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ABSTRACT

For quantitative assessment of virus particles in
patient plasma samples various assays are commer-
cially available. Typical performance characteristics
for such assays are sensitivity, precision and the
range of linearity. In order to assess these proper-
ties it is common practice to divide the range of
inputs into subranges in order to apply different
statistical models to evaluate these properties
separately. We developed a general statistical
model for internally calibrated ampli®cation based
viral load assays that combines these statistical
properties in one powerful analysis. Based on the
model an unambiguous de®nition of the lower limit
of the linear range can be given. The proposed
method of analysis was illustrated by a successful
application to data generated by the NucliSens
EasyQ HIV-1 assay.

INTRODUCTION

Viral load assays based on ampli®cation technology are used
all over the world for screening and monitoring purposes.
Pro®ciency studies and quality assurance programs are tools to
monitor the quality of the assay systems themselves as well as
of the laboratory staff that use them in practice. Important
items include assay variability, detectability and the lower
limit of the linear range. Typically, in assay design and
development as well as in pro®ciency testing, data obtained by
testing a series of concentrations are analyzed using a variety
of statistical techniques to assess these properties (see for
example 1). These techniques include different sorts of
analysis of variance models to assess quantitative properties
and probit or logistic regression to assess sensitivity. In order
to apply these models, the dynamic range tested has to be
divided (more or less arbitrarily) into subgroups to ensure that
the heterogeneity of variances within these subgroups is not
too great, whereas it is known that the assay variability,
de®ned as the standard deviation of the logarithm of the

quantitation result, depends on the viral load tested. It would
be bene®cial to develop a single mathematical/statistical
model that covers all properties. The current paper aims to
develop such a model. Although many details of the current
studies are applicable to both NASBA-based and PCR-based
viral load assays, the focus is on the former.

One of the commercially available internally calibrated
NASBA-based viral load monitoring systems is the NucliSens
product line. The list of applications is long and includes both
RNA and DNA targets (see for example 2). Important targets
in the quantitative ®eld are HIV-1 RNA (3±6) and HBV DNA
(7). The NASBA ampli®cation technology was successfully
combined with homogeneous detection using molecular
beacons (2,6,8±10). These oligonucleotides are designed
such that they can generate a ¯uorescence signal only when
they are bound to a nucleic acid strand with a complementary
sequence, in this case an amplicon. As the concentrations of
amplicons increase continuously during the NASBA process,
the time-dependency of the ¯uorescence signals provides
information on the underlying kinetics of the NASBA-driven
RNA formation (6,8±10).

The NucliSens product line is, amongst others, character-
ized by the feature of internal calibration. A ®xed amount of
arti®cial RNA or DNA, referred to as the calibrator, is added
to the sample prior to the assay. This calibrator is co-extracted
and co-ampli®ed together with the endogenous viral nucleic
acid. The calibrator differs from the endogenous nucleic acid
by a short sequence. The use of speci®c molecular beacons
with speci®c ¯uorophores allows simultaneous speci®c detec-
tion of both ampli®cation processes. Quantitation is based on
the assessment of the relative RNA growth rates during the
transcriptional phase of the ampli®cation (10).

In a previous paper we presented the results of modeling
studies on the relation between the input concentrations and
transcription rates (10) and we presented a mathematical
model describing the ¯uorescence curves as a function of time
and several relevant parameters. In the current paper we wish
to go a step further and to include stochastic elements that play
an important role in molecular diagnostics. As such, a general
mathematical model is obtained that describes several per-
formance characteristics in a single model. The procedures
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will be illustrated using data generated with the NucliSens
EasyQ HIV-1 assay. This assay is also used as leading
example in the theoretical sections.

THEORY

Overview of the assay and some de®nitions

Consider a patient with a given load of endogenous viral RNA
[referred to as wild-type (WT) RNA]. From this patient a
blood plasma sample is taken. Let the expectation of the
number of WT copies in this particular volume of plasma be
N. For a random sample drawn from the patient, it should be
realized that the actual number of copies present is a random
variable. Let the plasma sample contain N1 copies. Then
calibrator RNA is added to this patient sample. In the
NucliSens assays, this calibrator is added in dry form as a
so-called accusphere. These accuspheres are produced by
freeze-drying small aliquots from a large pool of a solution of
the calibrator RNA. The concentration of calibrator RNA in
this pool is such that, on average, a single accusphere contains
C copies. Similar as for the patient sample, the actual number
of copies in a single accusphere is a random variable. Let an
individual accusphere contain C1 copies. Both WT and
calibrator RNA are simultaneously subjected to the extraction.
The numbers of copies present in the extract are N2 and C2.
From this extract a fraction is used for the ampli®cation,
containing N3 and C3 copies, respectively. These copies enter
the ampli®cation, but not all copies are ampli®ed to yield a
detectable number of amplicons. Let the number of copies that
actually contribute to the total signal be N4 and C4. The
response to be obtained in the NASBA-based assay is
determined by the ratio of the ampli®ed copy numbers (N4 /
C4), and is expressed on a logarithmic scale (base 10). More
precisely, the response variable obtained re¯ects the logarithm
of the transcription rate ratio, which is proportional to the
input ratio N4 / C4 (10). The observed value is converted to a
viral load (to be referred to as Nobs) by using the so-called
batch parameters. Obviously, random error due to the NASBA
assay is added to the total variation of the response variable.
Figure 1 gives a schematic representation of all individual
steps.

Model building

For the construction of a mathematical model, the following
considerations and assumptions are relevant. (i) The values of
N and C are known and ®xed. (ii) The variables N1, N2, N3, N4,
C1, C2, C3, C4, e, R and Nobs are random variables. (iii) The
variables N1 and C1 follow Poisson distributions. (iv) Given
the realizations of N1 and C1, the values N2 and C2 follow
binomial distributions, with a p-value determined by the
extraction ef®ciency (to be referred to as r). (v) Given the
realizations of N2 and C2, the values N3 and C3 follow
binomial distributions, with a p-value equal to the fraction
taken (to be referred to as f). (vi) Given the realizations of N3

and C3, the values N4 and C4 follow binomial distributions,
with a p-value equal to the probability that an individual
molecule is ampli®ed to yield a detectable number of
amplicons (to be referred to as p). (vii) The value of log(N4 /
C4) is to be assessed by the NASBA-based assay. (viii) The
NASBA assay itself (ampli®cation and detection) induces a

random variation e that is normally distributed with expect-
ation 0 and variance sa

2. (ix) The quantity log(N4 / C4) + e is
the ®nal response variable, to be referred to as R. (x) The
conversion of R to log(Nobs) is done by a linear transformation
using a ®xed set of numbers referred to as the batch
parameters. A test result is classi®ed as positive if two
conditions are ful®lled simultaneously: (i) a WT signal is
detected and (ii) the observed value of Nobs exceeds the
threshold Nlim. In the other cases the estimated viral load is
below the limit of detection (`negative').

Probability distributions of the relevant random
variables

The variables N1 and C1 are considered to follow Poisson
distributions as it seems reasonable to assume that the three
basic probabilistic conditions for Poisson variables are
ful®lled. First, the expectation of the number of molecules
in the sample is proportional to the sample volume. Second,
two subsequent samplings from the same pool are stochastic-
ally independent and identically distributed. Third, if the
volume of the sample is small enough, the probability that two
molecules are present in the same sample approaches 0.
Therefore, N1 ~ Poi(N) and C1 ~ Poi(C), with the symbol ~ to
indicate a probability distribution.

As summarized above, given the realization of the random
variable N1, the variable N2 follows a binomial probability
distribution with parameter r. General stochastic theory then
shows that N2 ~ Poi(rN). Similarly, it follows for the other
steps in the scheme:

Figure 1. Schematic overview over the model.
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copies in blood sample or accusphere : N1 � Poi�N�; C1 � Poi�C�
copies in extract : N2 � Poi�rN�; C2 � Poi�rC�
copies in fraction f of eluate : N3 � Poi�frN�; C3 � Poi�frC�
amplified copies : N4 � Poi�fprN�; C4 � Poi�fprC�

1

8>><>>:

The response variable

The response variable R is de®ned as

R = log(N4 / C4) + e with e ~ N(0,sa
2) 2

with log the logarithm with base 10 and N re¯ecting a normal
distribution. Note that R is de®ned only if the realizations of
N4 and C4 both exceed 0. This notion has some important
implications, as will be shown below. The total variability
in this variable is de®ned by the variability in N4, C4 and e.
The observed value of R is converted to a logarithmic viral
load [log(Nobs)] by a linear transformation (10). To this end,
batch parameters are used. For reasons of convenience, this
transformation is written as

log(Nobs) = q1 + q2R 3

with q1 and q2 re¯ecting the batch parameters (the exact
formal de®nition of the batch parameters is slightly different,
but here only the linear relation is of importance). As
described previously (10), it is not possible to directly assess
the ratio N4 / C4; the quantitation variable merely re¯ects the
logarithm of some multiple of the N4 / C4 ratio, but batch
parameters can be used to convert this to an observed viral
load.

The batch parameters are assessed once and are then kept
®xed. Therefore, in discussions on random errors they are not
important.

Probabilistic aspects of the response variable

The variable R is the response variable used for quantitation. If
the realization of N4 = 0, then a test result without detectable
WT signal is obtained, which is classi®ed as `negative'. In this
case R is not computed at all. If there is a detectable WT
response, it means that the realization of N4 > 0 and in that
case the value of R can be computed. If the estimated viral
load is below the lower limit of detection, the result is
classi®ed as `negative', otherwise it is classi®ed as `positive'
and a quantitation result is presented. In order to assess the
variance of R, use has to be made of the probability
distribution of the logarithm of N4 under the restriction that
the realization of N4 > 0. Some details of the properties of the
logarithm of such a truncated Poisson variable can be found in
the Appendix (equations A1 and A2).

A realization of 0 for the variable C4 implies the absence of
a calibrator signal. Therefore, similar considerations are
required for the probability distribution of C4 as described
for N4. However, as the value of Poisson parameter fprC (see
equation 1) is considered to be ®xed for a given batch, there is
no need to use explicit equations for the expectation and
variance of log(C4), as will become clear from the derivations
presented below.

From equations 2 and 3 it follows that the random variable
log(Nobs) can be written as the sum of three independent
random variables: log(N4), log(C4) and e. Therefore,

E[log(Nobs)] = q1 + q2{E[log(N4)] ± E[log(C4)] + E[e]}

S[log(Nobs)]
2 = q2

2S[R]
2 = q2

2{S[log(N4)]
2 + S[log(C4)]

2 + S[e]
2}

with E[.] the expectation and S[.]
2 the variance of the random

variable indicated. In order to write these in manageable
forms, de®ne

1 � fpr

2 � q1 � q2 log�fpr� ÿ q2E�log�C4��
3 � q2

4 � q2
2fS�log�C4��

2 � �a
2g

4

8>><>>:
and it follows using the Appendix equations

E[log(Nobs)] = g2 + g3{log(N) + {[(g1N + 1)e±g1N ± 1] /
[2g1Nln(10)]} ± log(1 ± e±g1N)} 5

S[log(Nobs)]
2 = (g3 / ln10)2 / [g1N ± #1 + #2 / (g1N)#3] + g4 6

As noted above, it is possible to express E[log(C4)] and
S[log(C4)]

2 in terms of fpr and C using the Appendix equations,
but given a value for fprC these two are constants and are
incorporated in g2 and g4. Nevertheless, it is important to note
that C is so high that Pr(C4 = 0) can be ignored. In other words,
e±fprC can be set to 0 (see equation 1) and E[log(C4)] can be
approximated by log(fprC). Therefore, it follows

g2 = q1 ± q2log(C) 7

independent of the product fpr.
Numerical analysis of equation 5 shows that, in approxi-

mation,

E[log(Nobs)] = g2 + g3log(N) if g1N = 1.9797 8

This result is important in de®ning the lower limit of the linear
range of the assay, and will be rounded to g1N = 2.

It is interesting to note the following limits that can be
derived:

lim
N!0

E�log�Nobs�� � 2 ÿ 3 log�1�
lim

N!1
fE�log�Nobs�� ÿ �2 � 3 log�N��g � 0

lim
N!1

S�log�Nobs��
2 � lim

N!0
S�log�Nobs��

2 � 4

9

8>><>>:
Equation 5 shows that the relationship between the input and
the output, that is between log(N) and E[log(Nobs)], is non-
linear in nature. For high values of N, equation 9 shows that
E[log(Nobs)] can be approximated by g2 + g3log(N). The
difference between these two is given primarily by the entity
log(1 ± e±g1N) ± [(g1N + 1)e±g1N ± 1] / [2g1Nln(10)], which
reaches its maximum of 0.041 for g1N approximately 4. For
very low inputs, with N approaching 0, equation 9 shows that
the expectation of log(Nobs) is well-de®ned and it approaches a
value in which g1 plays an important role.

A test result is classi®ed as `positive' if two conditions are
ful®lled: a WT signal is detected (N4 > 0) and the quantitation
result exceeds a pre-set lower limit (Nobs > Nlim). More
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precisely, the probability that a result is positive is the product
of the probability Pr(N4 > 0) and the conditional probability
Pr(Nobs > Nlim | N4 > 0). Using the Normal approximation it
follows:

Pr(pos) = (1 ± e±g1N)[1 ± F({log(Nlim) ± E[log(Nobs)]} /
Ö{S[log(Nobs)]

2})] 10

with E[log(Nobs)] and S[log(Nobs)]
2 according to equations 5 and

6 and F(.) re¯ecting the cumulative standard normal
probability distribution function.

Data analysis using the current models: maximum
likelihood

Consider an experiment in which samples with viral loads
over a considerable range are subjected to the NucliSens
EasyQ HIV-1 assay. These samples yield either a quantitation
result, or are classi®ed as below the limit of detection
(`negative'). The values of the parameters given in equation 4
can be assessed by using maximum likelihood techniques. The
contribution to the total log likelihood of a test result
classifying as below the limit of detection at a given level of
N is given by the probability that a test result is obtained that is
not classi®ed as positive, and is computed using a cumulative
probability distribution function as (see equation 10):

Lneg = ln{1 ± (1 ± e±g1N)[1 ± F({log(Nlim) ± E[log(Nobs)]} /
Ö{S[log(Nobs)]

2})]} 11

For a positive, quanti®able result, the contribution to the total
log likelihood is based on the probability density function
under the restriction that N4 > 0 in combination with the
probability Pr(N4 > 0). Let xi(N) be the realization of log(Nobs)
for observation i at a given value of N, and the contribution of
this particular data point to the total log likelihood can be
expressed as

Lpos = ln{(1 ± e±g1N)(1 / Ö{S[log(Nobs)]
2})j({xi(N)

± E[log(Nobs)]} / Ö{S[log(Nobs)]
2})} 12

In equations 11 and 12 the entities E[log(Nobs)] and S[log(Nobs)]
2

are computed according to equations 5 and 6, and j(x) = [1 /
Ö(2p)]exp[±(1 / 2)x2]. For each individual observed test result
the contribution to the log likelihood is computed by equation
11 or 12, and all contributions are summated. Numerical
techniques can then be used to assess the values of the
parameters g1 through g4 such that the total log likelihood is
maximized.

MATERIALS AND METHODS

Dilution series of the so-called VQA stock of HIV-1 RNA
(Virology Quality Assurance) (1) were subjected to the
NucliSens EasyQ HIV-1 assay, the details of which are
described elsewhere (6,8). All results were obtained using a
single batch. For the current study magnetic extraction was
used as front-end (7), in which the extract can be concentrated
into a smaller volume than in the current NucliSens Extractor
(11).

RESULTS

Dilution series of WT HIV-1 RNA with nominal concentra-
tions ranging from 10 to 106 copies per input were subjected to
the NucliSens EasyQ HIV-1 assay. Figure 2 presents the
observed quantitative results. Test results classifying as
`below limit of detection' are not presented. Using maximum
likelihood techniques, the parameters of the model were
assessed. For the current data, the optimal parameter values
were g1 = 0.0295, g2 = ±0.629, g3 = 1.10 and g4 = 0.0163. The
®gure includes the predicted values of E[log(Nobs)] according
to equation 5 as well as the intervals E[log(Nobs)] 6
2Ö{S[log(Nobs)]

2} (equations 5 and 6). Finally, the straight line
with intercept g2 and slope g3 is included. According to
equation 9, the expectation E[log(Nobs)] approaches this line
for high values of N. The ®gure shows that this approximation
is reasonable for all inputs exceeding the point where the curve
of E[log(Nobs)] crosses this straight line. According to
equation 8, this intersection is approximately at g1N = 2,
hence at N = 67. Figure 2 shows that this intersection point can
be used as a de®nition for the lower end of the linear range. For
the current data, lim

N®0
E[log(Nobs)] = 1.05 logs.

The bend in the curve corresponding to E[log(Nobs)] in
Figure 2 is due to stochastic properties of the logarithm of a
Poisson distributed variable (compare Figure 2 with Figure 4
in the Appendix). Recall that the predicted values for the
expectation and variance of log(Nobs) are valid only for results
of which a detectable WT signal is detected in the ®rst place,
and this probability rapidly decreases with decreasing values
of the input. At very low inputs, with fprN values clearly <1, it
follows that the actual values that N4 can reasonably attain are
only 0 and 1; the probability Pr(N4 > 1) is very low if fprN << 1
(see equation 1). Therefore, at these inputs, the mere detection
of a WT signal implies that the actual realization of N4 can
hardly be anything else but 1. At this level of fprN values,
information on the actual value of N is lost.

The model also allows predictions on the variability as a
function of the input (equation 6). The assay variability is
predicted to stabilize for high WT inputs at a value of Ög4 =
0.128 logs. The maximal predicted variability is obtained at an
input of 92 copies, and equals Ö0.0899 = 0.30 logs. At an input
of 400 copies, the predicted standard deviation is 0.20 logs.
Equation 9 (last part) shows that the predicted standard
deviations for very low and very high inputs are asymptoti-
cally the same, which is also re¯ected in Figure 2. At very high
inputs, the variability in log(N4) is so small compared with the
variability in log(C4) + e that it can be ignored. At very low
inputs, the probability Pr(N4 > 1) can be ignored, and the
probability distribution of N4 under the restriction that it is
positive (otherwise R is not de®ned) is a degenerated
probability distribution with zero variance, leading to the
same result.

Finally, given the parameter values, the predicted probabil-
ity of obtaining a positive test result can be computed as a
function of the input using equation 10. The observed and
predicted hit rates are presented in Figure 3. The concentration
yielding a hit rate of 95% is estimated to be 103 copies/input,
whereas a 50% hit rate is obtained at an input of 24 copies.
Figure 3 also includes the two-sided 95% con®dence intervals
that can be computed for the individual observed hit rates
using the binomial probability distribution. The observed hit
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rate at 10 copies/input is rather low compared with the
predicted hit rates, but for the remaining part the model
adequately describes the data.

DISCUSSION

In the current paper the stochastic processes involved in
molecular diagnostics are studied from a mathematical point of
view. The study shows that a single statistical model can be

used to study linearity, variability and detectability. The lower
limit of the linear range can be assessed using clear and
unambiguous de®nitions, and is not hampered by issues like
heterogeneity of variances over the linear range or low hit
rates. Input concentrations corresponding to pre-set hit rates
can be estimated, which is important with respect to the
sensitivity of the assay. In addition, it is possible to estimate
the assay variability as a function of the input, which is
amongst others important in assessing the limit of quantitation.

Figure 2. Model concerning quantitative results. The circles present the individual observations. The solid line presents the modeled values of E[log(Nobs)].
The dashed lines are at a distance of two times the predicted SD. The intercept and slope of the straight dashed line are given by g2 and g3.

Figure 3. Model concerning hit rates. The dots represent the observed fractions of positive test results, with the two-sided 95% con®dence intervals based on
the binomial probability distribution. The number of observations varied with the inputs tested.
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As is the case for every model, the equations presented here
are approximations of reality. For example, it is assumed that
the variance component due to the assay itself (sa

2) does not
depend on the input. At very high inputs this is not entirely
true, as the calibrator signal is hardly detectable and therefore
the contribution of the calibrator to the variability may be
higher than in other ranges. A similar notion might be valid for
the low inputs, where the WT signal is on the edge of being
detectable. Another approximation is the use of the Normal
probability distribution to assess hit rates (equation 10) and in
the maximum likelihood techniques (equations 11 and 12).
Finally, the current equations assume that fpr (g1) can be
considered to be a constant, whereas it is more realistic to
assume that there is a random component to this as well. This
parameter makes its appearance in lots of positions in the
equations, thereby making detailed mathematical analyses
assuming a stochastic nature for fpr very complex. Further
studies are required to expand the models to include this
source of variation.

The data analyzed in the current paper were obtained using
a single batch over several experimental runs. As such, the
standard deviation contains both the inter- and intrarun
variability. Studies have shown that the interrun variability
is so small that it can safely be ignored (T. A. M. Oosterlaken
and P. A. van de Wiel, unpublished results). If this were not
the case, then the models should be expanded to include
indicators for the experimental runs involved.

The NucliSens assay is an internally calibrated assay.
Changes in extraction ef®ciency should not affect the
quantitation. That this is actually achieved is re¯ected by
equation 7 which shows that the location of the straight line
describing the linear range of the assay is not affected by the
actual value of the product fpr.

The predicted hit rate at the lowest input is clearly higher
than the observed hit rate. This is probably due to the
following considerations, which are very dif®cult to include in
mathematical models. An assay should be sensitive, implying
that a high hit rate at low concentrations is a bene®cial
property. On the other hand, the incidence of false-positive
results should be low. The positive predictive value, which is
the probability that the sample tested does actually contain the
analyte given that the assay result is positive, should be very
high. Therefore the threshold to be used to decide whether or
not a WT signal is actually present is chosen higher than
theoretically minimally required. As such, WT signals just
above the background will be dismissed as just noise.

A test result is classi®ed as being below the limit of
detection (`negative') if no WT signal is detected or if the
estimated viral load, in the presence of a detectable WT signal,
is below a threshold. The equations on the variance and
expectation of log(Nobs) describe the complete distribution of
the test results under the restriction that a WT signal is
observed (that is, N4 > 0). This means that, at low viral loads,
only a part of the distribution will be visible, whereas the
results below the limit of detection with a detectable signal can
be treated as left-censored observations. The models show that
high quantitation results cannot be obtained at very low
inputs, as both E[log(Nobs)] and S[log(Nobs)]

2 stabilize with N
approaching 0.

The product fpr (g1) plays an important role in the
equations. It makes its appearance at a crucial position in

the equation on detectability (equation 10). The factor 1 ± e±g1N

describes the probability that at least one WT copy enters the
ampli®cation that contributes to the total signal [Pr(N4 > 0)],
and represents an upper bound for the probability of obtaining
a positive test result as a function of the input. The other factor
in equation 10 gives the probability that a positive result is
obtained under the condition that a molecule enters the
ampli®cation in the ®rst place. The lower limit of the linear
range is given by 2 / g1 (equation 8), hence a high value of the
product fpr implies a lower limit at a low input. Closely related
to this is the level at which E[log(Nobs)] stabilizes for low
inputs. Once again, a higher value of fpr (g1) implies a further
extension of the linear range to lower inputs (see equation 9).
If sensitivity of the assay is to be improved or, analogously,
the linear range is to be extended to lower inputs, then the
efforts should focus on increasing the value of the product fpr.
In more practical terms this means that f (the fraction of the
eluate used), r (the extraction recovery) or p (probability that
a single molecule yields a detectable signal) should be
increased. The strategy behind the development of magnetic
extraction is, amongst others, to increase the value of f, the
fraction of the eluate used, whereas the technique is under
development to further increase the recovery r. Increasing the
value of p would require further optimization of the ampli-
®cation module and/or the quality of the enzymes. Note that
the value of N stands for the expectation of the total number of
WT copies entering the assay (see Fig. 1); the sample volume
is not part of the equations. As such, as has indeed been shown
experimentally (12), increasing the sample volume will have a
direct impact on sensitivity if this is to be expressed in terms of
copies/ml but not when it is expressed as copies/input. On the
other hand, the use of high plasma volumes might also lead to
increased concentrations of plasma components that can
interfere with the ampli®cation, hence reducing p.

The input concentration corresponding to a hit rate of 95%
is often used as a de®nition of the limit of detection (LOD).
Interestingly, the models imply that the lower end of the linear
range is by de®nition below this LOD. After all, according to
equation 8 the lower end is at an input such that g1N = 2. At
this input equation 10 predicts that Pr(pos) < 1 ± e±g1N = 1 ±
e±2 » 0.86. The quantitative linear range is often de®ned as the
concentration range for which there is a linear relation
between the logarithm of the input and E[log(Nobs)] and for
which the probability of obtaining a positive test result >95%.
This can further be extended to include a minimal assay
standard deviation. The results of the current study indicate
that with respect to the ®rst two items, the 95% detectability
requirement is suf®cient.

As illustrated in the current paper, it is possible to apply the
model to experimental data. For the ®rst time, it is possible to
draw conclusions on accuracy, precision and sensitivity based
on a single analysis. There is no need to distinguish, on
arbitrary grounds, an input range for which the variability is
assumed to be constant. Also, as has been reported elsewhere
(J.J.A.M. Weusten, P.A.W.M. Wouters and M.C.A. van
Zuijlen, submitted for publication), effective use is made of
the available information in the data set when it comes to
sensitivity analyses, whereas the standard probit-analyses only
use the dichotomous result `positive' or `negative'.

In conclusion, a mathematical model was developed that
enables simultaneous analysis of linearity, variability and
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detectability. It is believed that models like these can be
helpful in developing and optimizing viral load diagnostics, as
well as in statistical data analysis. In addition, they can
contribute to the scienti®c knowledge of these systems.
Further studies are required to re®ne the models.
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APPENDIX

Truncated Poisson probabilities

Let X be a random variable obtained from a Poisson
distribution with parameter l under the restriction that its
realization is positive. In this case, the probability distribution
function is Pr(X = x) = (e±llx) / [(1 ± e±l)x!]. Straightforward
calculus now shows that the expectation mx = l / (1 ± e±l) and
the variance sx

2 = l[1 ± (l + 1)e±l] / (1 ± e±l)2. General
statistical theory reveals that approximations for the expect-
ation and variance of some function g(.) of the random
variable X can be computed (see for example 13):

�
E�g�X�� � g��x� � �1=2��x

2g00��x�
S�g�X��2 � �g0��x��2�x

2

implying for the logarithmic transformation g(x) = ln(x):

�
E�ln�X�� � ln��=�1ÿ eÿ��� � ���� 1�eÿ� ÿ 1�=2�

S�ln�X��2 � �1ÿ ��� 1�eÿ��=� A1

Large-scale computer simulations were performed to study the
validity of these equations. To this end, values were chosen for
the Poisson parameter l by taking values for ln(l) between ±3
and +7 with increments of 0.01. For each l, a total of 105

observations were drawn from truncated Poisson distributions,
and the mean and variance of the logs of these random values
were computed. The summary statistics so obtained as well as
the approximations according to equation A1 are presented in
Figures 4 and 5. It is clear that the approximation for the mean
is fairly accurate, but the approximation for the variance fails.
Therefore, an alternative equation was searched for. There was
no need to de®ne a ®rm theoretical basis; any equation that is
manageable and yields a reasonably good approximation
would suf®ce. Empirical study of the observed curve suggests
to use the equation as given in equation A2, in which the actual
values of the parameters were optimized by using non-linear
regression procedures. The quality of this approximation is
also presented in Figure 5. This equation is used in the current
paper.

S�ln�X��2 � 1

�ÿ #1 � �#2=�#3� with
#1 � 3:5765
#2 � 7:8346
#3 � 0:68208

A2

8<:
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Figure 4. Approximation of the mean of the logarithm of a truncated Poisson variable with equation A1 (dashed line). The solid line re¯ects the simulation
results.

Figure 5. Approximation of the variance of the logarithm of a truncated Poisson variable with equations A1 (long dashes) and A2 (short dashes). The solid
line re¯ects the simulation results.
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