## THE RESPIRATORY RESPONSE TO ANOXÆMIA. By J. S. HALDANE, M.D., F.R.S., J. C. MEAKINS, M.D., Lt.-Col., C.A.M.C. and J. G. PRIESTLEY, B.M., M.C., Capt. R.A.M.C.

### (From the Clinical Laboratories No. 15 Canadian General Hospital, Taplow and Ashhurst War Hospital, Littlemore, Oxford.)

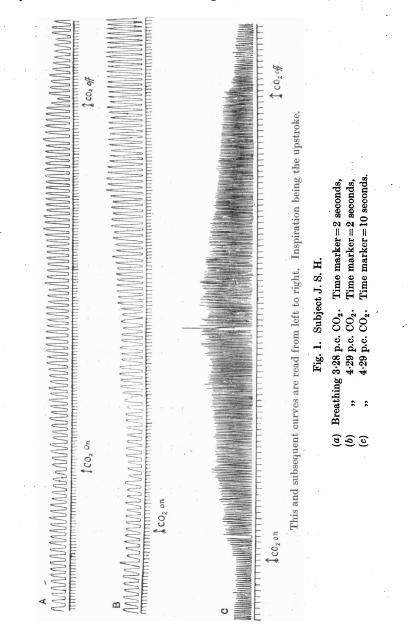

It has been recognised for some time that ordinarily the respiration is regulated with the utmost delicacy in correspondence with the  $CO_2$ tension of the blood passing through the respiratory centre<sup>1</sup> and it is now generally agreed upon that what the centre actually responds to is increased hydrogen ion concentration.

Fig. 1 shows quantitative records of the breathing taken by means of an apparatus which will be described in the subsequent paper on shallow breathing. In each case the subject of the experiment was sitting at rest while breathing from the apparatus. The tracings show the records obtained when breathing air containing (a) 3.28 p.c., (b) 4.29 p.c. CO<sub>2</sub>. Study of these tracings brings out clearly the following points. Firstly the characteristic effect of CO<sub>2</sub> is increased in depth of respiration accompanied by only slight quickening of the rate. In this connection we may refer to the well known "air hunger" of diabetic coma. Here also the deep protracted breaths constitute the response of the respiratory centre to increased hydrogen ion concentration in the arterial blood caused by the state of "acidosis." Secondly it also appears that when the breathing of air containing added CO<sub>2</sub> had been continued for some time the depth of the respirations and the total ventilation of the lungs per minute showed a tendency to diminish. For example in the tracing taken when breathing 4.29 p.c. of CO<sub>2</sub> the depth of respiration and ventilation per minute steadily increase for about seven minutes and then progressively fall off again. The fall is probably connected with fatigue and perhaps also with the process of adaptation discovered by Yandell Henderson<sup>2</sup>, who found that the CO<sub>2</sub> capacity of the blood of dogs increased when they were made to breathe air containing an added amount of CO<sub>2</sub>. Thirdly it is evident from the tracings that

<sup>&</sup>lt;sup>1</sup> Haldane and Priestley. This Journal, 32. p. 225. 1905.

<sup>&</sup>lt;sup>2</sup> Henderson and Haggard, Journ. of Biol. Chem. 33. p. 333. 1918.

as long as the breathing of the  $CO_2$  is continued there is a definite, though not very great, increase in the rate of respiration, which shows no tendency to diminish with the decreasing volume.



421

# 422 J. S. HALDANE, J. C. MEAKINS AND J. G. PRIESTLEY.

Table I gives the numerical data deduced from the tracings.

|          |          | °03                          | Vol.                     | litres | 5.34           | 4·91           | 5-97              | 6-20 | 6-71              | 9-87           | 13-04      | 16.26 | 12.31 | 11-43 | 11-30 | 12-96 | 10-64 | 12.25 | 15-49 | 12.15 | 13.68    | 12-36 | 12-42 | 15-05 | 16-52 | 14-33 | 12.83 |       | ]     | 1     | 1     | I     | I          | ١     | I     |
|----------|----------|------------------------------|--------------------------|--------|----------------|----------------|-------------------|------|-------------------|----------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|-------|-------|
|          | J. G. P  | Air +4.38 % CO <sub>4</sub>  | Aol.                     |        | 344            | 351            | 398               | 376  | 463               | 617            | 767        | 879   | 648   | 635   | 628   | 720   | 608   | 662   | 885   | 675   | 760      | 727   | 776   | 836   | 847   | 796   | 733   |       | I     | 1     | 1     | ۱     | I          | I     | I     |
|          |          | Air                          | Rate of<br>resp.         | min.   | 15.5           | 14             | 15                | 16.5 | 14.5              | 16             | 17         | 18.5  | 19    | 18    | 18    | 18    | 17.5  | 18.5  | 17.5  | 18    | 18       | 17    | 16    | 18    | 19-5  | 18    | 17.5  | I     | I     | 1     | I     | 1     |            |       | 1     |
|          |          | <b>c</b> 0 <b>'</b>          | Vol.<br>per              | litres | 10-12          | 9-98           | 0 <del>6</del> .6 | .1   | 13-30             | 14-74          | 20-66      | 22-03 | 27-06 | 29-11 | 30-91 | 30-33 | 33.27 | 34.99 | 36.61 | 36.28 | 39-71    | 34.77 | 39-71 | 35.52 | 36-93 | 35-85 | 35.10 | 34-67 | 32-87 | 29-84 | 30.19 | 27-91 | 26-50      | 25-33 | 24.26 |
|          | J. S. H. | Air +4·29 % CO <sub>2</sub>  | Vol.                     | 50     | 563            | 555            | 550               | I    | 682               | 921            | 983        | 1003  | 1229  | 1265  | 1288  | 1319  | 1386  | 1457  | 1464  | 1511  | 1655     | 1511  | 1655  | 1614  | 1605  | 1493  | 1462  | 1444  | 1315  | 1243  | 1207  | 1162  | 1100       | 1055  | 970   |
|          |          | Air                          | Rate of<br>resp.         | min.   | 18             | 18             | 18                | 1    | 19-5              | 16             | 21         | 22    | 22    | 23    | 24    | 23    | 24    | 24    | 25    | 24    | 24       | 23    | 24    | 52    | 23    | 24    | 24    | 24    | 25    | 24    | 25    | 24    | 24         | . 24  | 25    |
|          |          | 00 <b>°</b>                  | Vol.                     | litres | 1              | 1              | 7-85              | 8-32 | 7-90              | 8.12           | 10:95      | 11.73 | 15.78 | 17-41 | 20.30 | 20-77 | 23-03 | 26-01 | I     | 1     | 1        | I     | ļ     | 1     | 1     | 1     | I     | 1     | I     | 1     | •     | 1     | I          | I     | I     |
| TABLE I. | J. S. H. | 4·29 % (                     | Vol.                     | <br>   | I              | 1              | 523               | 537  | 510               | 541            | 684        | 733   | 877   | 1024  | 1194  | 1153  | 1211. | 1238  | I     | I     | I        | 1     | I     | I     | I     | I     | 1     | I     | I     | I     | I     | I     | I          | 1     | ł     |
|          |          | Air +                        | Rate of<br>resp.         | min.   | 1              | 1              | 15                | 15.5 | 15.5              | 15             | 16         | 16    | 18    | 17    | 17    | 18    | 19    | 21    | 1     | 1     | ľ        | I     | 1     | ł     | ł     | l     | 1     | İ     | 1     | 1     |       |       |            |       | 1     |
|          |          | <b>0</b>                     | Vol.                     | litres | 1              | 7-47           | 7-60              | 7-96 | 7-83              | 09·6           | 10.84      | 11-56 | 12-04 | 12.84 | 12.75 | 12-87 | 1     | ١     | ļ     | 1     | 1        | 1     | I     | ŀ     | 1     | 1     | 1     | I     | I     | ļ     | 1     | ١     | I          | 1     | 1     |
|          | J. S. H. | Air + 3·28 % CO <sub>3</sub> | Vol.<br>Tesp.            | 33     | 1              | 534            | 643               | 568  | 559               | 640            | 747        | 746   | 803   | 856   | 850   | 830   | 1     | ١     | I     | I     | I        | 1     | I     | I     | I     | I     | I     | I     | ١     | I     | l     | 1     | I          | I     | I     |
|          | ŗ        | Air+                         | Rate of<br>resp.<br>per  | min.   | 1              | <b>1</b> 4     | 14                | 14   | 14                | 15             | 14.5       | 15.5  | 15.0  | 15    | 15    | 15.5  | ١     | I     | I     | I     | I        | ł     | ١     | l     | 1     | 1     | 1     | I     | I     | 1     | 1     | ١     | 1          | 1     | I     |
|          |          |                              | Time in<br>succ.<br>half | mins.  | 1              | I              | 1                 | I    |                   | 21             | <b>m</b> . | 4,    | ю (   | 9     | - 0   | 20 0  | n ç   | 2:    | =;    | 219   | <u>5</u> | 14    | 33    | 9;    | 1     | 21;   | 61    | ន្តរ  | 21    | 22    | 23    | 24    | <b>5</b> 2 | 26    | 27    |
|          | Subject  | Mixture breathed             |                          | :      | Frehm. control | period breath- | IIIG BIIL         |      | Period of experi- | ment preathing | mixture    |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |       |       |       |       |       |       |            |       | •     |

So far we have only considered the effects of altering the  $CO_2$  percentage of the air breathed. It next becomes of interest to study the effects, if any, of altering the proportion of oxygen in the inspired air.

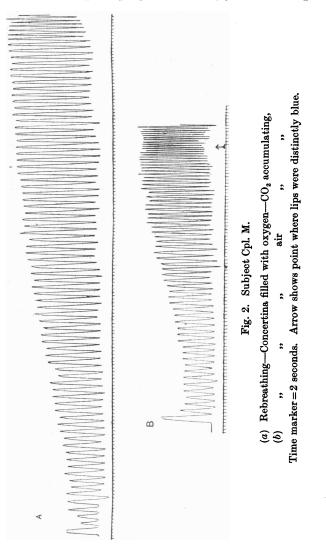



Fig. 2 shows the records of a subject rebreathing from the recording "concertina." Thus only about 4 litres of air were available and the rise of  $CO_2$  percentage and the fall of oxygen percentage were rapid—with such a small volume of air the oxygen percentage falls more quickly

PH, LII.

|           | 11                                                          |                |                  |                          |                | 7.2 59.3         |               |                |                 |               | 11                                          | 11              |                                              | 11             |                               |               |                                             | 11                         |
|-----------|-------------------------------------------------------------|----------------|------------------|--------------------------|----------------|------------------|---------------|----------------|-----------------|---------------|---------------------------------------------|-----------------|----------------------------------------------|----------------|-------------------------------|---------------|---------------------------------------------|----------------------------|
|           | 11                                                          |                | 11               |                          | 64             |                  |               | -              | 11              |               | 11                                          | 11              |                                              |                |                               |               |                                             |                            |
|           |                                                             |                | 11               |                          | GN -           |                  |               |                |                 |               | 11                                          |                 |                                              |                |                               | 11            | 11                                          |                            |
|           | 11                                                          |                |                  |                          | _              |                  |               |                |                 |               |                                             |                 | 11                                           |                |                               | 11            | ļ 1                                         | 11                         |
|           | 11                                                          |                |                  | 21                       | 1710           | 36-0             | 11            | 11             | 11              |               |                                             |                 |                                              | 11             |                               |               |                                             |                            |
|           | 11                                                          |                |                  |                          |                |                  |               |                | 50.0            | 11            |                                             | 11              |                                              |                |                               | 11            |                                             |                            |
|           | $\frac{1}{14} = \frac{1}{14} = \frac{1}{17} = \frac{1}{17}$ | 1700           |                  | 16                       |                | 29.3             | 15            |                | <br>44·9        |               | 11                                          |                 | 11                                           | 11             |                               | 11            |                                             | 11                         |
|           | uccessive h                                                 | <br>1350       | 22-99            | 15                       |                | 22.7             | 15            | 2710           | 40.6            |               |                                             |                 | 11                                           |                |                               |               | 11                                          | 11                         |
|           | olumes at s<br>14                                           |                | <br>18·34        | <br>14                   | 1550           | $\frac{-}{21.6}$ | 15            | 2880           | 43.2            | 30            | 2310                                        | <u></u><br>69-4 |                                              | 11             | 11                            | 30            | 2690                                        | 80.6                       |
| , II.     | ates and vo<br>                                             | 1340           |                  | 32<br>13                 | 2790<br>1510   | 89-4<br>19-7     | 48<br>15      | 2240<br>2330   | 107-7<br>34-9   | 29            | <br>2390                                    | 71.3            | 29                                           | 2730           | 79-2                          | 25            | 2680                                        | <br>67·1                   |
| TABLE II. | R<br>12<br>12                                               | 1610           | $29.02 \\ 12.04$ | 28<br>12                 | 2200<br>1190   | 61·7<br>14·3     | 29<br>15      | 2510<br>2490   | 72.7<br>37-3    | 29<br>26      | 3060<br>2200                                | 88-6<br>57-3    | 26                                           | 1950           | 50.8<br>                      | 66<br>20      | $\begin{array}{c} 1980\\ 2460 \end{array}$  | 130-7<br>49-2              |
|           | 14<br>12                                                    | 1290<br>870    | $18.07 \\ 10.46$ | 22<br>12                 | 1850<br>1180   | 40·7<br>14·2     | 23<br>15      | 1930<br>1880   | 44-4<br>28-1    | 23<br>24      | 2560<br>2070                                | 58-9<br>49-6    |                                              | 1490           | <u></u><br>32.1               | 48<br>18      | 1970<br>2210                                | 94·3<br>39·8               |
|           | 12<br>10                                                    | 1150<br>930    | 13-77<br>9-26    | 16<br>11                 | 1470<br>980    | 23·43<br>10·7    | 18<br>15      | 1820<br>1830   | 32·8<br>27·4    | 20<br>22      | $\begin{array}{c} 1610 \\ 1270 \end{array}$ | 32·2<br>27-9    | $\begin{array}{c} 32\\ 19\cdot 5\end{array}$ | $3210 \\ 970$  | 102.8<br>19 $\cdot 0$         | 24<br>16      | $\begin{array}{c} 1850 \\ 1720 \end{array}$ | 44·4<br>27·5               |
|           | 12<br>10                                                    | 960<br>820     | $11.49 \\ 8.23$  | 14<br>11                 | 1370<br>1120   | 19.23<br>12.3    | 17<br>15      | 1440<br>1300   | $25.2 \\ 19.5$  | 22<br>24      | 870<br>750                                  | $19.2 \\ 18.0$  | $29 \\ 20.5$                                 | 2000<br>850    | 57-9<br>17-5                  | 16<br>14      | $1400 \\ 1220$                              | 22·3<br>17·1               |
|           | 12<br>12·5                                                  | 670<br>740     | $8.05 \\ 9.21$   | 10<br>12                 | 1410<br>1170   | 14·13<br>14·0    | 16<br>14      | 1090<br>1260   | 17-4<br>17-7    | 20<br>22      | 560<br>690                                  | 11-3<br>15-1    | 28<br>19·5                                   | 920540         | $25.8 \\ 10.6$                | 14<br>14      | 1000<br>880                                 | 14·0<br>12·3               |
|           | Initial<br>mixture<br>Air<br>Oxygen                         | ·              |                  | Air<br>Oxygen            | Air<br>Oxygen  |                  | Air<br>Oxygen |                |                 | Air<br>Oxygen |                                             |                 | Air<br>Oxygen                                | Air<br>Oxygen  | Air<br>Oxygen                 | Air<br>Oxygen | Air<br>Oxygen                               | gen                        |
|           | Rate per min. 4                                             | C.c. per resp. | Litres per min.  | Capt. McC. Rate per min. | C.c. per resp. | Litres per min.  | Rate per min. | C.c. per resp. | Litres per min. | Rate per min. | C.c. per resp.                              | Litres per min. | Rate per min.                                | C.c. per resp. | Litres per min. Air<br>Oxygen | Rate per min. | C.c. per resp.                              | Litres per min. Air<br>Oxy |
|           | Name<br>Capt. F.                                            |                |                  | Capt. McC.               |                |                  | Corp. M.      |                |                 | Capt. V.      |                                             |                 | Capt. P.                                     |                |                               | J. S. H.      |                                             |                            |

than the  $CO_2$  percentage rises. The reason of this temporary inequality between the amount of oxygen used up and the amount of  $CO_2$  given out is to be found in the fact that the body possesses very considerable storage capacity for  $CO_2$  while it has practically none for oxygen.

Two series of records were taken with the concertina filled with (a) air, (b) oxygen at the start.

Table II gives the figures deduced from this and similar tracings.

They show (1) the effect of want of oxygen in lowering the threshold for  $CO_2$ , and (2) that on the whole the result of low oxygen percentage in the air inspired is to cause ultimately quickening of the rate and diminution of the depth of respiration.

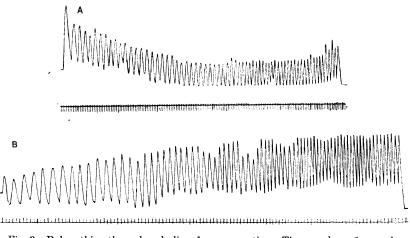



Fig. 3. Rebreathing through soda-lime from concertina. Time marker=2 seconds.
(a) Subject Cpl. M.
(b) Subject J. S. H.

Records were obtained by breathing in and out of a large galvanised iron cylinder attached to a different recording apparatus. Tracings were taken (a) when the cylinder was filled with almost pure oxygen to start with; (b) when the cylinder was filled with air. In each case the breathing is affected by the gradually increasing proportion of  $CO_2$  in the air inspired but in the one case the oxygen supply remains at least equal to ordinary air throughout the experiment while in the other case the oxygen percentage is continually decreasing below the normal. The fall however is not enough to produce any marked anoxemia. On measuring up the tracings it is found that the effect of the diminishing oxygen percentage is to lower the threshold of the respiratory centre for  $CO_2$ , and consequently the depth of each respiration and the ventilation per minute increase more rapidly when the cylinder contains air than when it is filled with oxygen at the beginning of the experiment.

|                                            |                     | Air                       | TABLE III.                 |                     | Oxygen                    |                            |
|--------------------------------------------|---------------------|---------------------------|----------------------------|---------------------|---------------------------|----------------------------|
| Time in<br>successive<br>2 min.<br>periods | Rate<br>per<br>min. | Vol. per<br>resp.<br>c.c. | Vol. per<br>min.<br>litres | Rate<br>per<br>min. | Vol. per<br>resp.<br>c.c. | Vol. per<br>min.<br>litres |
| lst                                        | 13                  | 1460                      | <b>18</b> ·9               | 13                  | 1540                      | 19.6                       |
| 2nd                                        | 14                  | 1940                      | 27.1                       | 13                  | 2090                      | 29.2                       |
| 3rd                                        | 14                  | 2540                      | 35.0                       | 14                  | 2310                      | 32.9                       |
| 4th                                        | 14                  | 3100                      | <b>43·3</b>                | 16                  | 2320                      | 36.5                       |
| 5th                                        | 14                  | 4120                      | 57.7                       | 15                  | 2810                      | 42.2                       |
|                                            | —                   |                           |                            | 17                  | 3610                      | 60.2                       |

The measurements of the tracings are given in Table III.

Fig. 3 shows the tracings taken with two of the same subjects and the same apparatus as in the last experiment except that a soda lime purifier was inserted in the respiratory circuit. The result therefore was to obtain records of the effect of diminishing oxygen without any accumulation of  $CO_2$ .

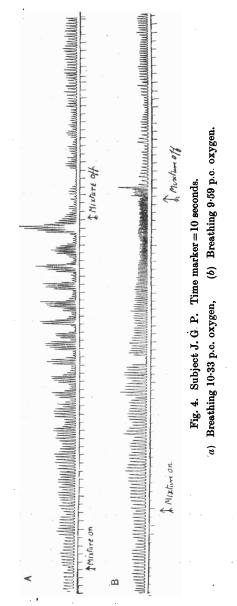
Table IV gives the results of measuring these and similar tracings.

These results as compared with the  $CO_2$  results, show that the effect of want of oxygen is to increase the rate of respiration rather than the depth, while  $CO_2$  increases the depth rather than the rate. Some of them also show the production of periodic breathing at certain stages of the oxygen want.

Figs. 4 and 5 show tracings taken when breathing for a longer period from the recording "concertina" air containing a constant low percentage of oxygen.

Table V gives the numerical data corresponding to these and similar tracings.

These records differ remarkably from the records of the effect of increased  $CO_2$ . It will be seen that the first result of diminution in the oxygen percentage is increase in the depth of respiration owing to lowering of the threshold exciting value of  $CO_2^1$ . There then comes a point at which the breathing becomes periodic. The subject of periodic breathing was fully investigated by Haldane and Douglas<sup>2</sup>. They proved that the essential cause of the periodicity is the much quicker action of want of oxygen as compared with that of increase of  $CO_2$ . Owing to the great solubility of  $CO_2$  in the body fluids changes of amount of  $CO_2$  only slowly produce effective changes of tension. The result of

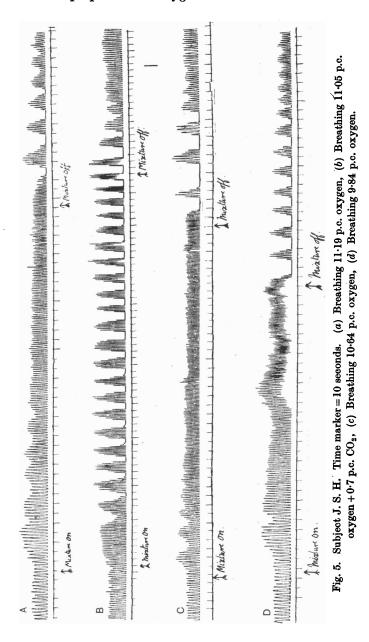

<sup>1</sup> Haldane and Poulton. This Journal, 37. p. 404. 1908.

<sup>2</sup> Haldane and Douglas. Ibid. 38. p. 401. 1909.

| • •                       | • •                                                                                                                                                                                                                         | <br>• ·                                                        |                                                                | ANOX                                                           | XÆMI.                                                          | <b>4.</b> · · · · ·                                            |                                                                |                                                                | 427                                                            |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| * .                       |                                                                                                                                                                                                                             | 15<br>815<br>12·5                                              |                                                                |                                                                | ÌÌÌ                                                            | ITT                                                            |                                                                |                                                                |                                                                |
|                           |                                                                                                                                                                                                                             | $12 \\ 1135 \\ 13\cdot 5$                                      | 11<br>790<br>9-0                                               |                                                                |                                                                | 111                                                            |                                                                | Ļ                                                              | 111                                                            |
|                           | 34<br>1415<br>48·0                                                                                                                                                                                                          | 10<br>940<br>9-5                                               | 10<br>590<br>6-0                                               | 111                                                            | 15-5<br>1645<br>25-5                                           | 16<br>995<br>16-0                                              |                                                                |                                                                | 111                                                            |
|                           | tes<br>22<br>1195<br>26·5                                                                                                                                                                                                   | 9<br>685<br>6-0                                                | 1010<br>7-0                                                    |                                                                | $15.5 \\ 1335 \\ 20.5$                                         | 15<br>925<br>14·0                                              |                                                                | 111                                                            |                                                                |
|                           | half minut<br>18<br>835<br>15-0                                                                                                                                                                                             | 9<br>875<br>8-0                                                | 8-0<br>8-0                                                     |                                                                | 13·5<br>1205<br>16·5                                           | 16<br>795<br>12·5                                              | 40<br>905<br>36-0                                              |                                                                | 31<br>1780<br>55-0                                             |
|                           | consecutive<br>16<br>795<br>12·5                                                                                                                                                                                            | 9<br>715<br>6·5                                                | 9<br>865<br>8·0                                                | $\substack{12\\1795}{21\cdot5}$                                | 13·5<br>1060<br>14·5                                           | 13·5<br>770<br>10·5                                            | 32<br>990<br>31·5                                              | 36<br>890<br>32-0                                              | 29<br>1615<br>47-0                                             |
|                           | Rates and volumes in consecutive half minutes           16         15         16         18           645         750         795         835         11           10.5         11.5         12.5         15.0         15.0 | 9<br>1015<br>9-0                                               | 10<br>585<br>6-0                                               | $\substack{8\\1510\\12\cdot0}$                                 | 14<br>995<br>14·0                                              | 10-5<br>900<br>9-5                                             | $\begin{array}{c} 28\\995\\28\cdot0\end{array}$                | 29<br>795<br>23-0                                              | 25<br>1740<br>43·5                                             |
| TABLE IV.                 | Rates and v<br>16<br>645<br>10-5                                                                                                                                                                                            | 10<br>765<br>7·5                                               | 8<br>1080<br>8·5                                               | 7.5<br>1265<br>9.5                                             | 13<br>865<br>11•0                                              | 11<br>730<br>8-0                                               | 25·5<br>945<br>24·0                                            | 26<br>795<br>20·5                                              | 22<br>1510<br>33·5                                             |
| $\mathbf{T}_{\mathbf{A}}$ | 16<br>580<br>9-5                                                                                                                                                                                                            | 10<br>735<br>7·5                                               | 10<br>780<br>8-0                                               | 9<br>985<br>9-0                                                | $12.5 \\ 920 \\ 11.5$                                          | $\begin{array}{c}10.5\\1105\\11.5\end{array}$                  | $\begin{array}{c} 19.5\\1020\\20.0\end{array}$                 | 21<br>795<br>16•5                                              | 18-5<br>1575<br>29-0                                           |
|                           | 16<br>505<br>8-0                                                                                                                                                                                                            | 9<br>725<br>6-5                                                | 10<br>660<br>6·5                                               | 9<br>1250<br>11·5                                              | $\begin{array}{c} 13\\960\\12\cdot 5\end{array}$               | 10<br>870<br>8•5                                               | 17<br>870<br>14-0                                              | 17<br>625<br>10•5                                              | 14<br>1720<br>24-0                                             |
|                           | 16<br>440<br>7-0                                                                                                                                                                                                            | 9<br>775<br>7-0                                                | 8<br>5•5                                                       | 9<br>1015<br>9-0                                               | $\begin{array}{c} 13.75\\705\\10.5\end{array}$                 | $\begin{array}{c}10\\1025\\10\cdot0\end{array}$                | 15<br>860<br>13·0                                              | 16<br>730<br>11·5                                              | 12<br>1405<br>17-0                                             |
|                           | 18<br>430<br>8·0                                                                                                                                                                                                            | 8<br>885<br>7:0                                                | 8<br>680<br>5•5                                                | 11<br>960<br>10-5                                              | $\begin{array}{c}12.5\\1065\\13.5\end{array}$                  | 11<br>110<br>11·0                                              | 14<br>745<br>10·5                                              | $\begin{array}{c} 15\\ 680\\ 10\cdot 0\end{array}$             | 11.5<br>1050<br>12.0                                           |
|                           | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres                                                                                                                                                              | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres | Rate per min.<br>Vol. per resp., c.o.<br>Vol. per min., litres | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres | Rate per min.<br>Vol. per resp., c.c.<br>Vol. per min., litres |
|                           | Name<br>J. G. P.                                                                                                                                                                                                            | Capt. F. I                                                     | Capt. F. II                                                    | Capt. McC.                                                     | Cpl. M. I                                                      | Cpl. M. II                                                     | J. S. H. I                                                     | J. S. H. II                                                    | J. S. H. III                                                   |

### 428 J. S. HALDANE, J. C. MEAKINS AND J. G. PRIESTLEY.

this is that the respiration can adapt itself to changes in the proportion of  $CO_2$  in the air breathed without overshooting the mark. In the case




of oxygen however where the solubility is so much less, changes of tension occur with great rapidity after changes of amount and hence

#### ANOXÆMIA.

the local effect of want of oxygen on the respiratory centre is very rapid and the consequent result is periodicity of the breathing.

Where the proportion of oxygen is still further reduced this last



|          | •        |                        |          |       |                | Í               | 6.30           | 6-11    | 10.7  | 15.5 541 8.39     | 10-30        | 8.88<br>8         | 10-94 | 12-40 | 9-02  | 10.92 | 9-40  | 11.52 | 12-91 | 15.23 | 21.28 | Ì     |  |
|----------|----------|------------------------|----------|-------|----------------|-----------------|----------------|---------|-------|-------------------|--------------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|          | G. P.    | 59 % 0₃<br>≻           | Vol.     | per   | resp.<br>c.c.  | ۱               | 420            | 407     | 438   | 541               | 644          | 555               | 608   | 689   | 501   | 546   | 470   | 443   | 349   | 282   | 313   | I     |  |
|          | ľ,       | 6                      | Rate     | reap. | per<br>min.    | 1               | 15             | 15      | 16    | 15-5              | 16           | 16                | 18    | 18    | 18    | 20    | 20    | 26    | 37    | 54    | 68    | I     |  |
|          |          |                        | ( No     | per   | min.<br>litres | 8-39            | 10.18          | 60-6    | 9-85  | 15.79             | 17-62        | 22- <del>44</del> | 23-76 | 24.48 | 28.19 | 27-43 | 28.40 | 27-46 | 1     | I     | 1     | 1     |  |
|          | . S. H.  | 9-84 % 02              | Vol      | per   | resp.<br>c.c.  | 559             | 599            | 568     | 563   | 877               | 881          | 863               | 792   | 680   | 783   | 653   | 568   | 528   | ł     | 1     | I     | I     |  |
|          | ſ        | ,                      | Rate     | resp. | per<br>min.    | 15              | 17             | 16      | 17-5  | 18                | 20           | 26                | 30    | 36    | 36    | 42    | 50    | 52    | ١     | ļ     | I     | I     |  |
| LABLE V. | J. S. H. | 02                     | ( IoV    | per.  | min.<br>litres | I               | 9-30           | 9-45    | 10-18 | 14.40             | 16.30        | 16-33             | 18.88 | 18-94 | 18.30 | 20-40 | 19-91 | 19-80 | 19-49 | 19-22 | 19-49 | 20-93 |  |
|          |          | 0- <b>64</b> % C       | - Iov    | ber.  | resp.<br>c.c.  | 1               | 465            | 452     | 443   | 626               | 604          | 563               | 590   | 541   | 492   | 510   | 474   | 425   | 443   | 447   | 443   | 465   |  |
|          | ſ        | Ā                      | Rate     | resp. | per<br>min.    | 1               | 20             | 21      | 23    | 23                | 27           | 29                | 32    | 35    | 38    | 40    | 42    | 44    | 44    | 43    | 44    | 45    |  |
| •        |          | 3                      | ( PA     | per.  | min.<br>litres |                 | 7-94           | 9.25    | 8.82  | 10.45             | 15-09        | 13.86             | 15.74 | 14.91 | 14.20 | 14.65 | 15.35 | 15.70 | 18-25 | 17-37 | 17-23 | 17-67 |  |
|          | . Ѕ. Н.  | 11·19 % 0 <sup>2</sup> | <br>  PA | per   | resp.<br>c.c.  | 1               | 496            | 514     | 519   | 653               | 839          | 693               | 716   | 648   | 568   | 563   | 548   | 523   | 537   | 496   | 479   | 465   |  |
|          | Ŀ        | -                      | Rate     |       |                | 1               | 16             | 18      | 17    | 16                | 18           | 20                | 22    |       |       |       |       |       |       |       | 36    |       |  |
|          |          |                        |          |       |                | Prelim. control | period breath- | ing air |       | Period of experi- | ment breath- | ing mixture       |       |       |       |       |       |       |       | -     |       |       |  |

430 J. S. HALDANE, J. C. MEAKINS AND J. G. PRIESTLEY.

•

#### ANOXÆMIA.

effect is replaced by another. This is seen in the tracings which show that the periodicity of the breathing is succeeded by a very rapid, shallow type of respiration. The serious nature of this result will become apparent after consideration of the paper on the effects of shallow breathing, and it will be sufficient to mention here the main conclusion reached in that paper, which is that shallow breathing in itself is a cause of anoxemia. Thus a very dangerous vicious circle tends to be set up. Want of oxygen in the inspired air causes shallow breathing, which in turn intensifies the anoxemia.

In seeking for an explanation of this effect of want of oxygen one must bear in mind (1) the effect of fatigue, which will be discussed in a later paper, (2) the great sensitiveness of the tissues to want of oxygen. The body is unable to store oxygen to any appreciable extent and hence the effects of low oxygen percentage in the inspired air are immediately felt by the tissues and their functional activity is greatly impaired by any interference with the oxygen supply. The grave effects of interrupting the circulation for a short time through such an organ as the kidney are well known, and it appears probable that the quickening and shallowing of the respiration when low oxygen percentages are breathed is due to impairment of the vitality of the respiratory centre, which is unable to perform its function adequately when starved of oxygen.

The above description of the respiratory effects of want of oxygen applies to the results observed on the whole. There are however individual differences. In some subjects the lowering of the threshold for  $CO_2$ and consequent hyperpnœa is a more conspicuous result than in others. In such cases the dangerous effects of want of oxygen will tend to be somewhat postponed owing to the increased efficiency of the lung ventilation and consequent efficient use of such oxygen as is present in the air breathed.

This fact would seem to afford an explanation of the much greater liability of some people than others to mountain sickness. Those who react to want of oxygen pre-eminently by shallow breathing will be more seriously affected under conditions of lowered barometric pressure than those whose reaction involves a great alteration of  $CO_2$  threshold.

Finally the tracings also show well the onset of periodic breathing when normal air is substituted for the low oxygen mixture breathed. The explanation of this phenomenon is evidently that given by Haldane and Douglas for Cheyne-Stokes breathing after forced breathing.

We wish to acknowledge the assistance we have received from the Medical Research Committee.

#### SUMMARY.

1. The respiratory response to anoxæmia is in three stages.

(a) Increased depth of respiration, and increased ventilation per minute owing to lowered  $CO_2$  threshold.

(b) Periodic breathing unless the anoxemia is considerable.

(c) Frequent and correspondingly shallow breathing.

2. Excess of  $CO_2$  (increased hydrogen ion concentration) causes a considerable and persistent increase in depth of respiration and relatively slight increase in frequency. This response is in marked contrast to the response to want of oxygen.

3. The maximum increase in lung ventilation is obtained when excess of  $CO_2$  and anoxemia are both present.