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ABSTRACT

Caenorhabditis elegans mitochondria have two
elongation factor (EF)-Tu species, denoted EF-Tu1
and EF-Tu2. Recombinant nematode EF-Ts puri®ed
from Escherichia coli bound both of these mole-
cules and also stimulated the translational activity
of EF-Tu, indicating that the nematode EF-Ts homo-
log is a functional EF-Ts protein of mitochondria.
Complexes formed by the interaction of nematode
EF-Ts with EF-Tu1 and EF-Tu2 could be detected by
native gel electrophoresis and puri®ed by gel ®ltra-
tion. Although the nematode mitochondrial (mt) EF-
Tu molecules are extremely unstable and easily
form aggregates, native gel electrophoresis and gel
®ltration analysis revealed that EF-Tu´EF-Ts com-
plexes are signi®cantly more soluble. This indicates
that nematode EF-Ts can be used to stabilize homo-
logous EF-Tu molecules for experimental purposes.
The EF-Ts bound to two eubacterial EF-Tu species
(E.coli and Thermus thermophilus). Although the
EF-Ts did not bind to bovine mt EF-Tu, it could bind
to a chimeric nematode±bovine EF-Tu molecule
containing domains 1 and 2 from bovine mt EF-Tu.
Thus, the nematode EF-Ts appears to have a
broad speci®city for EF-Tu molecules from different
species.

INTRODUCTION

Mitochondria from the nematode are known to have an
unusual translation system that employs two types of
extremely truncated tRNAs (1±4), namely the T arm-lacking
(5) and the D arm-lacking tRNAs (6), and their corresponding
elongation factor (EF)-Tu species that have been denoted EF-
Tu1 (7) and EF-Tu2 (8), respectively. These EF-Tu molecules
have been characterized and it is known that EF-Tu1 has a
C-terminal extension of about 57 amino acids (7) not found in
any other known EF-Tu. In addition, EF-Tu2 has a unique
speci®city for the aminoacyl moiety of seryl-tRNA (8). In
contrast, little is known about nematode mitochondrial (mt)
EF-Ts, a factor that facilitates the catalytic use of EF-Tu by

promoting the exchange of GDP for GTP on EF-Tu (9). At
present, only the cDNA sequence of the EF-Ts homolog in
Caenorhabditis elegans has been reported (10). This cDNA
sequence reveals that the nematode mt EF-Ts protein bears a
putative mitochondria-speci®c transit peptide sequence at
its N-terminus (10). On the basis of amino acid sequence
homology, the nematode mt EF-Ts protein appears to fall into
the long EF-Ts category, which includes EF-Ts molecules
from mammalian mitochondria and eubacteria (excluding
Thermus and cyanobacteria), rather than into the short EF-Ts
category, which includes EF-Ts proteins from Thermus,
cyanobacteria and plastids (10). These observations indicate
that we can expect the nematode EF-Ts homolog to act like the
well-characterized bovine mt EF-Ts (11±16) or Escherichia
coli EF-Ts (17,18) molecule. This is particularly the case with
respect to the former, since the nematode mt EF-Ts amino acid
sequence shares more homology with bovine mt EF-Ts than
with the E.coli EF-Ts.

The interaction between EF-Tu and EF-Ts was analyzed in
detail by X-ray analysis of the crystal structure of EF-Tu´EF-
Ts complexes of E.coli (17) and Thermus thermophilus (19).
Nematode EF-Ts is more homologous to E.coli EF-Ts than to
T.thermophilus EF-Ts. However, C.elegans EF-Ts has only
24% amino acid identity with that of E.coli (10). As for the
amino acid residues of E.coli EF-Ts that have been shown to
interact with E.coli EF-Tu (17), only a few positions, such as
Arg12, Asp80, Phe81, Gly126 and His149 (E.coli numbering)
are conserved in nematode EF-Ts (10). Most of these residues
occur in the N-terminal half of EF-Ts. Residues in the
C-terminal half of E.coli EF-Ts that interact with EF-Tu
domain 3 (17) are poorly conserved in C.elegans EF-Ts. Thus,
as in the interaction between EF-Ts and EF-Tu of E.coli,
the N-terminal half of C.elegans EF-Ts may interact
with domain 1 of EF-Tu, whereas the interaction involving
domain 3 may be quite different in C.elegans EF-Ts.

The activity and binding speci®city for EF-Tu of bovine mt
EF-Ts has been well characterized (12,13,16,20). Bovine mt
EF-Ts forms an extremely tight complex with bovine mt EF-
Tu (16,20). Furthermore, when bovine mt EF-Ts was
expressed in E.coli, it was found to form a stable complex
with E.coli EF-Tu (12,13). In contrast, E.coli EF-Ts does not
seem to be able to bind bovine mt EF-Tu since a recombinant
bovine mt EF-Tu expressed in E.coli could be puri®ed as a
free protein separate from E.coli EF-Ts (21). Work with
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E.coli±bovine EF-Ts chimeras also revealed that the
N-terminal half of bovine mt EF-Ts, which includes the
N-terminal domain and the subdomain N in the core domain,
is important for its tight binding to EF-Tu (14).

The activity and EF-Tu binding speci®city of the C.elegans
EF-Ts homolog has not been previously investigated. In this
work, we con®rmed that this molecule is a proper EF-Ts as it
is able to stimulate the guanine nucleotide exchange and
the translational activity of EF-Tu and bind to both of the
C.elegans mt EF-Tu proteins. We were able to purify
complexes formed between C.elegans mt EF-Tu and EF-Ts,
and found that these complexes are much more soluble than
that of C.elegans EF-Tu alone. This suggests that C.elegans
mt EF-Ts could be used as a tool to stabilize EF-Tu. Studies of
the binding of C.elegans mt EF-Ts to various EF-Tu
molecules revealed the broad speci®city range of the EF-Ts.

MATERIALS AND METHODS

Buffers

Buffer A contained 50 mM HEPES±KOH (pH 7.5), 150 mM
KCl, 10 mM MgCl2, 1% glycerol, 5 mM b-mercaptoethanol
and 0.1 mM phenylmethylsulfonyl ¯uoride. Buffer C con-
tained 50 mM HEPES±KOH (pH 7.5), 1 M NH4Cl, 10 mM
imidazole, 1% glycerol and 5 mM b-mercaptoethanol. HiQ-A
buffer consisted of 20 mM Tris±HCl (pH 7.7), 5 mM MgCl2,
50 mM KCl, 1% glycerol and 1 mM dithiothreitol (DTT).
HiQ-B buffer is similar to the HiQ-A buffer except that the
concentration of KCl is 500 mM. Tu´Ts buffer contained
50 mM Tris±HCl (pH 7.5), 150 mM KCl, 5 mM EDTA, 3%
glycerol and 1 mM DTT. PD buffer contained 50 mM
HEPES±KOH (pH 7.6), 150 mM KCl, 10% glycerol and 5 mM
b-mercaptoethanol.

Construction of a plasmid for the expression of the
C.elegans EF-Ts homolog bearing a C-terminal His tag

The plasmid pET-yk141g2 contains the cDNA sequence of the
predicted mature C.elegans EF-Ts homolog, i.e. it encodes a
protein comprised of amino acids Ala21±Glu316 from its
precursor sequence (10). It was constructed by placing the
cDNA between the NcoI and XhoI sites of pET-15b (Novagen)
and was kindly provided by Dr Y. Watanabe, who prepared it
from the cDNA clone yg141g2 originally provided by Dr Y.
Kohara (National Institute of Genetics, Japan). pET-yk141g2
was used to construct an expression vector encoding the
C.elegans EF-Ts homolog bearing a C-terminal His tag. To
add the six residue histidine tag to the EF-Ts C-terminus, the
17 bp sequence at the end of the EF-Ts coding sequence
in pET-yk141g2 (5¢-TAATTAGATAAAAGTGG-3¢ in the
coding strand, which is followed by the stop codon TAG) was
replaced by the 18 bp sequence 5¢-CACCATCATCAT-
CATCAT-3¢ (in the coding strand) using the QuickChange
site-directed mutagenesis kit (Stratagene) according to the
supplier's manual.

Expression and puri®cation of the C.elegans EF-Ts
homolog

The E.coli strain BL21(DE3)pLysS (22) was transformed by
the expression vector encoding the C.elegans EF-Ts homolog
and grown and harvested as described (7). All puri®cation

procedures as described below were performed at 4°C.
Cellular pellets (~30 g) were resuspended with 30 ml of
buffer A and lysed by sonication. The paste was then
centrifuged for 1 h at 45 000 r.p.m. with a 70Ti rotor
(Beckman) and the supernatant was collected and applied to a
HiTrap chelating column (5 ml) (Amersham Biosciences)
previously charged with Ni2+ ions and equilibrated with buffer
A. The column was washed with 30 ml of buffer C and then
with 30 ml of buffer A containing 25 mM imidazole. Elution
was performed using an imidazole gradient ranging from 25 to
150 mM in buffer A applied at a ¯ow rate of 0.5 ml/min. The
fraction that included the EF-Ts was dialyzed against 500 ml
of HiQ-A buffer for 4 h with two buffer changes. The dialyzed
fraction (15 ml) was loaded onto an Econo-Pac High Q
Cartridge (1 ml) (Bio-Rad) at a ¯ow rate of 0.5 ml/min and the
column was then rinsed with 5 ml of HiQ-A buffer at an
equivalent ¯ow rate. The ¯ow-through, which now contained
pure EF-Ts, was collected. The protein concentration was
estimated by the dye-binding assay employed by the Protein
Assay Kit (Bio-Rad). Bovine serum albumin (BSA) was used
as the standard.

Preparation of EF-Tu variants

Recombinant proteins of C.elegans mt EF-Tu1 and EF-Tu2,
bovine mt EF-Tu, T.thermophilus EF-Tu and the two chimeric
nematode±bovine EF-Tu variants BmCe3¢ and BmCe3 were
expressed in E.coli and puri®ed on a Ni2+±NTA agarose
column (Qiagen) as described (7,8). Caenorhabditis elegans
mt EF-Tu1 bearing a C-terminal His tag was prepared using an
expression vector containing N-terminal His-tagged cDNA
encoding the predicted mature sequence of EF-Tu1 (a protein
comprised of the Gly39±Pro496 sequence of its precursor
protein) (7). This vector was ampli®ed by PCR and inserted
between the SphI and BglII sites of pQE-70 (Qiagen), which
was then used to transform E.coli strain BL21. The
recombinant protein bearing the additional amino acid
sequence RSHHHHH at its C-terminus was then expressed
and puri®ed as described (7). Escherichia coli EF-Tu was
puri®ed from its native source as described (23). The protein
concentration of each EF-Tu was estimated using the Protein
Assay Kit (Bio-Rad) with BSA as the standard.

Measurement of guanine nucleotide exchange with
EF-Tu

The assay was performed basically according to Schwartzbach
and Spremulli (20). Brie¯y, 80 pmol EF-Tu and various
amounts of EF-Ts were incubated for 10 min at 37°C in a ®nal
volume of 50 ml reaction mixture containing 25 mM Tris±HCl
(pH 7.6), 50 mM NH4Cl, 10 mM MgCl2 and 50 mM [3H]GDP,
then the [3H]GDP bound to EF-Tu in each sample was counted
as described (20).

In vitro translation

Bovine mt translation factors, namely ribosomes (prepared as
described; 24), EF-G [partially puri®ed according to Chung
and Spremulli (25)] and tRNAPhe were kindly provided by
Dr C. Takemoto. Poly(U)-dependent poly(Phe) synthesis was
performed in vitro using these translation factors as described
(25) except that 9 pmol [14C]Phe-tRNA of bovine mito-
chondria was used in each 20 ml reaction mixture and the
concentrations of EF-Tu and EF-Ts were 0.8 and 0.5 mM,
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respectively. The radioactivity retained on the ®lter in the
absence of EF-Tu and EF-Ts (blank) was subtracted from the
radioactivity obtained in the presence of EF-Tu (and EF-Ts) in
each assay.

Native gel electrophoresis

Native gel electrophoresis of EF-Tu and EF-Ts was performed
at 4°C (450 V, 2 h) on a 1 mm 3 10 cm 3 10 cm 9%
polyacrylamide gel (acrylamide:bisacrylamide 29:1) contain-
ing 8 mM Tricine±NaOH (pH 8.2), 1 mM EDTA and 5%
glycerol. The buffer used contained 8 mM Tricine±NaOH (pH
8.2) and 1 mM EDTA. To analyze the interaction between EF-
Tu and EF-Ts, recombinant EF-Tu and EF-Ts were mixed on
ice in a reaction mixture of 6.5 ml that included 50 mM
Tris±HCl (pH 7.5), 70 mM KCl, 1.5 mM EDTA, 10%
glycerol, 1 mM DTT, 0.004% bromophenol blue, 38 pmol
EF-Ts and either 12.5 or 25 pmol EF-Tu. Each reaction was
then loaded on the gel, electrophoresed, and stained with
Coomassie brilliant blue R-250 (NACALAI Tesque Inc.).

EF-Ts pull-down assay

His-tagged C.elegans mt EF-Ts (2 mg/tube) in the absence or
presence of E.coli, T.thermophilus or bovine mt EF-Tu (4 mg/
tube) were incubated at 4°C for 10 min in 50 ml of PD buffer.
The mixture was centrifuged at 17 000 g for 7 min. The
supernatant was mixed with Ni2+±NTA magnetic agarose
beads (Qiagen) (20 ml of 5% bead slurry suspended in PD
buffer) and incubated at 4°C for 15 min with weak agitation.
The beads were collected using a magnet and washed twice
with 400 ml of PD buffer containing 10 mM imidazole, then
eluted twice with 30 ml of buffer containing 50 mM Tris±HCl
(pH 7.5), 150 mM KCl, 5 mM EDTA, 10% glycerol, 400 mM
imidazole and 5 mM b-mercaptoethanol. The eluents were
desalted on a Centri-Sep spin column (Applied Biosystems)
and concentrated to 5 ml. The samples were analyzed by
SDS±PAGE.

Analysis and puri®cation of the C.elegans mt
EF-Tu´EF-Ts complexes by gel ®ltration

Caenorhabditis elegans mt EF-Tu puri®ed on a Ni2+-NTA
column (7,8) and the EF-Ts puri®ed as described above were
mixed at a molar ratio of 1:1.5. The mixture was dialyzed
against Tu´Ts buffer for 15 h with two buffer changes. The
sample was concentrated to less than 1 ml using an Ultrafree-
15 centrifugal ®lter device (Millipore) and the insoluble
fraction was removed by centrifugation. The sample was
loaded on a HiPrep 16/60 Sephacryl S-200 column
(Amersham Biosciences) at a ¯ow rate of 0.5 ml/min and
eluted with Tu´Ts buffer. Each of the gel ®ltrated fractions was
analyzed by SDS±PAGE.

RESULTS

Expression and puri®cation of the C.elegans EF-Ts
homolog

Although the recombinant C.elegans EF-Ts homolog expres-
sed in E.coli cells was almost separated from E.coli proteins
by use of the Ni2+-HiTrap chelating column (Fig. 1, lanes 4
and 7) and repeated column washes (Fig. 1, lanes 2 and 3), the
preparation still contained some impurities. One protein,

shown by an asterisk in Figure 1, which apparently associates
with the EF-Ts homolog, was particularly dif®cult to remove.
The size of this protein suggested that it could be E.coli EF-Tu
(~43.2 kDa). This EF-Tu-like protein could eventually be
removed by passing the 15 ml Ni2+-HiTrap preparation
containing 72 mg protein (Fig. 1, lane 4) through a HighQ
column. After running through 5 ml of HiQ-A buffer, most of
the loaded EF-Ts was recovered (~60 mg) (Fig. 1, lane 5) in
pure form. After that, the column was washed with 5 ml of
HiQ-B buffer; the fraction eluted with the buffer contained the
impurities as well as the EF-Ts (~11 mg) (Fig. 1, lane 6). Pure
materials (lane 5) were used in all assays (Figs 2±6).

Nematode mt EF-Ts can stimulate guanine nucleotide
exchange and in vitro translation

To verify that the C.elegans EF-Ts homolog is indeed an EF-
Ts, we ®rst examined its ability to stimulate poly(U)-
dependent poly(Phe) synthesis mediated by EF-Tu molecules.
A bovine mt in vitro translation system was used because a
homologous nematode mt translation system is as yet unavail-
able. The EF-Ts homolog stimulated poly(U)-dependent
poly(Phe) synthesis activity of T.thermophilus EF-Tu but not
bovine mt EF-Tu (Fig. 2A). The poly(Phe) synthesis activity
of bovine mt EF-Tu can be activated by bovine mt EF-Ts (13).
Poly(Phe) synthesis using mt EF-Tu does not appear to be
maximal in this assay because the addition of increased
amounts of bovine mt EF-Tu increased poly(Phe) synthesis
(data not shown). Thus, the observation that the EF-Ts
homolog did not change the activity of bovine mt EF-Tu
cannot be explained by the presence of an already saturating
amount of mt EF-Tu activity in this assay. As will be seen, this
differential activity of the C.elegans EF-Ts homolog is
consistent with its EF-Tu binding speci®city, as it complexes
with T.thermophilus EF-Tu but cannot bind bovine mt
EF-Tu (see below). The observation that the C.elegans
EF-Ts homolog stimulates the translational activity of
T.thermophilus EF-Tu agrees with the results of ®lter binding

Figure 1. SDS±PAGE analysis of the recombinant C.elegans EF-Ts prepar-
ations at various puri®cation steps using Ni2+ column and HighQ column
chromatography. Lane 1, the ¯ow-through after loading the sample onto a
Ni2+ column; lane 2, the ®rst wash with buffer C; lane 3, the second wash
with buffer A that included 25 mM imidazole; lanes 4 and 7, the Ni2+

column fraction that included the EF-Ts homolog [To detect possible
impurities, lane 4 was overloaded with the sample. To show that there is no
second protein co-migrating with C.elegans EF-Ts, such as E.coli EF-Ts, a
smaller volume of sample (one-eighth of the amount loaded onto lane 4)
was loaded in lane 7]; lane 5, the ¯ow-through after loading the sample
from the Ni2+ column onto the HighQ column; lane 6, the wash with HiQ-B
buffer. The SDS±PAGE standard (Bio-Rad), puri®ed E.coli EF-Tu and
recombinant E.coli EF-Ts were used as protein size markers.
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assays of EF-Tu´GDP (Fig. 2B). The assays demonstrated that
the C.elegans EF-Ts homolog stimulates the GDP exchange
of T.thermophilus EF-Tu (Fig. 2B). Unfortunately, GDP
exchange with bovine and nematode mt EF-Tu was hardly
detectable, even with nematode mt EF-Ts (data not shown).
This is reminiscent of previous failure to detect GDP exchange
with bovine mt EF-Tu even with bovine mt EF-Ts by the same
assay (20). All these observations strongly suggest that the
C.elegans EF-Ts homolog is indeed a functional EF-Ts.

Binding of nematode mt EF-Ts to nematode mt EF-Tu
proteins

To assess whether C.elegans EF-Ts can bind to either or both
C.elegans mt EF-Tu molecules (EF-Tu1 and EF-Tu2), the
binding of recombinant C.elegans EF-Ts to recombinant Tu
proteins was analyzed by native PAGE. In the absence of
C.elegans EF-Ts, EF-Tu1 and EF-Tu2 stayed in the wells of
the gel (Fig. 3). In contrast, when C.elegans EF-Ts was
present, complexes were formed and these migrated into the
gel (Fig. 3). While the band of the EF-Tu2´EF-Ts complex in
the native PAGE gel is rather diffuse, later experiments with
gel ®ltration chromatography clearly revealed the presence of
the complex (Fig. 4C), thus con®rming the association. With

regard to EF-Tu1, we assessed the ability of C.elegans EF-Ts
to bind to EF-Tu1 bearing an N-terminal His tag (Tu1N), a
C-terminal His tag (Tu1C) or no tag (Fig. 3). Heat-denatured
EF-Tu1 was also tested. Caenorhabditis elegans EF-Ts bound
to the EF-Tu1 molecules bearing N- or C-terminal His tags as
well as to untagged EF-Tu1, which suggests that the N- and
C-termini of EF-Tu1 are not important for its binding to
C.elegans EF-Ts. Denatured EF-Tu1 did not bind to C.elegans
EF-Ts, indicating that the native conformation of EF-Tu1 is
necessary for its binding to C.elegans EF-Ts. Thus, C.elegans
EF-Ts binds to both EF-Tu1 and EF-Tu2 of C.elegans
mitochondria, demonstrating that nematode EF-Ts could be
a functional EF-Ts in C.elegans mitochondria.

Reconstitution and isolation of C.elegans mt
EF-Tu´EF-Ts complexes

The complexes formed between recombinant C.elegans mt
EF-Ts and EF-Tu1 or EF-Tu2 could be ef®ciently separated
from EF-Tu and EF-Ts proteins by gel ®ltration using a
HiPrep Sephacryl S-200 column (Fig. 4A and C). The three
peaks on the gel ®ltration chromatograms for EF-Tu1 (Fig. 4A)
and EF-Tu2 (Fig. 4C) were analyzed by SDS±PAGE and the
middle peak (denoted fractions 2 and 4) was found to comprise

Figure 3. Caenorhabditis elegans mt EF-Ts can bind to nematode EF-Tu molecules. The ability of C.elegans mt EF-Ts to bind to C.elegans mt EF-Tu1 and
EF-Tu2 was analyzed by loading a mixture of 38 pmol EF-Ts and/or 12.5 (31) or 25 pmol (32) of EF-Tu onto a native gel. Several different forms of
EF-Tu1 were assessed, namely EF-Tu1 with an N-terminal His tag (Tu1N), EF-Tu1 with a C-terminal His tag (Tu1C), EF-Tu1 lacking a His tag (Tu1) and
heat-denatured EF-Tu1 (Tu1 denatured). Heat denaturation of EF-Tu1 was performed at 90°C for 5 min. The positions of the wells are indicated by an arrow
on the left side of the gel.

Figure 2. Stimulation of the activity of EF-Tu by the C.elegans EF-Ts homolog. (A) In vitro poly(U)-dependent poly(Phe) synthesis (25) was performed
using bovine mt ribosome (2.0 A260 units/ml, 125 U/ml, 63.4 nM), EF-G [2500 U/ml (saturated amount); unit de®nition as in Chung and Spremulli (25)] and
bovine mt Phe-tRNAPhe in the presence of T.thermophilus EF-Tu alone (open circle), T.thermophilus EF-Tu plus C.elegans EF-Ts homolog (®lled circle),
bovine mt EF-Tu alone (open square) or bovine mt EF-Tu plus C.elegans EF-Ts homolog (®lled square). Aliquots of the reaction mixture (18 ml) were
withdrawn at appropriate times and the radioactivity of the hot TCA-insoluble material was measured. (B) Stimulation of GDP exchange activity of EF-Tu by
C.elegans EF-Ts. The EF-Ts stimulates the GDP exchange of T.thermophilus EF-Tu (®lled circle). [3H]GDP binding to EF-Ts was not detected in the absence
of EF-Tu (open square).
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the EF-Tu´EF-Ts complex (Fig. 4B and D). Native PAGE
analysis of fraction 2 in the gel ®ltration chromatogram for
EF-Tu1 con®rmed that it contained EF-Tu1´EF-Ts complexes
(data not shown). EF-Tu1 and EF-Tu2 were eluted faster than
the EF-Tu´EF-Ts complexes, which suggests that these
molecules aggregate in the Tu´Ts buffer in the absence of
EF-Ts (Fig. 4A and C). Similar patterns were observed for EF-
Tu1 and EF-Tu2 when gel ®ltration was performed using a
Superdex 75 HR 10/30 (Amersham Biosciences) gel ®ltration
column with the same buffer, although in this system the
separation of EF-Tu´EF-Ts complexes from EF-Ts was poor
(data not shown).

Ability of nematode mt EF-Ts to bind to different
EF-Tu molecules

To characterize the binding speci®city of C.elegans mt EF-Ts,
its binding to heterologous EF-Tu proteins was analyzed.
The addition of C.elegans EF-Ts to E.coli EF-Tu and
T.thermophilus EF-Tu caused the EF-Tu bands to disappear
and a new band containing the EF-Tu´EF-Ts complex to
appear slightly below the EF-Ts band (Fig. 5A). This suggests
that C.elegans mt EF-Ts can bind to both of these EF-Tu
molecules. The complexes between bacterial EF-Tu mole-
cules and C.elegans mt EF-Ts were further con®rmed by pull-
down assay (Fig. 5B). In contrast, E.coli EF-Ts did not appear
to complex with either EF-Tu1 or EF-Tu2 from C.elegans
(Fig. 5C). Thus, the binding speci®city of C.elegans mt EF-Ts
differs from that of E.coli EF-Ts (Fig. 5D).

Although C.elegans mt EF-Ts could bind to bacterial EF-
Tu, it could not bind to bovine mt EF-Tu (Fig. 6), which was
con®rmed by pull-down assay (Fig. 5B) and gel ®ltration
analysis (data not shown). The ability of C.elegans EF-Ts to
bind to two chimeric EF-Tu constructs composed of bovine mt
and nematode mt EF-Tu domains was also analyzed (Fig. 6).
BmCe3 contains domains 1 and 2 of bovine mt EF-Tu while
BmCe3¢ contains domain 1±3 of bovine mt EF-Tu. Both of
these variants can bind to Met-tRNAMet from E.coli or
C.elegans mitochondria (7). Although the BmCe3´EF-Ts band
was not separated from the BmCe3 band on the native PAGE
gel, the intensity of the C.elegans EF-Ts band was reduced
when BmCe3 was added, indicating that C.elegans mt EF-Ts
binds to BmCe3 (Fig. 6). In contrast, C.elegans mt EF-Ts did
not bind to the BmCe3¢ chimera (Fig. 6). These observations
indicate that domains 1 and 2 of bovine mt EF-Tu do not
prevent C.elegans mt EF-Ts binding, unlike domain 3 of
bovine mt EF-Tu.

DISCUSSION

Structural features of C.elegans mt EF-Ts

EF-Ts molecules from E.coli and T.thermophilus have been
well characterized. Crystals of these two molecules com-
plexed with EF-Tu revealed that they interact with EF-Tu
differently, as E.coli EF-Tu and EF-Ts form a heterodimer
(Tu´Ts) (17,26) while the T.thermophilus factors form a
dyad symmetric heterotetramer [Tu´(Ts)2´Tu] (19,26,27). The

Figure 4. Caenorhabditis elegans mt EF-Tu´EF-Ts complexes can be puri®ed by HiPrep Sephacryl S-200 column chromatography. (A) Gel ®ltration of
C.elegans mt EF-Tu1 and EF-Ts. Peak positions of molecular weight marker proteins (Oriental Yeast Co.) are indicated. (B) Each peak in (A) was analyzed
by SDS±PAGE. Before loading, 100 ml of fraction 1 was concentrated to 5 ml and 3 ml aliquots of fractions 2 and 3 were loaded on the gel without concentrat-
ing the proteins. (C) Gel ®ltration of C.elegans mt EF-Tu2 and EF-Ts. (D) Each peak in (C) was analyzed by SDS±PAGE. Before loading, 10 ml of fraction 4
and 50 ml of fraction 5 were concentrated to 5 ml solutions and loaded on the gel. The lane indicated by Tu2 contains C.elegans mt EF-Tu2 without a His tag
(2 mg).
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amino acid sequence of C.elegans mt EF-Ts resembles more
closely that of E.coli EF-Ts than that of T.thermophilus EF-Ts.
The peak retention volumes of C.elegans mt factors in the gel
®ltration chromatogram are also suggestive of the formation of
a EF-Ts´EF-Tu heterodimer (83.5 kDa for EF-Tu1´EF-Ts and
77.8 kDa for EF-Tu2´EF-Ts) (Fig. 4A and C). The peak
retention volume of C.elegans mt EF-Ts suggests the EF-Ts is
a 32.8 kDa monomer.

Puri®cation of the C.elegans mt EF-Tu´Ts complex

Caenorhabditis elegans mt EF-Tu1 and EF-Tu2 are particu-
larly unstable, which makes handling them very dif®cult. For

example, they are easily precipitated during dialysis against
low salt solutions as well as by concentrations of EF-Tu1
and EF-Tu2 that exceed ~2 and ~1 mg/ml, respectively.
Furthermore, they aggregate under conditions of native gel
analysis (Fig. 3) and gel ®ltration (Fig. 4). Such instability and
low solubility complicates their use in experiments that
require high protein concentrations or various solution con-
ditions (e.g. crystallization for X-ray analysis). In contrast, the
C.elegans mt EF-Tu´EF-Ts complexes are highly soluble
(>10 mg/ml) and appear to be more stable than the EF-Tu
alone under a wide variety of conditions. Recently it was
reported that E.coli EF-Ts could act as a structural chaperone
to improve the solubility of unstable EF-Tu mutants (28).
Caenorhabditis elegans mt EF-Ts could be similarly used to
increase the solubility and stability of nematode EF-Tu
molecules. Thus, the procedure we developed to purify
nematode mt EF-Tu´EF-Ts complexes may be a useful tool
for the analysis of nematode mt EF-Tu molecules.

Speci®city of C.elegans mt EF-Ts for different EF-Tu
molecules

Bovine mt EF-Ts expressed in E.coli is known to form an
extremely tight complex with E.coli EF-Tu in vivo (13). The
complex cannot be dissociated completely even in the
presence of 8 M urea or 8 M guanidine hydrochloride (13).
In this work, a similar phenomenon was observed for
C.elegans mt EF-Ts when it was expressed in E.coli. When
we tried to purify the recombinant C.elegans mt EF-Ts protein
on a Ni2+ column, we found it was dif®cult to remove a protein
contaminant whose molecular weight agreed with that of
E.coli EF-Tu. The binding between the two proteins was loose
enough, however, to allow the EF-Tu-like protein to be largely
eliminated by repeated column washes (Fig. 1, lanes 1±4).
Native gel analysis con®rmed that C.elegans mt EF-Ts and
E.coli EF-Tu can form a heterologous complex (Fig. 5A).

Figure 6. Native PAGE analysis of the ability of C.elegans mt EF-Ts to
bind to bovine mt EF-Tu (bovine mt) and chimeric nematode±bovine EF-Tu
variants (BmCe3¢ and BmCe3). The lower part of the ®gure indicates a
summary of the binding speci®city of C.elegans mt EF-Ts to the EF-Tu
variants. White boxes with black letters show the bovine mt domains and
gray ®lled boxes with white letters show the nematode mt domains. Domain
3¢ represents the C-terminal 57 amino acid extension that is speci®c for
C.elegans mt EF-Tu1.

Figure 5. Analysis of binding speci®city of C.elegans mt EF-Ts to various EF-Tu molecules. (A) Native gel analysis of C.elegans mt EF-Ts mixed with EF-
Tu from E.coli or T.thermophilus. (B) Caenorhabditis elegans mt EF-Ts was pulled down by using Ni±NTA magnetic agarose beads in the presence of
C.elegans mt, bovine mt or bacterial EF-Tu. The fractions pulled down were analyzed by 10% SDS±PAGE. (C) Native gel analysis of E.coli EF-Ts mixed
with C.elegans mt EF-Tu1 or EF-Tu2 or E.coli EF-Tu. (D) Summary of the binding speci®cities of nematode mt and bacterial EF-Tu molecules to nematode
mt and bacterial EF-Ts proteins.
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Caenorhabditis elegans mt EF-Ts also bound to
T.thermophilus EF-Tu and to the two mt EF-Tu molecules
from C.elegans itself, suggesting that it has broad speci®city.
Such broad speci®city is probably required for it to be able to
recognize the two distinct EF-Tu species in the C.elegans
mitochondria. Notwithstanding this broad speci®city, the EF-
Ts was unexpectedly not able to bind to bovine mt EF-Tu
(Fig. 6). The lack of binding of C.elegans mt EF-Ts to bovine
mt EF-Tu was examined further by using chimeric
nematode±bovine EF-Tu molecules. Caenorhabditis elegans
mt EF-Ts was able to bind to a chimeric C.elegans mt EF-Tu
that contained domains 1 and 2 of bovine mt EF-Tu but not to
a chimera that contained domain 3 of bovine mt EF-Tu,
indicating that domain 3 of bovine mt EF-Tu prevents the
binding of EF-Ts but domains 1 and 2 do not.

A previous study has shown that strong binding of bovine
mt EF-Ts to EF-Tu is due to its N-terminal half and that the
N-terminal half of bovine mt EF-Ts enables it to bind
heterologous EF-Tu (14). The crystal structure of the E.coli
EF-Tu´EF-Ts complex shows that the N-terminal half of
EF-Ts binds to domain 1 of EF-Tu (17). The amino acid
identity between the N-terminal halves of C.elegans mt EF-Ts
and bovine mt EF-Ts (40.0%) is much higher than that
between C.elegans mt EF-Ts and bacterial EF-Ts. For
example, the homology with E.coli EF-Ts was only 27.7%.
Thus, it is likely that the N-terminal half of C.elegans mt EF-
Ts also enables it to bind heterologous EF-Tu proteins like
bacterial EF-Tu and the chimera bearing domains 1 and 2 from
bovine mt EF-Tu. The fact that C.elegans mt EF-Ts cannot
bind the EF-Tu chimera bearing bovine domain 3 can be
explained as follows. The crystal structure of the E.coli EF-
Tu´EF-Ts complex reveals that the C-terminal half of EF-Ts
interacts with domain 3 of EF-Tu (17). The amino acid
identity between the C-terminal halves of the C.elegans and
bovine mt EF-Ts molecules is not very high (22.9%) and thus
it is likely that the C-terminal half of C.elegans mt EF-Ts
cannot support binding to domain 3 of bovine mt EF-Tu.

In conclusion, C.elegans mt EF-Ts recognizes a common
structure shared by C.elegans mt EF-Tu1 and EF-Tu2, E.coli
EF-Tu and T.thermophilus EF-Tu, as well as domains 1 and 2
from bovine mt EF-Tu. Further analysis using EF-Tu mutants
or crystallographic analysis will elucidate the molecular
mechanism by which EF-Tu is recognized by the EF-Ts.
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