reinforcer rate; a feature
common to typical schedules such as VI and

VR but different from negative slope sched-
ules.

Feedback was arranged in the present
experiment using the following equation:

r ~

{ap2
0 z bp0 { c

p0
R if R ƒ p0

{aR2 z bR { c if p0 v R v p1,

{ap2
1 z bp1 { c if R § p1

8>>><
>>>:

ð3Þ

where r represents reinforcers per hour, R
represents response per minute, and a, b, c, p0,
and p1 are experimenter-chosen parameters.
The dotted curve in Figure 3 depicts the
relation described by Equation 3. Equation 3 is
a piecewise-defined function where for re-
sponse rates less than p0, the operative equation
is a straight line of slope {ap2

0 z bp0 { c
� ��

p0

with intercept zero. This portion of the function
is necessary to ensure that the function inter-
sects the origin. For response rates between p0

and p1, the operative equation is a quadratic
equation with parameters a, b, and c. Finally, for
response rates greater than or equal to p1, the
operative equation is a horizontal line equal to
{ap2

1 z bp1 { c. The third portion of Equation
3 was chosen to ensure that all positive re-
sponse rates produce a positive reinforcer rate.

In the first phase of the experiment,
feedback was arranged by adjusting a fixed-
interval (FI) schedule according to Equation 3
(a FI-plus-quadratic-feedback or FI+QF sched-
ule). In the second phase of the experiment,
feedback was arranged by adjusting the mean
of a VI schedule according to Equation 3 (a VI-
plus-quadratic-feedback or VI+QF schedule).
Both FI and VI schedules were used to
determine if differences in IRI variability
between the two schedules would affect the
pattern of response rates obtained. In either
case, the main question concerned the pattern
of response rates across schedules.

One possible outcome is for response rates
to be consistent with a one-to-one relation of
response rate to reinforcer rate such as
Herrnstein’s (1970) hyperbola or linear system
theory’s rate equation (Equation 1). In con-
trast, strict optimization of overall reinforcer
rate predicts that responding should equal the
vertex of Equation 3. Alternatively, Baum’s
(1981) cost-benefit optimization account pre-
dicts that subjects should maximize net gain,
which in the present experiment is equivalent

(3)
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Fig. 2. Interaction of linear system theory rate equation and feedback functions on VR and negative slope schedules.
Top panel depicts the interaction of the rate equation (Equation 1; solid curve) and the VR feedback function (Equation
2; dotted line). Bottom panel depicts steady-state responding on three negative slope schedules.
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to maximizing overall reinforcer rate given
a constraint on maximal response rate. Thus
Baum’s account predicts that responding
should vary with the vertex of Equation 3 but
should deviate from the vertex at high vertex
rates (i.e., as the cost of responding becomes
substantial).

METHOD

Subjects

Six Long Evans hooded rats, approximately
6 months old at the start of the experiment
and maintained at 85% of free-feeding weight,
served as subjects. Rats were fed following each
daily session. Rats were housed individually in
a colony room illuminated 12 hr daily from
8:00 a.m. until 8:00 p.m. Access to water was
unrestricted in the home cages.

Apparatus

The experimental chambers were six stan-
dard, two response lever operant chambers

(Med Associates, Inc. ENV-007), 240 mm wide,
305 mm deep, and 290 mm high. Each cham-
ber was housed in a sound-attenuating cubicle.
The response levers were positioned on the
front panel of the chamber 70 mm above the
floor and were separated by 115 mm. Each
lever required a force of approximately 0.68 N
to register a response. A food receptacle
measuring 50 mm by 50 mm by 30 mm was
located equidistant between the two response
levers. Three stimulus lights, 8 mm in di-
ameter, were arranged 70 mm above each
response lever. The light colors from left to
right were red, yellow, and green. Each
chamber was equipped with a ventilation fan
that along with an external white noise
generator masked extraneous sounds. A 28-V
DC houselight was centered on the back panel
of the chamber 20 mm from the ceiling.

Procedure

Sessions were conducted 7 days per week in
the mornings. Rats initially were trained to

Fig. 3. Reinforcer rate as a function of response rate according to Equation 3.
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lever press through exposure to an FR 1
schedule for eight sessions. Following FR 1
exposure, the ratio was increased to 2 for two
sessions. Following FR 2 exposure, rats were
exposed to VI 4, 10, and 20 s for 1, 4, and 20
sessions, respectively. Finally, rats were ex-
posed to VR 4 and then VR 8 for 10 and 7
sessions, respectively. Following VR 8 expo-
sure, the first phase of the experiment began.

In the first phase, rats were exposed to six
FI+QF schedules: Feedback was arranged
according to Equation 3 in the following
manner: Each time a response occurred, the
response rate since the previous reinforcer or
since the beginning of the session if no
reinforcers had been delivered, was calculated.
A scheduled IRI was then calculated by first
calculating reinforcer rate according to Equa-
tion 3 and then taking its reciprocal. If the
time elapsed since the previous reinforcer, or
the start of the session if no reinforcers had
been delivered, was equal to or longer than
the scheduled IRI, a reinforcer was delivered.
Otherwise, the calculations repeated with the
next response. Reinforcers consisted of deliver-
ies of 45-mg sucrose pellet (NOYES, Formula P).
Sessions were terminated after 60 reinforcers or
60 min, whichever occurred first.

In the second phase of the experiment, rats
were exposed to three VI+QF schedules.
Fleshler and Hoffman’s (1962) equation for
generating individual IRIs was used in combi-
nation with Equation 3 to generate the VI+QF
schedules. Fleshler and Hoffman’s equation
can be written as:

IRIi ~ IRI 1 z ln N z N { ið Þ ln N { ið Þ½

{ N { iz1ð Þ ln N { i z 1ð Þ�,
ð4Þ

where N is the number of IRIs, i is an integer
between 1 and N, and IRI is the mean IRI.
Feedback was arranged according to Equation
3 in the following manner: At the beginning of
each session and following each reinforcer, i in
Equation 4 was randomly set to an integer value
between 1 and 20. Each time a response
occurred, the response rate was calculated as
in the first phase of the experiment, and
a calculated reinforcer rate was generated from
Equation 3. The reciprocal of the calculated
reinforcer rate, the calculated IRI , then was
used to generate 20 intervals according to
Equation 4. The chosen index value, i, then
was used to select a particular IRI from the 20
generated intervals. If the time elapsed from the
previous reinforcer, or start of the session if no
reinforcers had been delivered, was longer than
or equal to the selected IRI, a reinforcer was
delivered. Otherwise, the calculations began
anew with the next response.

Table 1 lists the schedule parameters employed
in both phases of the experiment. The values of a,
b, c, p0, and p1 in Equation 3 are given along with
the name used to describe the schedule in the
text. The naming convention designates the
schedule type (FI+QF or VI+QF) followed by the
vertex and the maximum obtainable reinforcer
rate in parentheses. For example, FI+QF (25, 240)
designates the FI-plus-quadratic-feedback sched-
ule for which the vertex of the equation occurred
at 25 responses per minute and the peak re-
inforcer rate at that response rate was 240
reinforcers per hour. Rats 151, 152, and 153 were
exposed to the schedules in the following order:
FI+QF (25, 240), FI+QF (37.5, 240), FI+QF (50,
240), FI+QF (50, 156), FI+QF (37.5, 156), FI+QF
(25, 156), VI+QF (25, 240), VI+QF (37.5, 240),

Table 1

Parameters of Equation 3 used for each schedule. Schedules are named by designating the type
(FI+QF or VI+QF) followed by the response-rate vertex of the function (responses per minute)
and the maximum obtainable reinforcers per hour in parentheses.

Schedule a b c p0 p1

FI+QF (25, 240) 0.8 40 260 10 40
FI+QF (37.5, 240) 0.8 60 885 22.5 52.5
FI+QF (50, 240) 0.8 80 1,760 35 65
FI+QF (25, 156) 0.25 12.5 0.25 5.4 44.6
FI+QF (37.5, 156) 0.25 18.75 195.6 17.9 57.1
FI+QF (50, 156) 0.25 25 469 30.4 69.6
VI+QF (25, 240) 0.8 40 260 10 40
VI+QF (37.5, 240) 0.8 60 885 22.5 52.5
VI+QF (50, 240) 0.8 80 1,760 35 65
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and VI+QF (50, 240). Rats 154, 155, and 156 were
exposed to the schedules in the following order:
FI+QF (50, 240), FI+QF (37.5, 240), FI+QF (25,
240), FI+QF (25, 156), FI+QF (37.5, 156), FI+QF
(50, 156), VI+QF (50, 240), VI+QF (37.5, 240),
and VI+QF (25, 240).

Rats were exposed to each schedule until
a seven-session block of responding met the
following criteria: the average within-IRI re-
sponse rate (response rate calculated only
from responses and time occurring between
two reinforcers or between the start of the
session and the first reinforcer delivery) of the
first three sessions and the last three sessions
in the seven-session block differed by no more
than 20%, the average within-IRI response rate
of the first three sessions and the last three
sessions in the seven-session block differed
from the average of the seven sessions by no
more than 10%, and no visible trends were
evident over the seven-session block.

RESULTS

Table 2 presents the number of sessions at
which stability was achieved on each schedule
for each rat. The number of sessions required
to achieve stability varied between 7 and 31.
The median number of sessions required to
achieve stability was 13.

Because the schedules employed are un-
familiar, it is instructive to understand how the
feedback arranged by Equation 3 actually
worked from IRI to IRI. Figure 4 plots the
obtained IRI preceding each reinforcer as
a function of the response rate during the
IRI for each FI+QF schedule. Each panel
depicts IRIs for all 6 rats from the last session
of stable responding for each schedule.

Figure 4 illustrates that obtained IRIs were
governed by the reciprocal of Equation 3,
which is plotted as a dashed line in each panel.
Some IRIs fall above the dashed line, consis-
tent with the requirement that the elapsed
time at the reinforced response equal or
exceed the scheduled IRI.

The left column of Figure 5 depicts
obtained IRI preceding each reinforcer as
a function of response rate during the IRI in
the last session of exposure to the VI+QF
schedules. The right column of Figure 5
depicts average IRI obtained from each session
of stable responding as a function of average
within-IRI response rate for the VI+QF sched-
ules. The left column of graphs shows that
more variability occurred in obtained IRIs on
the VI+QF schedules than on the FI+QF
schedules (see Figure 4), as to be expected.
The right column of graphs shows that at the
session level, average IRI falls closer to the
feedback function than do individual IRIs.

Table 3 shows obtained reinforcer rates and
within-IRI response rates. One noteworthy
feature of Table 3 is the difference in response
rates obtained on the different schedules
despite relatively equivalent reinforcer rates.
A two-factor repeated measures analysis of
variance (ANOVA) was conducted on re-
sponse rates using schedule as a within-sub-
jects factor and group as a between-subjects
factor. The ANOVA revealed a main effect of
schedule, F(8, 32) 5 58.07, p , 0.05, no
significant effect of group, F(1, 4) 5 0.97, p .
0.05, and a significant interaction of schedule
and group, F(8, 32) 5 23.29, p , 0.05. A post
hoc Tukey analysis revealed a significant differ-
ence between the mean response rates of the
two groups on the FI+QF (37.5, 156) and FI+QF

Table 2

Number of sessions required for stability. The response-rate vertex of the function (responses per
minute) and the maximum obtainable reinforcers per hour are in parentheses.

Schedule

Rat

151 152 153 154 155 156

FI+QF (25, 240) 31 31 28 11 22 9
FI+QF (37.5, 240) 12 19 13 13 13 12
FI+QF (50, 240) 9 16 11 28 29 29
FI+QF (25, 156) 10 14 20 23 18 14
FI+QF (37.5, 156) 14 16 13 14 12 19
FI+QF (50, 156) 17 30 23 18 11 20
VI+QF (25, 240) 12 7 15 7 7 8
VI+QF (37.5, 240) 9 11 7 9 10 9
VI+QF (50, 240) 12 8 7 7 10 10
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Fig. 4. IRI as a function of within-IRI response rate for FI+QF schedules. Each panel depicts data from an individual
schedule. The dashed line represents the reciprocal of Equation 3.
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Fig. 5. IRI as a function of within-IRI response rate for VI+QF schedules. Each panel depicts data from an individual
schedule. The dashed line in each panel represents the reciprocal of Equation 3. The left column depicts the obtained
IRI preceding each reinforcer from the last session of stable responding for each rat. The right column depicts the
average IRI obtained from each session of stable responding for each rat.
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(50, 156) schedules. All remaining comparisons
were not significant. Thus the ANOVA revealed
a possible effect of order of schedule pre-
sentation on responding for the FI+QF (37.5,
156) and FI+QF (50, 156) schedules.

Figure 6 depicts average within-IRI response
rate as function of average reinforcer rate.
Each panel depicts data for an individual rat.
One noteworthy feature of Figure 6 is that
response rates do not appear to be systemat-
ically related to reinforcer rate.

Figure 7 depicts average within-IRI response
rates as a function of the vertex of Equation 3,
b/(2a). The top six panels each depict data
for an individual rat. Regression lines were
fitted to the FI+QF data and VI+QF data
separately. The slope and intercept of the
best-fitting regression line and the obtained
percentage of variance accounted for (%VAC)
are listed in Table 4. Overall, responding
was well described by a straight line. For the
FI+QF schedules, the average %VAC by the
regression equation was 89.07 with a high of
99.63 and a low of 62.19. For the VI+QF
schedules, the average %VAC by a straight
line was 98.58 with a high of 99.93 and a low of
96.32.

The bottom panel of Figure 7 depicts
pooled data for all rats. Response rates are
plotted separately for each group of rats.
Regression equations were fitted to the data
for the two groups of rats separately. The solid
and dotted lines represent the best-fitting
regression equations for Group 1 (151, 152,
and 153) and 2 (154, 155, and 156), re-
spectively. The slopes and intercepts of the
regression equations were 0.81 and 4.02 for
Group 1 and 0.68 and 6.65 for Group 2. The
best-fitting regression equations diverge for
the two groups as the vertex increases, which is
consistent with the ANOVA results indicating
a significant difference between the two
groups’ response rates on the FI+QF (37.5,
156) and FI+QF (50, 156) schedules. Still, the
general pattern is the same: the slopes of the
regression equations are positive and less than
1.0, and the y-intercepts are positive.

DISCUSSION

The main finding of the present experiment
was that response rate varied directly with the
vertex of Equation 3 (see Figure 7). Response
rate versus the feedback function vertex data

Table 3

Reinforcers per hour, responses per minute, and standard
deviation (SD) of responses per minute on each schedule.

Rat Schedule
Reinforcers

per hour
Responses per
minute (SD)

151 FI+QF (25, 240) 152.75 27.61 (7.52)
FI+QF (37.5, 240) 152.75 36.01 (7.98)
FI+QF (50, 240) 155.75 46.69 (7.24)
FI+QF (25, 156) 117.54 29.07 (9.05)
FI+QF (37.5, 156) 115.84 37.95 (10.80)
FI+QF (50, 156) 105.19 50.32 (12.65)
VI+QF (25, 240) 155.85 25.13 (8.57)
VI+QF (37.5, 240) 163.42 37.98 (9.26)
VI+QF (50, 240) 171.94 49.87 (9.29)

152 FI+QF (25, 240) 164.32 24.48 (7.25)
FI+QF (37.5, 240) 162.93 35.62 (7.57)
FI+QF (50, 240) 150.22 45.35 (7.75)
FI+QF (25, 156) 132.84 24.09 (6.06)
FI+QF (37.5, 156) 123.64 35.83 (8.99)
FI+QF (50, 156) 104.11 44.90 (12.24)
VI+QF (25, 240) 163.69 19.48 (7.85)
VI+QF (37.5, 240) 136.50 28.99 (10.39)
VI+QF (50, 240) 135.59 39.55 (12.88)

153 FI+QF (25, 240) 167.68 21.75 (5.57)
FI+QF (37.5, 240) 159.72 31.95 (5.82)
FI+QF (50, 240) 151.39 43.23 (6.21)
FI+QF (25, 156) 133.57 23.43 (6.27)
FI+QF (37.5, 156) 129.35 33.70 (7.50)
FI+QF (50, 156) 111.33 41.88 (7.50)
VI+QF (25, 240) 178.65 23.66 (7.13)
VI+QF (37.5, 240) 161.58 31.87 (7.39)
VI+QF (50, 240) 130.82 39.46 (9.78)

154 FI+QF (25, 240) 139.27 26.11 (9.00)
FI+QF (37.5, 240) 145.92 37.60 (9.12)
FI+QF (50, 240) 141.21 49.90 (9.47)
FI+QF (25, 156) 114.62 22.98 (9.70)
FI+QF (37.5, 156) 119.67 32.22 (8.75)
FI+QF (50, 156) 49.98 38.14 (10.95)
VI+QF (25, 240) 126.43 23.75 (10.18)
VI+QF (37.5, 240) 135.97 33.43 (11.00)
VI+QF (50, 240) 138.60 39.06 (13.74)

155 FI+QF (25, 240) 136.23 24.78 (9.46)
FI+QF (37.5, 240) 132.10 37.98 (10.80)
FI+QF (50, 240) 99.04 44.40 (11.94)
FI+QF (25, 156) 120.21 25.17 (9.21)
FI+QF (37.5, 156) 111.40 29.34 (7.90)
FI+QF (50, 156) 56.78 32.63 (7.86)
VI+QF (25, 240) 106.53 29.55 (10.43)
VI+QF (37.5, 240) 147.28 38.45 (10.01)
VI+QF (50, 240) 146.74 42.12 (12.69)

156 FI+QF (25, 240) 159.75 19.95 (5.61)
FI+QF (37.5, 240) 133.72 28.64 (4.19)
FI+QF (50, 240) 69.46 38.56 (5.40)
FI+QF (25, 156) 108.97 15.49 (5.83)
FI+QF (37.5, 156) 66.52 24.81 (8.55)
FI+QF (50, 156) 47.68 37.89 (9.61)
VI+QF (25, 240) 159.35 22.09 (7.10)
VI+QF (37.5, 240) 137.55 31.31 (9.62)
VI+QF (50, 240) 101.30 39.74 (11.29)
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Fig. 6. Response rate as a function of reinforcer rate. Each panel represents data for an individual rat. Open and filled
circles represent data from FI+QF (x, 156) and FI+QF (x, 240) schedules, respectively, where x was 25, 37.5, or 50
responses per minute, and open triangles represent data from VI+QF schedules. Error bars represent plus or minus one
standard deviation.
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Fig. 7. Response rate as a function of the vertex of Equation 3. Each of the upper six panels represents data for an
individual rat. Open and filled circles represent data from FI+QF (x, 156) and FI+QF (x, 240) schedules, respectively,
where x was 25, 37.5, or 50 responses per minute, and open triangles represent data from VI+QF schedules. Error bars
represent plus or minus one standard deviation. The solid line in each panel represents the best-fitting regression
equation for the FI+QF schedules. The dotted line in each panel represents the best-fitting regression equation for the
VI+QF schedules. The bottom panel shows the data pooled across the 6 rats. The solid regression line is for Rats 151, 152,
and 153; the dotted line is for Rats 154, 155, and 156.
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were well described by a straight line, which in
most cases had a slope less than 1.0 and
a positive y-intercept (exceptions were 156 for
the FI+QF schedules and 152 for the VI+QF
schedules). Although order of schedule pre-
sentation may have affected absolute response
rates on the FI+QF (37.5, 156) and FI+QF (50,
156) schedules (see bottom panel of Figure 7),
the general pattern of response rates was the
same for both groups of rats. Additionally,
response rate versus reinforcer rate data were
not consistent with a one-to-one relation of
response rate to reinforcer rate as evidenced
by differences in response rate obtained at
equivalent reinforcer rates (see Table 3 and
Figure 6).

The results from the FI+QF and VI+QF
schedules did not differ substantially. The
relation between response rate and the vertex
of Equation 3 was linear for both schedule
types, although the slopes of the regression
equations from the VI+QF fits tended to be
lower than those obtained from the FI+QF fits.
This may have been due to differences in the
discriminability of the relation between re-
inforcer rate and response rate on the two
schedule types. This possibility seems unlikely,
however, because a decrease in discriminabil-
ity presumably would result in a greater
number of sessions required to reach stability,
yet the median number of sessions required
for stability on the FI+QF schedules (16) was
higher than on the VI+QF schedules (9). Thus
further research is necessary to determine if
the difference between FI+QF and VI+QF
schedules can be replicated and if so, to
determine the variables responsible for the
difference.

One issue of interest is why rats in the
present experiment tended to respond at the

vertex of the feedback function whereas
subjects in experiments on negative slope
schedules respond at rates much higher than
the vertex of the feedback function (Jacobs &
Hackenberg, 2000; Reed & Schachtman, 1989,
1991; Vaughan & Miller, 1984). One possibility
is the difference in the vertex of the feedback
function in the present experiment and in
negative slope schedule experiments. In the
present experiment, the response rates at
which reinforcer rate was maximized were
higher (25 to 50 responses per minute) than
in negative slope schedule experiments (typi-
cally less than or equal to two responses per
minute). The finding of slopes less than 1.0
and positive y-intercepts of the regression
equation relating response rate and the vertex
of Equation 3 might explain the difference in
results. This is because the finding of slopes
less than 1.0 and positive y-intercepts suggests
that as the vertex of the function decreases,
response rate will increasingly exceed that
vertex. Of course, this assumes that the
straight-line relation holds at lower vertex
values, a suggestion requiring experimental
confirmation. Future research can inform this
suggestion by arranging FI+QF and VI+QF
schedules for which the apex occurs at a very
low response rate, as on negative slope
schedules.

Another question of interest is why, in the
present experiment, it appears that rats were
sensitive to the molar relation between re-
inforcer rate and response rate, but in experi-
ments where linear feedback has been added
to VI schedules (VI+LF schedules), some
researchers have concluded that subjects were
not sensitive to the arranged feedback func-
tion (Cole, 1999; Reed, Hildebrandt, DeJongh,
& Soh, 2003; Reed, Soh, Hildebrandt, De-

Table 4

Slope (m), intercept (b), and percentage of variance accounted for (%VAC) by a straight line
fitted to the response rate versus vertex data.

Rat

FI+QF schedules VI+QF schedules

m b %VAC m b %VAC

151 0.81 7.70 97.06 0.99 0.56 99.95
152 0.83 3.78 99.63 0.80 20.76 99.91
153 0.80 2.71 99.02 0.63 7.96 99.95
154 0.78 5.28 80.98 0.61 9.11 97.73
155 0.54 12.07 62.19 0.50 17.85 94.55
156 0.82 23.20 95.55 0.71 4.58 99.93
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Jongh, & Shek, 2000). An explanation is not
readily available, and differences in design
make comparison difficult. Two of the studies
noted (Reed et al., 2003; Reed et al., 2000) did
not vary the parameters of the arranged
feedback function; rather, comparisons were
made between a single VI+LF schedule and
a yoked VI schedule. If responding on the
VI+LF schedule was different from responding
on the yoked VI schedule but not optimal, the
authors concluded that subjects were not
sensitive to the feedback arranged by the
VI+LF schedule, the presumption being that
if differences in responding reflected sensitiv-
ity to the feedback function, then responding
should be optimal. Therefore, the authors
concluded that some other factor, such as
interresponse time (IRT) reinforcement, must
be responsible for the differences in respond-
ing. This argument assumes, however, that
sensitivity will produce optimal responding, an
assumption that may or may not be correct.

An alternative approach to assessing sensi-
tivity to the feedback function is to arrange
a series of VI+LF schedules and examine
whether response rate varies systematically
with the feedback function parameters. A
finding of systematic variation in response rate
would support the conclusion that subjects are
sensitive to the feedback arranged by the
VI+LF schedules. The studies by Cole (1999)
and McDowell and Wixted (1986) provided
data of this kind. In both studies, response rate
varied with the parameters of the arranged
feedback function, suggesting some degree of
sensitivity to the feedback function. Such data
do not rule out the possibility of IRT re-
inforcement, however, because without explic-
it controls, response rate and reinforced IRT
measures typically will be confounded.

Although speculative, another possibility
that may explain the sensitivity to the molar
relation between reinforcer and response rate
in the present experiment is that the present
schedules may partially mimic contingencies
in the natural environment. One property of
the current schedules is that too low or high of
a response rate produces a low reinforcer rate.
Consider the analogy of visiting a feeding
patch in the wild. Infrequent visits to the patch
fail to produce significant gains. Overly fre-
quent visits may deplete the patch and reduce
overall gains. The feedback function employed
in the present experiment partially captures

this aspect of patch visiting. One important
difference, however, is the third portion of the
feedback function, which arranges a constant
reinforcer rate for response rates greater than
p1. This feature has no obvious counterpart in
natural environments. Still, if the analogy is
accurate for the bitonic portion of the
feedback function, FI+QF and VI+QF sched-
ules might capture an important aspect of the
natural environment, and animals, therefore,
might be particularly well suited to maximize
reinforcer rate on such schedules.

The present results demonstrate that under
some conditions, rats can respond at rates that
produce the maximum obtainable reinforcer
rate and that the feedback function relating
reinforcer rate and response rate can be an
important determinant of behavior. Although
the variation in response rates across schedules
is incompatible with accounts that specify
a one-to-one relation between response rate
and reinforcer rate (e.g., linear system theory
and Herrnstein’s hyperbola), the pattern of
response rates across schedules generally is
consistent with Baum’s (1981) cost-benefit
optimization account. The finding that re-
sponse rates tended to fall beneath the
optimal rate as the vertex of Equation 3
increased (see Figure 7) is consistent with
the prediction of Baum’s account that re-
sponding should maximize overall reinforcer
rate given a constraint on maximal response
rate, especially given the relatively high re-
sponse cost required for lever pressing
(0.68 N).

The finding that the y-intercepts of the
regression equations relating response rate to
the vertex of Equation 3 usually were greater
than 0 suggests that as the vertex is decreased,
responding will increasingly exceed the opti-
mal rate. This suggestion, if confirmed, would
be inconsistent with Baum’s account. It is
important to note, however, that in the
present experiment, response rates rarely
exceeded the vertex even at the lowest vertex
values. Still, if this prediction was confirmed,
Baum’s account might easily be modified to
incorporate a limit on how slowly subjects can
respond. Such a limit is supported by data
suggesting that, at least on VI schedules, low
response rates may be associated with response
bursting (Baum, 1992).

The present experiment provides an exam-
ple of how the use of feedback functions can
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illuminate schedule performance. The meth-
ods employed here can be used to arrange
virtually any relation between reinforcer rate
and response rate. Furthermore, the approach
need not be restricted to interval schedules.
For example, the mean ratio of a VR schedule
might be adjusted based on response rate. In
fact, any property of the environment under
experimenter control can be adjusted based
on any measured property of behavior. Of
course, the properties for which an experi-
menter chooses to arrange a feedback relation
will say something about the variables the
experimenter assumes control behavior (Baum,
1973). In any case, the use of feedback functions
to arrange new and interesting environments
can test our assumptions about the variables
that control behavior and should therefore
improve our understanding of behavior.
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