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A method is presented for scoring the model quality of experi-
mental and theoretical protein structures. The structural model to
be evaluated is dissected into small fragments via a sliding win-
dow, where each fragment is represented by a vector of multiple
�–� angles. The sliding window ranges in size from a length of
1–10 �–� pairs (3–12 residues). In this method, the conformation
of each fragment is scored based on the fit of multiple �–� angles
of the fragment to a database of multiple �–� angles from
high-resolution x-ray crystal structures. We show that measuring
the fit of predicted structural models to the allowed conforma-
tional space of longer fragments is a significant discriminator for
model quality. Reasonable models have higher-order �–� score fit
values (m) > �1.00.

protein conformational space � model quality assessment � protein
structure prediction

The typical end scenario for those who try to predict protein
structure by theoretical means (ab initio) or for crystallog-

raphers with poorly resolved data is a model for which there are
no assessment methods at present for the quality of the model.
Assessment can only occur, post facto, after the high-quality
experimental structures become available. One of the earliest
methods for determining structural quality was implemented in
the suite of utilities distributed as PROCHECK by the Thornton
laboratory (1, 2). The G-factor, a measure of fit to the most
frequently occupied regions of �–� space (Fig. 1), and the �–�
plot itself became tools of the crystallographer for standardizing
the quality of the model as a whole and troublesome portions of
the structure (perhaps a coil region with poorly resolved electron
density). In a more recent study, Shortle (3, 4) used a scoring
function with finer subdivisions of the �–� plot (and sequence-
specific probabilities assigned to each subdivision) to distinguish
between native and non-native decoys.

Unfortunately, the G-factor and the simple �–� plot cannot,
in most cases, be used as tools to evaluate the quality of a
theoretical structure, because information from the �–� plot
itself (in the form of minimum contact distances and torsion
angle force constants) is used as a constraint in the refinement
and minimization processes. Thus, a predicted structure may fit
the constraints of the �–� plot exceedingly well at the single-
residue level, yet be composed of very unnatural building blocks
consisting of multiple residues, as opposed to the commonly
observed fragments of structure we see in high-resolution ex-
perimental structures.

In our previous work (5), we investigated the angular confor-
mational spaces of longer peptide fragments, fragments �3
residues in length with multiple �–� angle pairs. Because each
fragment was represented by its torsion angles, the length of the
fragment is represented by the number of �–� angle pairs. We
used a multivariate analysis method called multidimensional
scaling to reduce multiangle spaces to 3D conformational maps
to extract and visualize the major features of the multidimen-
sional �–� angle space, the higher-order �–� (HOPP) maps. An

example for the peptides with three pairs of �–� angles is given
in Fig. 2. What we observed is that there were defined regions
of space representing discrete conformations or common build-
ing blocks, and the number of conformational clusters, y, is
related to the number of �–� pairs, k, via the simple relationship,

y � 1.6k, [1]

which compares well with other estimates by Dill (6) and
Tendulkar et al. (7), but dramatically smaller than estimates
implied by Levinthal (8) (y � 9k; three possible � values � three
possible � values for each �–� pair) or Ramachandran and
Sasisekharan (9) (y � 4k; four observed conformational clusters
for each �–� pair as shown in Fig. 1). Thus, the size of accessible
conformational space is significantly reduced by steric hin-
drances that extend beyond nearest-chain residues (10). This
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Fig. 1. Ramachandran �–� plot. Regions of the �–� space are divided into
‘‘core’’ favorable regions (green), allowed regions (blue), unfavored regions
(tan), and disallowed regions (white). Overall, the plot shows four conforma-
tional clusters with their centers around the (�,�) values of (�100, �30),
(�100, 120), (60, 0), and (60, 180) degrees.
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observation suggests that: (i) protein structure might best be
represented as blocks of fragments with designated accessible
�–� values, and (ii) it may be possible to construct and delineate
a conformational space into a finite number of conformational
clusters for a given number of �–� pairs.

In this work we present a method, HOPPscore, for defining
the conformational space of multiple �–� pairs and testing the
fit of queried protein structural models to each of those con-
formational spaces. We show the relationship between model
resolution and HOPPscore and how HOPPscore can be used to
assess the overall quality of theoretical structural models, e.g.,
from the Critical Assessment of Protein Structure Prediction
(CASP) contests (11), or identify the local quality of less reliable
regions of an experimental structural model.

Results and Discussion
Construction of the HOPPscore Database. Conformational hash tables.
Our first task was to collect a data set of nonredundant (�25%
sequence identity) x-ray crystal structures from the October 2004
PDBselect Database (12). We then divided the database into
bins by resolution in 0.2-Å intervals from 0.5 to 3.0 Å (The actual
resolution of the structures ranges from 0.54 to 2.9 Å.) We then
created reference hash table databases of multiple �–� angles
for a given peptide length for each resolution threshold (i.e., the
1.6-Å resolution level contains all structures from 0.54 to 1.6 Å
inclusively). These hash tables form a conformational reference
database or ‘‘lookup table’’ used for scoring the quality of query
structures within the HOPPscore. The backbone �–� angles for
each structure were calculated by using DSSP (13), and fragments
were extracted by using windows of size k � 1–10 �–� pairs,
creating vectors of multiple � and � angles describing each
fragment. For each resolution threshold level, window size (k),
and grid size (the coarseness by which the �–� space is divided)
we created a lookup table. The lookup or hash table contains the
frequency for which a particular conformation appears within
the database. For further information regarding the method of
constructing the hash tables see Materials and Methods.

CASP model database. All of the CASP models were collected from
the CASP web site (http:��predictioncenter.org) (11). The list
of models was culled to those models predicted by ab initio
methods or for which no parent or template structure was used
for homology modeling or threading (indicated by the line
PARENT N�A in the file header). (Note: It is difficult at this
stage of CASP to state exactly the type of modeling that
predictors are using, as it can be a combination of all three
above-mentioned methods.) The goal was to compare the struc-
tural quality of a predicted model with its experimental target.
The corresponding experimental targets for each of the predic-
tions were collected from the Protein Data Bank (PDB) and
correspondence tables were created to keep track of models and
targets. In some cases a target PDB file contained more than one
identical amino acid chain, so a model might correspond to
several target chains within the table. Another difficulty involved
in comparing the models with targets is the occurrence of chain
discontinuities within either the experimental target or the
model. In the case of chain breaks, only the alignable regions
from both structures can be compared. A further complication
is the discrepancy in residue numbering conventions between
some of the models and the targets. The problems were easily
overcome by performing a simple Smith-Waterman local align-
ment (14) between model and target with no gaps and only
comparing alignments �10 residues.

Scoring CASP Models. HOPPscore scoring method. A query Protein
Data Bank file can be scored by the HOPPscore package that we
have made available for download at http:��compgen.lbl.gov.
Queries are scored against conformational hash tables taken
from structures with resolution levels ranging from 0.54 to 3.0 Å.
Torsion angles for the query structure are calculated and seg-
mented into fragments by a sliding window of 1–10 �–� pairs.
Scores for the query are derived for each fragment length

Fig. 3. HOPPscore values correlate with resolution. Average HOPPscore
values are collected for structures falling within a resolution bin. Scores for all
fragment lengths (one to five �–� pairs) inversely vary with resolution. The
score dependency on resolution is greatest for longer lengths. The variable
grid size is 12°, and the resolution set is 1.2 Å. (Note: the 1.2-Å bin is a self-score,
i.e., scored with a hash table constructed from the identical 1.2-Å structures.)

Table 1. HOPPscore allowed regions

Category Frequency, f Symbol Score

Favored f � � x � 0.5� F �2
Allowed x � 0.5� � f � � x A �1
Unfavored x � f U �0.5
Disallowed f � 0 D �4

x, average frequency; �, SD.

Fig. 2. 3D map of conformational space for the peptides with three �–�

values and representative conformations. To extract and visualize the major
features of a HOPP map, the highest three eigen values of the HOPP space are
plotted in this map. The multidimensional scaling projections are represented
as wire mesh surfaces at two colored contour (�) levels into a medium- and
high-density region (blue, 2�; green, 3�). Each conformation (in red) is indi-
cated in the context of the local structure in which the sample conformation
was found in crystal structures. Annotated conformations are as follows: A,
turn type II; B, turn type II; C, �-extended; D, turn type I; E, helical N-cap; F, turn
type II; G, helix; H, turn type I. For more information see ref. 5.
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separately. Unique keys are generated for each fragment con-
formation (see Materials and Methods), and the frequency of that
conformation is looked up in the hash table. Based on the
frequency of that conformation, relative to the average fre-
quency within the conformational hash table, the fragment is
assigned to one of four categories: favored, allowed, unfavored,
and disallowed. Each of those categories has an associated score
value. For instance, highly favored conformations have a �2
contribution to the overall score. An overall score is calculated
by averaging the contributions of each fragment. See Table 1 for
definitions of each category and default penalties and bonuses.
HOPPscore relationship to resolution. The most-recognized indicator
of overall structural quality is the resolution of a crystal struc-
ture. To determine what range of resolution we might expect for
a particular HOPPscore value we tested each of the resolution
bins (1.2–3.0 Å) from the crystal structures in the PDBselect data
against the reference hash table for structures �1.2-Å resolution
(Fig. 3).
Comparing model scores to their high-resolution CASP targets. As a
control, we collected only the high-resolution targets with res-
olutions �1.8 Å and compared their scores with each of the
predicted models. We assumed the targets were of good struc-
tural quality and would score better than their models. The
conformational hash table used for scoring was derived from
structures �1.8 Å (a threshold comparable to the targets being
tested). Fig. 4 shows the results of the score comparison for k
values of 1–10 for CASP6 models with a default grid size of 12°.

The grid size is an important parameter because it determines
the coarseness with which structures are scored. If conforma-
tional space is binned too finely, relatively minor difference in
conformation will be recognized as completely different struc-
tures. On the other hand, a grid size that is too coarse leads to
overgeneralization of conformations. For each k � 1. . . 10, the
variable, grid size, is tested between 2° and 20°. The range of grid
size and k was then tested on the CASP4 models. The maximal
difference in score (Fig. 5) provides us with a default grid size
of 12° value.
HOPPscore correlates with resolution. The HOPPscore values we
obtained for each resolution bin highly depended on the reso-
lution (Fig. 3). The worse the resolution (i.e., higher values) the
worse the HOPPscore values obtained. The longer fragments
lengths exhibited the greatest dependency on resolution. The
slope decreased much more quickly at higher Å (lower-
resolution) levels for four and five �–� pairs, indicating the
greater degree of sensitivity to resolution. This result is partic-
ularly useful, because it indicates that quality analysis of exper-
imental structures might provide more information if longer
fragment lengths are used, as opposed to the single �–� pair
analysis commonly used now in PROCHECK.
Scoring models of high-resolution targets. We show that the predicted
models of high-resolution CASP targets score significantly lower
than the targets themselves. Fig. 4 shows the results of the
scoring by individual CASP trial separately. The horizontal score
axis is a difference score (experimental target score minus model
score). If a model scores better than its experimental target, then

Table 2. HOPPscore examples, scoring with k � 4 (���) pairs

CASP model

Target
Protein

Data Bank Residues GDT-TS

HOPPscore
model
(���)4

HOPPscore
target
(���)4

Difference
(���)4 SCOP class

T0281TS109�1 1 whz: A 5–18, 25–60 31% �0.79 0.89 1.00 ��� or ���

T0281TS100�1 5–18, 25–66 82% 0.81 1.08 0.27
T0130TS001�1 1no5:A 7–101 55% .35 1.35 1.00 ��� or ���

T0130TS132�1 7–101 25% 0.64 0.98 0.34
T0137TS001�1 1o8v:A 70–129,2–29,35–58 86% .09 1.02 .93 All �

T0137TS548�1 65–129, 2–58 14% �3.04 0.99 4.03
T0073TS009�1 1g6u:A 2–44 82% 0.79 1.77 0.98 All �

T0073T155�1u 2–43 62% 0.23 1.85 1.57
T0083TS005�1 1dw9:A 3–62 30% 1.69 1.32 �0.37 All �

T0083TS009�1 3–72 10% 0.61 1.39 0.78

GDT-TS, a CASP measure of model quality; percentage of model C� carbons within 2 Å of distances from target structure.

Fig. 4. Comparing the scores of CASP models to their high-resolution
targets. For each fragment size from 1 to 10 �–� pairs both the predicted
model and the corresponding experimental target (for high-resolution struc-
tures � 1.8 Å) HOPPscore values are calculated and the difference between
scores is tallied. Average scores for each of the CASP trials are displayed.
Variable grid size � 12°, and resolution set � 1.8 Å.

Fig. 5. Best grid size for binning conformational space. For grid size values
2–20° and a fragment size of 1–10 �–� pairs the CASP4 predicted model and
the corresponding experimental target (high-resolution structure) HOPPscore
difference scores are calculated. Decent choices for grid size lie in a range of
8° to 12°. Resolution set � 1.8 Å.
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the resulting difference score is �0. A global peak in scoring is
reached at a fragment size of eight or nine �–� pairs. However,
these score differences are also obtained in several of the CASP
trials using a shorter fragment length of four or five �–� pairs.
This fragment length provides a reasonable discrimination be-
tween poorly fitting models from all of the CASP trials and
experimental targets. A fragment length of one �–� pair results
in the least amount of discrimination for all five CASP trials. This
finding is most likely caused by the inclusion of �–� restraints in
the CASP predictors’ optimization algorithms.

A reasonable grid size was found by scoring the CASP6 models
against their high-resolution targets and using a set of grid values
from 2° to 20° (Fig. 5). The best grid size appears to be a range
of values between 8° and 12°. These values are actually fairly
large, because the bin size also depends on the fragment length.
For instance, the angles within a fragment four �–� pairs long
would be placed into bins of 48° wide when grid size is 12°. See
Materials and Methods.

Some scoring examples are shown in Table 2 to reveal the
utility of HOPPscore for measuring model quality. We scored
both model and target structure by using k � 4, grid size � 12°,
and resolution set � 1.8 Å and compared the score differences
to the global distance test total score (GDT-TS), which is a CASP
measure of model quality. GDT-TS is defined as the percent of
model residues matching the target structure residues within 2 Å.
HOPPscore and GDT-TS values are not perfectly correlated
(R2 � 0.05), because our scoring method contains no target
structure information. However several of the models with
GDT-TS �35% also have comparatively large HOPPscore
differences. In general, HOPPscore values for model structures
�0.50 (k � 4) should be re-examined very carefully. Two specific
models are profiled in Fig. 6, showing which regions of the target
and models are poor-scoring. In the target 1whz chain A, there
are several poor-scoring regions, turns at residues 17–19 and
35–36. In model T0281TS100�1, the poorest-scoring region
ranges from 42 to 49 in a coil between a sheet and helix. Despite
this segment, this model has a fairly good GDT-TS (�80%) and

Fig. 6. Moving average-score profiles and low-scoring regions in model and
target. Both target and model fragments are scored with variables k � 4, grid
size � 12°, and resolution set � 1.8 Å (‘‘See Fragment’’ scores range from �4
to 2). Overall scores for Protein Data Bank files are summarized in Table 2.
High-scoring model T0281TS100�1 (dashed line) is compared with its target
1whz (solid line). Low-quality portions of the models are observed in residues
45–50 and near residues 17 and 34 in the target structure. Scoring of model
T0281TS109�1 (dot-dash line) shows that much of the structure is of low
quality. Low-scoring regions (�0) in models T0281TS100�1, T0281TS109�1, and
target 1whz are highlighted in red.

Fig. 7. Scoring with longer fragment lengths. (a) With grid size of 12° and
resolution set of 1.8 Å, models T0281TS100�1 (dashed line), T028TS109�1
(dot-dash line), and target 1whz (solid line) were scored for k � 1–10. Best-fit
logarithmic curves [m � ln(x) � b] for T0281TS100�1 (m � �0.86) and the target
nearly match (m � �0.81). From k � 1 the curve for T028TS109�1 (m � �1.26)
descends faster. (b) Forty models from several CASP groups are scored and
compared with the target, 1whz (blue line). Most of the models scored poorly
for k � 2. Several models scored as well as or better than the target because
they were constructed with commonly observed structural fragments.
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a good HOPPscore. The majority of the residues in
T0281TS109�1 score poorly. Fig. 6 also shows structural repre-
sentations highlighting poorly scoring regions.

In addition, the scoring for k � 1–10 for the above 1whz
models is plotted as a logarithmic curve in Fig. 7a, fitting the
form m � ln(x) � b. The slope, m, of these curves provides a single
value to access query structures quality for all fragment lengths.
The curves of T0238TS100�1 and 1whz are nearly identical with
similar slope (m � �0.80). The ‘‘poor’’ model has a descending
slope steeper than 1whz (m � �1.26). Typical values for suspect
models show slopes � �1.00. When scores for the range of k
values (from 1 to 10) for several models (Fig. 7) are compared
against the target, we can see that the target scores much better
than the majority of the models. However, a few models score
slightly better than the target probably because they are built
with a larger percentage of commonly observed fragments.

Conclusion
We have developed a tool for protein structure analysis, which
can be used to assess the quality of structural models and
identify regions of predicted structures that contain ‘‘unnat-
ural’’ building blocks or rarely observed structure. The fact
that model structures consistently score worse with HOPP-
score than target experimental structures is convincing evi-
dence that many models are constructed with unnatural struc-
tural fragments. However, we want to stress that our quality
scoring method is an independent ‘‘analysis’’ tool for models
in the absence of experimental target structures or for exper-
imental structures determined at low resolution. As long as
HOPPscore is not incorporated into any refinement procedure
for structure prediction, it can be used to check the quality of
the prediction and supplement other methods as a form of
‘‘independent audit.’’

Materials and Methods
A hash table is the most efficient way to ‘‘bin’’ conformations in
multidimensional space, because we can ignore empty bins.
Conformations are placed in the hash, hash table, by using a
simple scheme:

For each conformation V

{Increment: HashTable{createKey(V))}.

For each conformation (or fragment) found in all of the struc-
tures at a given threshold resolution level, we have a vector V. A
unique key is generated, via the function createKey(), repre-
senting that conformation, and each time that conformation is
found the value stored in the hash table is incremented, yielding
a conformational frequency. The ideal computer language for
implementing such a hash table is PERL because of its built-in
hash data type. The function createKey() converts each vector,
V, into a character string:

For each element i of V

{Concatenate: key �

key 	 ‘ ‘� ’ ’ 	 round�Vi��k*gridSize		*�k*gridSize	}.

The angle value of each element i of V is rounded down to one
of the 360�(k*gridSize) intervals. The parameter, grid size,
determines the coarseness of the ‘‘binning’’ in the hash table.
The unique key is then created by concatenating all of the
rounded angle values together with a text separator, ‘‘�’’. For
example the vector V � 
30,60,150,90� with grid size � 12° and
k � 2 would have a unique key of �24�48�144�72. The size of the
bin is a function of both k and grid size. The longer the fragment
length, k, the coarser the bin.
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