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ABSTRACT Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM).
Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory
actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene
network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated
applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a
suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis,
singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were
constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions
illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity
correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity.
In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-
Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting
steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the
PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an
irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify
parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory.
Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.

INTRODUCTION

Biochemical and gene networks are complex systems with

multiple nonlinear interactions among signaling molecules and

genes. This complexity often makes understanding and pre-

dicting network behaviors nonintuitive (1–3). One of the key

goals of systems biology is to develop tools that may lead to a

better understanding of nonlinear behaviors of biochemical and

gene networks at both the molecular and systems levels (4).

A gene and protein network can be described by a mathe-

matical model consisting of ordinary differential equations

(ODEs). Bifurcation analysis is a mathematical technique

that enables determination of the stability of a system with

respect to a parameter (5,6). Bifurcation diagrams describe

the dependence of a state variable on a continuous change in

a chosen system parameter, termed a bifurcation parameter.

A bifurcation is said to take place when there is a change in

the number or the stability of solutions of a system. For ex-

ample, steady-state solutions for the values of the dependent

variables may appear, disappear, change stability, or multiple

steady-state solutions may coexist. The coexistence of mul-

tiple steady-state solutions at a particular value of a bifur-

cation parameter is termed multiplicity (or multistability, if

the solutions are stable to small perturbations). Multiplicity

may occur with supralinear and positive feedback interac-

tions among components of a system of coupled ODEs, and

oscillatory dynamics may be sustained if a negative feedback

loop of interactions is present. Singularity theory (for review

see (7,8)) provides a systematic framework to determine how

many topologically distinct bifurcation diagrams exist in a

nonlinear dynamic system, and to partition the multidimen-

sional parameter space of the model into regions in which

different types of bifurcation diagrams exist. This informa-

tion can be used to classify control parameters, which play a

crucial role in determining system dynamics by governing tran-

sitions between qualitatively different bifurcation diagrams.

This study applies bifurcation and singularity analysis to a

relatively complex signal transduction and gene network that

underlies the induction of long-term memory (LTM) to exam-

ine model dynamics and determine control parameters. Sen-

sorimotor neuron synapses of the mollusk Aplysia have been

utilized extensively as a model system for the study of the

cellular and molecular processes underlying learning and

memory (9–13). These synapses exhibit both short- and long-

term facilitation after exposure to 5-HT. Long-term facili-

tation (LTF) requires both activation of protein kinase A

(PKA) and transcription. Molecular processes that underlie

LTF have been studied in detail (for review see (13)). LTF is

a correlate of long-term sensitization (LTS) of Aplysia
defensive withdrawal reflexes, a form of long-term memory

(LTM) (13–16). Pettigrew et al. (17) developed a mathematical
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model of biochemical processes that underlie the induction of

LTF. The model simulates experimental observations of the

time courses of activity of protein kinases essential for LTF,

specifically PKA and the MAP kinase isoform termed

extracellular-regulated kinase (ERK), after temporally spaced

or massed exposures to 5-HT. The model also simulates

induction of a gene product (Aplysia ubiquitin hydrolase, or

Ap-Uch) that is essential for LTF.

This study addresses the following questions regarding the

nonlinear features of the Pettigrew model:

1. Is a multiplicity of steady states possible?

2. What key control parameters determine the dynamics of

the system?

3. What distinct steady-state system behaviors exist?

4. What parameter values might be predicted to enhance the

induction of LTF?

5. Which system behaviors are robust?

6. Might bifurcation and singularity analysis be helpful to

design drugs to improve the induction of memory?

In analyzing the dynamics of the model, this study focuses

on the role of a positive feedback loop involving reciprocal

induction of PKA activity and Ap-uch gene expression. The

results indicate that the positive feedback loop can generate

a robust and irreversible switch between a basal steady state

of low PKA activity and gene expression, and a stimulated

steady state of high PKA activity and gene expression. A pro-

longed steady state of high gene expression might contribute

to the strengthening of synapses between neurons, and there-

fore to the induction and maintenance of LTM. Singularity

theory was used to construct classification diagrams of the

parameter space. These diagrams help identify molecular

processes that might be manipulated, perhaps pharmacolog-

ically, to enhance the induction and maintenance of LTM.

These methods of systematic analysis will also be helpful to

understand a broad class of complex biological phenomena

amenable to modeling, such as development and cellular

differentiation (18–23), or the cell cycle (3).

METHODS

The model

For this analysis, the model of Pettigrew et al. (17) was used (see Table 1).

The Pettigrew model (17) was developed to study biophysical mechanisms

that may be implicated in learning and memory. Analysis of this model

shows that it does not exhibit multiplicity of solutions (the coexistence of

multiple steady-state solutions) with the parameter values previously pub-

lished in Pettigrew et al. (17). A goal of this study is to illustrate a meth-

odology for finding various types of bifurcation diagrams and their location

in the parameter space. By altering four parameters, i.e., kApSyn, kApSynBasal,

Kpka, and Kerk (new values given in Table 1), the model exhibits multiplicity

and, therefore, a more diverse set of bifurcation diagrams. With these four

new parameter values, the model continues to respond to stimuli as in

Pettigrew et al. (17).

The key biochemical cascades represented by the model are illustrated in

Fig. 1. Two transcription factors, TF-1 and TF-2, regulate expression of

Ap-uch. When neither TF is phosphorylated, TF-2 represses Ap-uch and TF-

1 has no effect. After exposure to 5-HT, ERK phosphorylates TF-2, relieving

repression by TF-2, and PKA phosphorylates TF-1, allowing TF-1 to induce

Ap-uch. (For further description of the model development and its vali-

dation, see (17).) Pettigrew et al. (17) assumed specific molecular identities

for the two transcription factors. TF-1 was assumed to be the cAMP response

element binding protein (CREB1), and TF-2 was assumed to be CREB2.

However, recent results (24) suggest that induction of Ap-uch by 5-HT

may not be mediated directly by CREB1 and CREB2, but rather by as yet

unidentified transcription factors. Nevertheless, Ap-uch induction is regu-

lated via the cAMP signaling pathway (25), and [cAMP] elevation activates

both PKA and ERK in neurons (26,27). Therefore, it remains plausible that

PKA and ERK induce Ap-uch by phosphorylating transcription factors, as

the model assumes (Fig. 1).

The model consists of a set of 15 nonlinear differential equations (Table

1): 12 ODEs (Eqs. 1 and 5–15) and three time-delay differential equations

(DDEs) (Eqs. 2–4). The dynamics of the model can be described by the time

course of the activity of the catalytic subunit of PKA (heretofore referred

to as PKA activity). The model represents three biochemical pathways

essential for the induction of LTF. The first pathway is a positive feedback

loop in which PKA phosphorylates the transcription factor TF-1, which in

turn enhances the expression of the gene coding for Ap-Uch. Ap-Uch pro-

motes degradation of the regulatory subunit of PKA, releasing a free, active

catalytic subunit. The resulting increase in PKA activity closes the positive

feedback loop. The second pathway is the cascade in which 5-HT activates

ERK, leading to phosphorylation of TF-2, and reinforcing induction of

Ap-uch by TF-1. In the third pathway, translation of a hypothetical protein,

denoted REG, is induced by 5-HT. REG prolongs PKA activity for ;1–3 h

by preventing free catalytic subunit from reassociating with the regulatory

subunit. This intermediate-term prolongation of PKA activity contrasts with

the long-term activation of PKA by Ap-Uch, which lasts for .20 h.

In the model, long-term PKA activity is assumed to correlate with LTM.

This assumption appears plausible for the following reasons. Inhibition of

PKA after 5-HT exposure blocks LTF, which is a correlate of LTM (28).

Also, Ap-Uch mediates long-term PKA activation (28), and inhibition of

Ap-Uch function or expression blocks LTF (25).

Methods of predicting nonlinear
features of the model

The 15 differential equations (Eqs. 1–15, Table 1) can be represented as a

vector equation,

dx
dt

¼ fðx; l; t; PÞ; (16)

with initial conditions: xðt ¼ 0Þ ¼ x0.

In Eq. 16, f 2 R15 is a 15-dimensional vector of nonlinear functions;

x ¼ ([cAMP], [R], [C], [RC], [REG], [pREG], [mRNAREG], [Raf],

[MAPKK], [MAPKKpp], [ERK], [ERKpp], Ppka, Perk, [Ap-Uch]) 2 R15 is

the 15-dimensional vector of system variables; l is the bifurcation param-

eter; t denotes the time delay in Eqs. 2–4; and P ¼ ð. . . . . . kAp-uch; . . . ;

kApSyn; . . . ; kphos1; . . . kphos2; . . .Þ 2 R38 is the 38-dimensional vector of sys-

tem parameters other than l (i.e., the kinetic rate constants listed in Table 1).

The full parameter space of the model, R39, is defined to include all real

values for all parameters including l. However, a restricted parameter space

R38 is also defined, which does not include l, because a principle goal of

bifurcation analysis is to subdivide this restricted parameter space into re-

gions that exhibit qualitatively different dynamics when l is varied. In

practice, biochemical constraints (e.g., plausible rate constants and concen-

trations) constrain the portion of parameter space that is physiologically

relevant. The concentration of 5-HT, [5-HT], is selected as the bifurcation

parameter l because [5-HT] is an important extracellular stimulus com-

monly varied in experiments, including experiments to determine a thresh-

old for persistent PKA activation.

2310 Song et al.

Biophysical Journal 90(7) 2309–2325



TABLE 1 Long-term memory (LTM) model (17); differential equations of the LTM model and standard parameter values

Differential equations of the LTM model and standard parameter values

Differential equations for modeling PKA activity after exposure to 5-HT and hydrolysis of PKA R-subunits by Ap-Uch:

d½cAMP�
dt

¼ 3:6
½5-HT�

½5-HT�1 14
� ð½cAMP� � 0:06Þ; (1)

d½R�
dt

¼ Vsyn 1 kfpka½RC�½cAMP�2 � kbpka½R�½C� � kAp�Uch½R�ð½Ap-Uch�
t
� Ap-UchbasalÞ � kdpka½R�; (2)

d½C�
dt

¼ Vsyn 1 kfpka½RC�½cAMP�2 � kbpka½R�½C�1 kAp�Uch½RC�ð½Ap-Uch�
t
� Ap-UchbasalÞ � kdpka½C�; (3)

d½RC�
dt

¼ kbpka½R�½C� � kfpka½RC�½cAMP�2 � kAp�Uch½RC�ð½Ap-Uch�
t
� Ap-UchbasalÞ � kdpka½RC�; (4)

where

PKAact ¼ ½C�; and kbpka ¼
kbaspka

11 ½pREG�=Kreg

:

Differential equations for modeling REG and pREG dynamics:

d½REG�
dt

¼ ktranslation½mRNAREG�ERKact � vdreg

½REG�
½REG�1Kdreg

� �
� kdsm½REG�; (5)

d½pREG�
dt

¼ vrphosERKact

½REG� � ½pREG�
½REG� � ½pREG�1Krphos

� �
� vdreg

½pREG�
½REG�1Kdreg

� �
� kdsm½pREG�; (6)

d½mRNAREG�
dt

¼ vmREG � vdmreg½5-HT� ½mRNAREG�
½mRNAREG�1Kdmreg

� kdmreg½mRNAREG� (7)

.
Differential equations for modeling the Raf/MEK/ERK pathway:

d½Raf�
dt

¼ �kf;Raf ½5-HT�½Raf�1 kb;Raf ½Raf
p� where ½Raf

p� ¼ ½Raftot� � ½Raf�; (8)

d½MAPKK�
dt

¼ �kf;MAPKK½Raf
p� ½MAPKK�
½MAPKK�1KMK

1 kb;MAPKK

½MAPKK
p�

½MAPKK
p�1KMK

; (9)

d½MAPKK
pp�

dt
¼ kf;MAPKK½Raf

p� ½MAPKK
p�

½MAPKK
p�1KMK

� kb;MAPKK

½MAPKK
pp�

½MAPKK
pp�1KMK

; (10)

where

½MAPKK
p� ¼ ½MAPKKtot� � ½MAPKK� � ½MAPKK

pp�:

d½ERK�
dt

¼ �kf;ERK½MAPKK
pp� ½ERK�
½ERK�1KMK

1 kb;ERK

½ERK
p�

½ERK
p�1KMK

; (11)

d½ERK
pp�

dt
¼ kf;ERK½MAPKK

pp� ½ERK
p�

½ERK
p�1KMK

� kb;ERK

½ERK
pp�

½ERK
pp�1KMK

; (12)

where

½ERK
p� ¼ ½ERKtot� � ½ERK� � ½ERK

pp�; and ERKact ¼ ½ERK
pp�1ERKbasal:

Differential equations for Ap-Uch synthesis:

d Ppka

dt
¼ kphos1PKAactð1 � PpkaÞ � kdephos1PPhosPpka; (13)

d Perk

dt
¼ kphos2ERKactð1 � PerkÞ � kdephos2PPhosPerk; (14)

d½Ap-Uch�
dt

¼ kApSyn

P2

pka

P2

pka 1K2

pka

" #
P2

erk

P2

erk 1K2

erk

� �
1 kApSynBasal � kdeg½Ap � Uch�; (15)

Model parameters and their values:

Vsyn ¼ 0.002 min�1, kfpka ¼ 105.0 min�1, kAp-Uch ¼ 0.007 min�1, Ap-Uch basal ¼ 0.10, kdpka ¼ 0.00048 min�1, t ¼ 250 min, kbaspka ¼ 12 min�1, Kreg ¼
0.00064, ktranslation ¼ 4 min�1, vrphos ¼ 1 min�1, Krphos ¼ 1.5, vdreg ¼ 0.16 min�1, Kdreg ¼ 0.0015, kdsm ¼ 0.02 min�1, vmREG ¼ 2 3 10�5 min�1, vdmreg ¼
0.00225 min�1, Kdmreg ¼ 0.01, kdmreg ¼ 3 3 10�5 min�1, kf,Raf ¼ 0.00345 min�1, kf,MAPKK ¼ 0.7 min�1, kf,ERK ¼ 0.44 min�1, kb,Raf ¼ 0.001 min�1, kb,MAPKK

¼ 0.12 min�1, kb,ERK¼ 0.12 min�1, [Raftot]¼ 0.5, [MAPKKtot]¼ 0.5, [ERKtot]¼ 0.5,KMK¼ 0.08,ERKbasal¼ 0.015, kphos1¼ 0.01 min�1, kdephos1¼ 1.5 min�1,

PPhos ¼ 0.1, kphos2 ¼ 0.005 min�1, kdephos2 ¼ 0.5 min�1, kApSyn ¼ 0.02 min�1, kApSynBasal ¼ 0.0009 min�1, Kpka ¼ 0.2, Kerk ¼ 0.004, kdeg ¼ 0.01 min�1.
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To use bifurcation and singularity theory to analyze the nonlinear

properties of this dynamic system, steady states are first obtained by setting

dx/dt ¼ 0 in Eq. 16, yielding 15 nonlinear algebraic equations

fðx; l; PÞ ¼ 0: (17)

Equation 17 does not contain the time delay t (in Eq. 16). Although t has a

significant effect on the transient dynamics of the system and might affect

the stability of some steady states, it has no effect on the existence of a

steady-state solution, or on the existence and location of limit points and

singular points in the steady-state bifurcation diagrams. Therefore, setting

the time delay t to zero does not alter the steady-state bifurcation and

singularity analysis described in this article. Hence, we simplify the steady-

state bifurcation analysis by eliminating t. We subsequently verify the pre-

dictions of the bifurcation analysis by simulation of the full model including

the time delay.

Bifurcation diagrams, singularity theory, and
classification diagrams

Two bifurcation diagrams are defined to be similar if the number, order, and

orientation of the steady-state solutions x change in an identical way as the

bifurcation parameter l is varied. Singularity theory (8,29,30) was used to

determine the regions in the restricted parameter space (not including l) that

contain similar bifurcation diagrams, by tracing the region boundaries.

Golubitsky and Schaeffer (8) showed that the boundaries consist of one of

three types of hypersurfaces: a hysteresis surface (HS), an isola surface, or a

double limit set (DLS). When the values of parameters are biochemically

constrained to a certain range (e.g., nonnegative concentrations), a fourth

type of hypersurface, a boundary limit set (BLS), subdivides the parameter

space into allowed and disallowed regions. The hypersurfaces are defined

within the full parameter space including l (Eqs. 19–22, Appendix). How-

ever, their projections into the restricted parameter space are used to subdi-

vide the restricted space into regions with qualitatively different bifurcation

diagrams. DLS surfaces only exist with bifurcation diagrams displaying five

or more steady-state solutions for specific values of the bifurcation param-

eter. The coexistence of more than three steady states was not observed in

this study, and thus, DLS surfaces do not appear to exist in the parameter

space of the present model.

Steady-state singular points or singularities are points in the full param-

eter space at which the Jacobian of the function f in Eq. 17 (see Appendix)

has a zero eigenvalue (7,8). Singular points are defined to be of codimension

n, if n�1 parameters, in addition to the bifurcation parameter, are specified

to locate the point (see Appendix). A limit point, or saddle-node bifurcation

point, is a point on a bifurcation diagram where the number of steady-state

solutions changes by two as the bifurcation parameter l is varied. A limit

point is a singular point of codimension-1 because only the bifurcation

parameter l needs to be specified to determine the point (Appendix, Eq. 18).

HS, isola, and DLS hypersurfaces are also comprised of singular points.

These singular points are of codimension-2, because, to determine the point,

two parameters (l and an additional parameter P1) are specified (Appendix,

Eqs. 19, Eqs. 21, and Eqs. 22). Column 3 of Table 2 illustrates the types of

bifurcation diagrams that exist at critical singular points on the various

boundaries (HS, isola surface, or BLS) between the regions of the restricted

parameter space. Columns 2 and 4 of Table 2 display the bifurcation

diagrams obtained by universal unfolding of these hypersurfaces, with

universal unfolding defined as perturbation away from the surface by a small

change of a parameter other than l (8,31). Unfolding HS leads to two

possible scenarios, either a monotonically dependent bifurcation diagram

with no limit point, or a hysteretic loop type bifurcation diagram (bistability)

with two limit points that coalesce on the critical hysteresis surface (HS).

Unfolding an isola surface causes an isolated branch of solutions to appear

(see Table 2, Isola1 and Isola2). Table 2 illustrates two types of isolated

branches, or isolae, i.e., elliptic and hyperbolic. Unfolding the BLS causes

the limit point of the bifurcation diagram at the feasibility boundary of the

bifurcation parameter l to move either into or away from the feasibility

range. All these unfolding scenarios are observed with the present model, as

discussed below (Results, Fig. 3).

In this study, singularity theory was applied to identify the qualitatively

different types of steady-state bifurcation diagrams (x vs. [5-HT]) exhibited

by the model of Fig. 1 (Table 1). Using two-parameter planes, curves were

constructed that represent the intersections of the planes with the hypersur-

faces HS, isola, and BLS. These curves are loci of codimension-2 points, and

are boundaries between regions that contain qualitatively distinct steady-

state bifurcation diagrams. Such a partition of a two-parameter plane into

regions of distinct bifurcation diagrams is termed a classification diagram.

For example, a classification diagram of the plane (kAp-Uch, kApSyn) provides

the types of bifurcation diagrams that may be obtained by varying the

parameters kAp-Uch and kApSyn (with all other parameters fixed).

Computational methods

An outline of the general procedure for constructing a classification diagram

is as follows (see Appendix for further details). A steady-state bifurcation

diagram is constructed to identify codimension-1 limit points (e.g., Fig. 2 A).

These limit points are used as initial points to construct a curve, or locus, of

limit points. This locus constitutes a codimension-1 diagram (e.g., Fig. 2 B).

FIGURE 1 Schematic diagram depicting the model. Serotonin (5-HT)

elevates cAMP, which binds to the PKA holoenzyme and initiates

dissociation of free catalytic (C) and regulatory (R) subunits. The C sub-

units phosphorylate the transcription factor TF-1. TF-1 then activates Ap-uch
gene expression, resulting in Ap-Uch protein synthesis. By increasing the

availability of free ubiquitin, Ap-Uch enhances degradation of R subunits to

sustain PKA activation, closing a PKA/TF-1/Ap-Uch positive feedback

loop. 5-HT also induces translation and phosphorylation of a hypothetical

protein termed REG. REG slows the reassociation of C and R subunits of

PKA, sustaining intermediate-term (1–3 h) PKA activation. 5-HT also

activates ERK (via Raf and MAPKK), and ERK then phosphorylates TF-2,

relieving TF-2’s repression of Ap-uch transcription. A basal phosphatase

activity dephosphorylates TF-1 and TF-2.
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An arc-length continuation scheme (32,33) is used to construct the curve

(locus of limit points) by linear extrapolation of two points on the curve to

determine a third point by the Newton-Raphson iteration scheme for solving

nonlinear algebraic equations (34). The codimension-1 locus contains

critical points that are of type codimension-2. The codimension-2 points are

then used as initial points for constructing a diagram of loci of codimension-

2 singularities, termed a classification diagram (e.g., Fig. 4). To construct

this diagram, the arc-length continuation scheme is applied again.

To perform a comprehensive bifurcation and singularity analysis and

locate all of the steady-state solutions, it is necessary to investigate both pos-

itive and negative ranges of the bifurcation parameter, [5-HT]. After com-

pleting the overall bifurcation and singularity analysis, the singularity analysis

can be simplified and focus on the physiologically relevant range [5-HT] $

0, as is illustrated in Figs. 5–8. The analysis, carried out on both positive and

negative values of the bifurcation parameter before simplification to physi-

ological values, is necessary to locate all steady-state solutions.

Computations were performed on a PC with a Pentium 4 processor (2 GHz).

Constructing codimension-2 diagrams required several minutes (,10 min to

generate the diagram of Fig. 2 B) and under 1 h to generate the classification

diagram of Fig. 4. The method should scale linearly for higher-order models.

RESULTS

Construction of the limit set identifies seven
distinct bifurcation diagrams

To begin to analyze the steady-state features of the model, a

bifurcation diagram was constructed (Fig. 2 A) to provide

initial codimension-1 points. The bifurcation diagram ex-

hibits multiplicity with three steady states of PKA activity

within a range of [5-HT] (0.064 , [5-HT] , 0.105), The

lower and upper branches are stable and the middle branch is

unstable. Beyond this range of [5-HT], the diagram exhibits

a single stable branch, low PKA activity for [5-HT] , 0.064,

and high PKA activity for [5-HT] . 0.105.

To further examine the steady-state solutions of the model,

the PKA/Ap-Uch positive feedback loop (see Methods) was

analyzed in greater detail. The synthesis of Ap-Uch plays a

key role in regulating the strength of the positive feedback

loop, because Ap-Uch is induced by PKA activation and

subsequently hydrolyzes the R subunits of PKA to support

long-term PKA activation. Using the two limit points (marked

by crosses) in Fig. 2 A as initial codimension-1 points, a

codimension-1 diagram was constructed in the parameter

plane of the Ap-Uch synthesis rate constant (kApSyn) versus

the bifurcation parameter [5-HT] (Fig. 2 B). To construct this

diagram, the locus of limit points, also called the limit set

(LS), was traced using an arc-length continuation scheme

(see Methods). The two crosses marked on the LS in Fig. 2 B
correspond to the two limit points in Fig. 2 A with kApSyn ¼
0.02 (standard value in Table 1). The LS in the (kApSyn,

[5-HT]) plane is a closed loop.

Six codimension-2 singular points were found on LS,

denoted in Fig. 2 B as HS1, HS2, Isola1, Isola2, BLS1, and

TABLE 2 Schematics of universal unfolding of the bifurcation diagrams of steady-state codimension-2 singular points (7,8,31)

Steady-state codimension-2

singularities applied to LTM model

Bifurcation diagram of singular

point perturbed in one direction

Bifurcation diagram at the

singular point

Bifurcation diagram of singular point

perturbed in opposite direction

Hysteresis surface(HS)

Isola 1(hyperbolic)

Isola 2(elliptic)

Boundary limit set(BLS)

x is the vector of system variables, and l is the bifurcation parameter ([5-HT] in the LTM model). (Column 1) Types of hypersurfaces in LTM model. (Column 3)

Bifurcation diagrams at the codimension-2 singular points. (Columns 2 and 4) The corresponding unfolded bifurcation diagrams resulting from a small perturbation

of any parameterP1 other thanl. The direction of the perturbation (increase versus decrease ofP1) is opposite in columns 2 and 4. Depicted are steady states that are

stable (solid lines) and unstable (dashed lines) as well as bifurcation points (solid circles). The boundary limit set for the LTM model is at l([5-HT]) ¼ 0.
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BLS2. These singular points divide the range of kApSyn into

seven intervals labeled 1–7 in Fig. 2 B. Each interval rep-

resents a distinct region of parameter space that is described

by a different bifurcation diagram (see Fig. 3).

Bifurcation diagrams in each of these seven intervals were

characterized. In interval 1 of Fig. 2 B where kApSyn is less

than the critical value of HS1, PKA activity is a monotonic

function of [5-HT] (bifurcation diagram in panel 1 of Fig. 3),

because no limit point exists in this interval. PKA activity is

at a very low level at [5-HT] ¼ 0. In interval 2 in which

kApSyn is greater than HS1, multiplicity appears. The bifur-

cation diagram exactly at the HS1 point is schematized in

Table 2 (HS). After crossing HS1, the bifurcation diagram

exhibits two limit points, a hysteresis loop, and an interval of

[5-HT] with three steady states of PKA activity. A diagram

from interval 2 is shown in panel 2 of Fig. 3, in which a

hysteresis loop is illustrated by the transitions between the

two branches of stable steady-state solutions, which occur

upon reaching the two limit points.

Upon increasing kApSyn to intervals 3 and 4, another hys-

teresis surface point, HS2, is crossed. Two new limit points,

and a narrow range of multiplicity between them, appear at

negative [5-HT] (panels 3 and 4 of Fig. 3, insets). The bifur-

cation diagrams in panels 3 and 4 of Fig. 3, with four coex-

isting limit points, are of the mushroom type (8). In interval 4

(see Fig. 2 B, inset and the segment of the LS between BLS2

and HS1), a line with fixed kApSyn intersects the LS curve at

four points, only one of which is at positive [5-HT]. In the

corresponding bifurcation diagram (panel 4 of Fig. 3), only

one limit point is at positive [5-HT]. By further increasing

kApSyn in Fig. 2 B, HS1 and HS2 merge at the point (d:

Isola1). Here, an isola hypersurface intersects the (kApSyn,

[5-HT]) plane. The bifurcation diagram at Isola1 is illustrated

in Table 2 (Isola1, hyperbolic), in which the two branches of

the mushroom merge at the value of [5-HT] at Isola1. The

number of limit points decreases from four to two. Upon

crossing Isola1, kApSyn goes to intervals 5 and 6. An isola of

steady-state solutions appears (panels 5 and 6 of Fig. 3). For

those values of [5-HT] at which three steady states of PKA

activity coexist, the lower and upper states are stable whereas

the middle state is unstable (5–8). However, with an isola,

the two stable steady-state branches are not connected to

each other. Therefore, the system cannot pass from one

branch to the other through a hysteresis mechanism or loop.

However, isolae demonstrate a mechanism of irreversible,

nonhysteretic transition between steady states. For example,

suppose in either panel 5 or 6 of Fig. 3 that the system is

initialized in the lower steady state. Then, upon increasing

[5-HT], the lower steady state will disappear (right boundary

of isola) and the system will transit to the upper steady state.

The transition is irreversible in that if [5-HT] is then

decreased to zero, the upper steady state remains stable, and

PKA activity remains high. However, a brief but large dy-

namic perturbation of system variables or parameters might

cause a state transition in either direction by forcing the

system out of the basin of attraction of either steady state.

With a further increase of kApSyn, the isola shrinks to a

point at Isola2 (Fig. 2 B, corresponding bifurcation diagram

in Table 2 (Isola2, elliptic)). By crossing Isola2 to interval 7,

the isola disappears, leaving only a unique steady state of

high PKA activity (panel 7 of Fig. 3).

In addition to the effects of the HS and isola points (Fig. 2

B) on the model behavior, the effects of the boundary limit

set (BLS) points also need to be considered to characterize

the complete set of steady-state behaviors of the model. The

BLS is the hypersurface in the full parameter space of limit

points located at zero [5-HT] (i.e., at the physically mean-

ingful boundary of [5-HT]). Fig. 2 B shows two codimension-

2 singular points on the LS loop, denoted BLS1 and BLS2, at

FIGURE 2 Construction of codimension-1 diagram. (A) Bifurcation

diagram of PKA activity versus [5-HT]. Limit points are marked by cross

points. For this and subsequent figures, parameter values are as in Table

1 unless noted otherwise. (B) Codimension-1 diagram in the ([5-HT],

kApSyn) plane illustrating the limit set (LS), loci of limit points (black curve).
The two cross points on LS correspond to the two limit points in A with

kApSyn ¼ 0.02 (value in Table 1) (green dash-dot line). Six codimension-2

singular points are denoted by red dots marked a–f and labeled HS1, HS2,

Isola1, Isola2, BLS1, and BSL2. These points divide the kApSyn axis into

seven intervals marked 1–7 (in blue). Dotted lines show values of kApSyn

where codimension-2 singular points are. The inset expands the region of

Isola1 and BSL1 and shows interval 4 on the kApSyn axis.
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which the BLS hypersurface intersects the (kApSyn,[5-HT])

plane. At BLS1, one limit point in the ðx; ½5-HT�Þ bifurca-

tion diagram is at zero [5-HT] (see BLS in Table 2). BLS1

divides the kApsyn interval containing a mushroom-type bifur-

cation diagram into two subdomains, intervals 3 and 4 in Fig.

2 B. Typical diagrams in these intervals are illustrated in

panels 3 and 4 of Fig. 3, respectively. Upon unfolding BLS1

(i.e., perturbing kApSyn slightly above or below BLS1), either

one steady-state solution (panel 3) or three solutions (panel

4) appear at [5-HT] ¼ 0. At BLS2, the right limit point of the

isola is at zero [5-HT], while the other limit point lies in

negative [5-HT] (not shown). In Fig. 2 B, BLS2 divides the

isola interval into two subdomains, intervals 5 and 6. Typical

bifurcation diagrams are shown in panels 5 and 6 of Fig. 3,

respectively. In Fig. 2 B, the curve that connects BLS2 and

HS1 represents a threshold of 5-HT stimulation. If [5-HT]

remains to the right of this curve, then the lower steady state

of PKA activity no longer exists (the system is to the right of

the lower limit points in Fig. 2 A or panels 2–5 of Fig. 3). The

system will transit to the only stable state, of high PKA

activity.

It is evident from the above that the LS in Fig. 2 B plays a

key role in bifurcation analysis. The LS enables rapid deter-

mination of all qualitatively different bifurcation diagrams of

PKA activity versus [5-HT] that can be obtained at different

values of a system parameter (kApSyn). Furthermore, the LS

allows for the identification of codimension-2 singular points

(HS, isola, BLS points in Fig. 2 B). These points, and the

associated hypersurfaces, are needed to characterize the effect

of changing two or more parameters on the dynamics of the

system. Specifically, loci of these codimension-2 points in

the plane of any two parameters P1 and P2 (in the parameter

FIGURE 3 Typical bifurcation diagrams of PKA activity versus [5-HT] at the values of kApSyn within the seven different intervals marked 1–7 of Fig. 2 B.

Insets show expanded view of negative [5-HT] axis for 3, 4, and 6. Critical points are marked by squares. Arrows depict direction of trajectory mapped onto the

bifurcation diagram.
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space P) can be constructed. A classification diagram of

these loci subdivides the plane into regions, each of which

manifests a qualitatively different type of (x,l) bifurcation

diagram.

The loci of six codimension-2 singular points
partition a key classification diagram into
seven regions

In addition to kApSyn, a second parameter that determines the

strength of the PKA/Ap-Uch positive feedback loop is

kAp-Uch. The rate constant kAp-Uch describes degradation of

the R subunit of PKA by Ap-Uch, enhancing the catalytic (C)

activity of PKA (Fig. 1, Eqs. 2–4 in Table 1). Therefore, a

classification diagram in the (kApSyn,kAp-Uch) plane, illustrat-

ing qualitative changes in dynamics as these parameters are

varied, is likely to provide significant insight into regulation

of the model’s behavior. By continuation (varying kAp-Uch,

see Methods) of the six codimension-2 singular points (in

Fig. 2 B) in the (kApSyn,kAp-Uch) plane, this classification

diagram of Fig. 4 was constructed. At any point on a

codimension-2 curve, the bifurcation diagram of PKA activ-

ity versus [5-HT] is qualitatively like that of the correspond-

ing codimension-2 singular point in Table 2. For example, at

any point on the Isola1 curve, the bifurcation diagram will

show an isola pinching off from another branch of stable

solutions (Table 2). At any point within a region between

curves in Fig. 4, the bifurcation diagram is qualitatively like

the corresponding diagram in Fig. 3. For example, through-

out region 2 of Fig. 4, the bifurcation diagram is like that of

panel 2 of Fig. 3, with two limit points and a hysteresis in-

terval of [5-HT] between the limit points. Three steady states

will be present within this [5-HT] interval, and only one

steady state will be present for all other values of [5-HT]. The

specific diagrams of Fig. 3 lie along the line kAp-Uch ¼ 0.007

min�1 in Fig. 4.

Only a subset of bifurcation diagrams is present
for physiologically relevant 5-HT concentrations

By using the loci of codimension-1 singular points (LS in

Fig. 2 B), different bifurcation diagrams (Fig. 3) can be

derived and insights can be obtained into the ways in which

these diagrams transit between each other via codimension-2

singular points (Table 2). Loci of these codimension-2 points

partition classification diagrams (Fig. 4) into regions with

distinct bifurcation diagrams. Analogous diagrams exist for

any two parameters other than [5-HT]). These results were

derived allowing [5-HT] to vary over negative, zero, and

positive values. Physiologically, only nonnegative [5-HT] is

relevant. Can the portions of bifurcation diagrams at negative

[5-HT] be neglected and a simplified analysis derived that

focuses on physiological significance?

To address this question, the seven bifurcation diagrams

of Fig. 3 were further inspected. By neglecting the portions

of diagrams with negative [5-HT], the diagrams can be

reclassified into four types. In panel 1 of Fig. 3, the PKA

activity exhibits a unique, monotonically increasing function

for [5-HT] $0, but because the PKA/Ap-Uch positive

feedback is weak (low kApSyn), PKA activity remains low. In

panels 2 and 3 of Fig. 3, PKA activity manifests three steady-

state values within a positive range of [5-HT]. In panels 4

and 5 of Fig. 3, PKA activity manifests three steady states

within a range that includes [5-HT] ¼ 0. In panels 6 and 7 of

Fig. 3, a unique steady state again exists, but because the

PKA/Ap-Uch positive feedback is strong (high kApSyn), PKA

activity is high even at zero [5-HT]. These bifurcation

diagrams with [5-HT] $0 are plotted in Fig. 5. Fig. 5, A–D,

corresponds to panels 1–7 of Fig. 3 as follows: Fig. 5 A to

panel 1; Fig. 5 B to panels 2 and 3; Fig. 5 C to panels 4 and 5;

and Fig. 5 D to panels 6 and 7.

There are three codimension-2 singular points with either

positive or zero [5-HT] in Fig. 2 B: HS1, BLS1, and BLS2.

These three points divide the range of kApSyn into four

intervals, a, b, c, and d. The intervals a–d correspond to the

intervals 1–7 of Fig. 2 B as follows: a to 1; b to 2 and 3; c to 4

and 5; and d to 6 and 7. The corresponding bifurcation

diagram in interval a, below HS1, is shown in Fig. 5 A.

Interval b, bounded by HS1 and BLS1, has the bifurcation

diagram shown in Fig. 5 B. In interval b, a line with fixed

kApSyn will intersect the LS in Fig. 2 B at two points for

[5-HT] $ 0. These points correspond to the two limit points

in the bifurcation diagram shown in Fig. 5 B (LP1 and LP2).

FIGURE 4 Classification diagram constructed by the loci of six

codimension-2 singular points. The (kApSyn, kAp-Uch) plane is divided into

seven regions, marked 1–7, by curves that are continuations of the six

codimension-2 singular points in Fig. 2 B (blue, hysteresis surface (HS);

black, boundary limit set (BLS); red, Isola). Each region (1–7) with kAp-Uch

¼ 0.007 contains a qualitatively different type of bifurcation diagram of

PKA activity versus [5-HT] corresponding to the diagrams in Fig. 3, 1–7,

respectively. Region 4 is very small, and an inset (above main figure) is

required for its visualization.

2316 Song et al.

Biophysical Journal 90(7) 2309–2325



In interval c of kApSyn, bounded by BLS1 and BLS2, the

bifurcation diagram corresponds to Fig. 5 C. A line with

fixed kApSyn in Fig. 2 B intersects the LS at only one point for

[5-HT] $ 0, and the corresponding bifurcation diagram in

Fig. 5 C also shows one limit point. In interval d, with kApSyn

above BLS2, the bifurcation diagram corresponds to Fig. 5 D
and has no limit point for [5-HT] $ 0.

The bifurcation diagram in Fig. 5 B illustrates a hysteretic

loop between two limit points. Such a structure is termed a

reversible switch or toggle switch, because alterations in

[5-HT] can carry the system to the left or right of both limit

points, inducing transitions of PKA activity between the upper

and lower steady states. This multiplicity is termed bistability

since the upper and lower solutions are stable whereas the mid-

dle solution is unstable. The limit point with larger [5-HT],

LP1, defines a threshold of [5-HT] required to induce high

PKA activity. Physiologically, such a threshold might act as

a filter, by which a weak 5-HT stimulus can be regarded as

noise and neglected. A saturation of PKA activity was also

observed in this bifurcation diagram for [5-HT] . ;0.16.

Saturation might help to protect neurons against excessive

gene induction and energy expenditure in response to fre-

quent stimuli.

Although Fig. 5 loses part of the detailed information about

how these bifurcation diagrams originate (Fig. 3) and transit

between each other, it is derived from the overall bifurcation

and singularity theory, and focuses on the physiologically

relevant concentrations of 5-HT. A classification diagram

similar to Fig. 4, but restricted to [5-HT] $ 0, can be

constructed (Fig. 6) by continuing the codimension-2

singular points of Fig. 2 B that have nonnegative [5-HT]

(HS1, BLS1, and BLS2) in the kApSyn-kAp-Uch plane. Regions

a–d bounded by the loci of these singular points have the

bifurcation diagrams illustrated in Fig. 5, A–D, respectively.

Bifurcation analysis reveals a robust
irreversible switch

The type of bifurcation diagram is largely determined by the

strength of the positive feedback loop in which PKA activity

and Ap-uch expression reciprocally enhance each other (Fig.

1). Whereas Fig. 5 B displays a bifurcation diagram that is

analogous to a reversible switch (kApSyn ¼ 0.015), increasing

the strength of the positive feedback generates a bifurcation

diagram analogous to an irreversible switch (Fig. 5 C, kApSyn

increased to 0.03). For Fig. 5 C, the system switches from the

off-state (low PKA activity) to the on-state of high activity

FIGURE 5 Bifurcation diagrams of PKA activity versus

[5-HT] for nonnegative [5-HT]. (A) Unique steady-state

branch of low PKA activity for kApSyn ¼ 0.0022. (B)

Bistability with a reversible switch for kApSyn ¼ 0.015. (C)

Bistability with an irreversible switch and three steady

states at [5-HT] ¼ 0 for kApSyn ¼ 0.03. (D) Unique steady-

state branch of high PKA activity for kApSyn ¼ 0.1.

FIGURE 6 Simplified codimension-2 classification diagram for nonneg-

ative [5-HT] in the (kApSyn, kAp-Uch) plane. The plane is divided into four

regions (a–d) by curves that are continuations of three codimension-2

singular points; HS1, BLS1, and BLS2 (Fig. 2 B). The solid circles (at

kAp-Uch ¼ 0.007) in each region correspond to the bifurcation diagrams of

PKA activity versus [5-HT] shown in Fig. 9 A.
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upon crossing the limit point LP where the off-state ceases to

exist. However, because only one limit point exists for non-

negative [5-HT], the system remains at high PKA activity if

[5-HT] is then reduced to zero. In the classification diagram

of the (kApSyn, kAp-Uch) plane (Fig. 6), the reversible and

irreversible switches lie within regions b and c, respectively.

At first glance, it might appear that the irreversible switch

originates from the broken hysteretic loop of Fig. 5 B. How-

ever, the analysis indicates that the irreversible switch orig-

inates from an isola bifurcation (Figs. 3 and 4), since interval

5 of kApSyn in Fig. 2 B, where the isola exists, is much larger

than interval 4, with the broken hysteretic loop. If the pos-

itive feedback is very strong, the bifurcation diagram of PKA

activity versus [5-HT] again manifests a unique steady state,

with high PKA activity even at zero [5-HT] (Fig. 5 D). This

would be analogous to an unphysiological state of constant

kinase overactivity.

In the classification diagram of Fig. 6, region c, which

corresponds to the irreversible-switch bifurcation diagram, is

relatively large. This observation suggests that, generically,

the irreversible switch will be preserved for small parameter

variations. However, the (kApSyn,kAp-Uch) plane is only one of

the possible slices through the restricted parameter space.

Does the irreversible-switch region retain substantial size if

the parameter space is examined using different parameters?

To address this question, the (kphos1,kphos2) parameter plane

was used to construct an analogous classification diagram

(Fig. 7) (kphos1 is the rate constant with which PKA phos-

phorylates TF-1; kphos2 is the rate constant with which ERK

phosphorylates TF-2). Although Figs. 6 and 7 appear some-

what different, their essential characteristics are similar. In

both figures, one hysteretic surface (HS1) and two boundary

limit sets (BLS1 and BLS2) divide the plane into four

regions that correspond to the topologically distinct bifurca-

tion diagrams in Fig. 5, A–D. As in Fig. 6, the region

corresponding to the irreversible switch (region c in Fig. 7)

remains relatively large. The other regions a, b, and d also

remain of substantial size. This result strengthens the con-

clusion that the irreversible switch, as well as the dynamics

represented in the other regions, are robust to small param-

eter variations.

To further assess the robustness of the irreversible switch,

the effects of some large parameter changes on region c,

Figs. 6 and 7, were examined. Fig. 8 A illustrates the

consequences of doubling either kphos1 or kphos2. It is evident

that the size of region c decreases somewhat upon doubling

kphos1 or kphos2. The shift of the BLS2 boundary to the left is

more significant than that of BLS1. However, the region is

still substantially large. In particular, when kAp-Uch is high, a

large range of kApSyn generates an irreversible switch. Fig.

8 B exhibits the consequences of doubling either kAp-Uch or

FIGURE 7 Simplified codimension-2 classification diagram for nonneg-

ative [5-HT] in the (kphos1, kphos2) plane. The parameter plane is divided into

four regions, marked a–d, by curves that are continuations of three

codimension-2 singular points; HS1, BLS1, and BLS2 (Fig. 2 B).

FIGURE 8 The size and location of the irreversible-switch domain,

shown in Figs. 6 c and 7 c, can be altered by parameter values. (A) Effects of

doubling kphos1 or kphos2 on the boundaries of the domain, BLS1 and BLS2.

Depicted are kphos1 ¼ 0.01 and kphos2 ¼ 0.005 (default values) (solid curves);

kphos1 doubled to 0.02 (dotted curves); kphos2 doubled to 0.01 (dashed
curves). (B) Effects of doubling kApSyn or kAp-Uch. Depicted are default

values: kApSyn ¼ 0.03 and kAp-Uch ¼ 0.007 (solid curves); kApSyn doubled to

0.06 (dotted curves); and kAp-Uch doubled to 0.014 (dashed curves).
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kApSyn. Increasing kApSyn does not significantly alter the

size of the irreversible switch region bounded by BLS1

and BLS2. Increasing kAp-Uch can considerably enlarge the

irreversible switch domain. These results illustrate that the

irreversible switch exists in a substantial region of parameter

space, and is robust to large parameter changes. This robust-

ness suggests that the irreversible switch mechanism might

be observed to function in vivo.

Simulations verify steady-state
bifurcation analysis

The above bifurcation analyses do not consider the time

delay t (Eq. 16) in the original model of Fig. 1. The presence

of a time delay cannot eliminate any of the steady states in

Figs. 2–8. However, a delay can affect the dynamic behavior

as the system evolves toward steady states, and may alter

their stability. Therefore, it is important to complement the

steady-state analyses with simulations in which the system is

initially far from steady state.

Four distinct steady-state bifurcation diagrams are plotted

in Fig. 9. As kApSyn is increased, a monotonic steady state of

low PKA activity (kApSyn ¼ 0.0022) changes to a hysteretic

loop with two limit points and three steady states of PKA

activity between these points (kApSyn ¼ 0.021). At higher

kApSyn (0.03), an irreversible switch is obtained, with only

one limit point at positive [5-HT] and three steady states at

[5-HT] ¼ 0. At yet higher kApSyn (0.1), only one steady state

exists, with high PKA activity. These four bifurcation curves

correspond to the four regions of Fig. 6 and are marked in

Fig. 6 by the dots on the line kAp-Uch ¼ 0.007 min�1.

Fig. 9, B–E, illustrate simulations of the model (Table 1)

with the time delay (t ¼ 250 min). By applying a long (100

h) stimulus, these simulations verify the stability of the

steady states in Fig. 9 A. With kApSyn ¼ 0.0022, 100 h of 10

mM 5-HT stimulation elevates PKA activity to a plateau

(Fig. 9 B). The activity returns to its baseline rapidly after the

stimulus ends, and this baseline corresponds to the lowest

steady state in Fig. 9 A with [5-HT] ¼ 0. With kApSyn ¼
0.021 (the reversible switch bifurcation diagram in Fig. 9 A),

similar dynamics to Fig. 9 B are observed (Fig. 9 C). How-

ever, after the same 5-HT stimulation, PKA activity slowly

returns to the steady-state value (in Fig. 9 A with [5-HT] ¼ 0,

kApSyn ¼ 0.021). With kApSyn ¼ 0.03 (the irreversible switch

bifurcation diagram in Fig. 9 A), a prolonged stimulus of 10

mM 5-HT induces a transition to a high, stable level of PKA

activity. This state remains stable when [5-HT] returns to 0

mM at t ¼ 100 h, and PKA activity is permanently locked in

a high state (Fig. 9 D). Finally, with very strong positive

feedback (kApSyn ¼ 0.1) (Fig. 9 E), PKA activity converges

to the highest stable state of Fig. 9 A even with [5-HT] fixed

at 0 mM.

The model (Table 1) contains three delay differential equa-

tions (DDEs) (Eqs. 2–4). To locate the steady-state solutions,

limit points, and singular points, the model in vector form

(Eq. 16) was reduced to the algebraic system (Eq. 17) with-

out time delay. Time delays do not alter the existence of a

steady state, or the locations of codimension-1 and -2 steady-

state singular points (35). The focus of this article is to use

steady-state singularity analysis to compute the singular points

and construct classification diagrams of parameter space to

determine the regions in which different steady-state bifur-

cation diagrams exist. This analysis is invariant to the pres-

ence of a time delay.

Analyses of DDEs and ODEs do differ in terms of the

procedure to determine the stability of a steady state. Time

delays may destabilize a steady state under certain condi-

tions. In this study, we did not systematically investigate how

the time delay affects the stability of steady states through

analysis of the eigenvalues of linearized DDEs. Instead, we

verified the stability of several key steady-state solutions on

the different bifurcation diagrams in Fig. 9 A by simulation

of the model using different values of t. For example, we

FIGURE 9 Dynamic simulations of full LTM model. (A) Typical

examples of four qualitatively different steady-state bifurcation diagrams of

PKA activity versus [5-HT] ($0) are plotted together. These diagrams

correspond to the black dots in Fig. 6. (B–E) Time courses of four

simulations with 100 h of 10 mM 5-HT stimulation beginning at t ¼ 0.

Parameter values correspond to the four bifurcation diagrams in A.
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investigated the stability of the upper steady-state branch of

the irreversible switch at [5-HT] ¼ 0 (with kApSyn ¼ 0.03) in

Fig. 9 A. A delay equal to or smaller than that used by

Pettigrew et al. (17) (t# 250 min) has a negligible impact on

the transients as the system converges to the stable steady

state. Increasing the delay 20-fold to 5000 min causes the

system to converge to the steady state by way of damped oscil-

lations with small amplitude. With yet a longer time delay

(10,000 min), the amplitude of the damped oscillation

increases, but the stability is still not altered. Similar results

were found for the lower steady-state branch of the irre-

versible switch (with kApSyn ¼ 0.03) in Fig. 9 A. The middle

steady-state branch is unstable, therefore it cannot be reached

with transient simulations. We also examined the stability of

steady-state solutions of the three other bifurcation diagrams

in Fig. 9 A and found that the stability is not altered by

time delays as large as 5000 min. Therefore, we conclude that

physiologically reasonable time delays do not alter the

stability of the steady states in the parameter space that we

investigated.

By applying pulsed stimulation protocols, which are often

implemented experimentally (27,28), simulations were per-

formed in the parameter regimes of the reversible switch

(kApSyn ¼ 0.021) and irreversible switch (kApSyn ¼ 0.03)

(Fig. 10). After five pulses of 5-HT (10 mM for 5 min, with

an interstimulus interval of 20 min), PKA activity is strongly

activated at ;24 h in both cases (Fig. 10 A). However, PKA

activity gradually drops to its baseline in the reversible switch

case after removing 5-HT, whereas PKA activity remains at

high level in the irreversible switch case (Fig. 10 B). After

three pulses of 5-HT, PKA activity is only slightly and

briefly elevated in both cases (not shown). Thus, three pulses

of 5-HT are subthreshold, whereas five pulses cross the thresh-

old for long-term PKA activation. Empirically, five pulses of

5-HT, but not three, induce long-term PKA activation (36),

as well as LTF (10,37). In vivo, four or five spaced shocks to

Aplysia induce long-term sensitization (LTS) of withdrawal

reflexes, whereas three shocks do not (11). These observa-

tions suggest the threshold stimulus duration for long-term

PKA activation (five pulses) corresponds to a threshold for

the formation of LTS, a simple form of LTM.

For the value of kApSyn (0.021) corresponding to the

reversible switch, the simulation protocol of Fig. 10 was

repeated, varying the amplitude of the 5-HT stimulus. These

simulations illustrated a dynamic threshold for stimulus ampli-

tude at ;7.5 mM [5-HT]. This stimulus is the minimum

amplitude to induce high PKA activity by using the five-

pulse stimulation protocol. However, the steady-state thresh-

old for PKA activity in Fig. 9 A is just above a 5-HT stimulus

of ;0.106 mM. This steady-state threshold is the minimal

stimulus amplitude to induce high PKA activity by contin-

uous 5-HT application or very long stimulus duration. A

simulation with [5-HT] held at 0.15 mM, slightly above the

steady-state threshold, showed that to induce high PKA

activity, ;4500 min of stimulation was required.

DISCUSSION

Analyses with parameters unconstrained, and
with parameters restricted to physiological
ranges, are important for characterizing the model

The classification diagram of parameter space in Fig. 6 is a

simplified version of Fig. 4 that considers only the three

codimension-2 singular points for [5-HT] $ 0 in Fig. 2 B. It

might appear that if analysis focuses on physiologically

relevant parameter values, a subset of the singular points may

suffice to classify parameter space. However, for a complete

analysis it is necessary to investigate both the positive and

negative ranges of the bifurcation parameter [5-HT]. This

analysis is based on locating the limit points of the model,

some of which are at negative [5-HT] (Fig. 2 B), to char-

acterize the possible bifurcation diagrams. The limit points

are used to locate the codimension-2 singular points (Fig. 2

B), which mark the boundaries between various types of

FIGURE 10 Time courses of PKA activity. (A) Twenty-five hours during

and after five pulses of 5-HT (10 mM for 5 min, interstimulus interval of 20

min). The time courses correspond, respectively, to the values of kApSyn for

the reversible (0.021) and irreversible (0.03) switches in Fig. 9 A. (B) Same

as A, except continued for 1000 h.
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bifurcation diagrams (Fig. 3). In our analysis, most of these

singular points are at negative [5-HT] (Fig. 2 B). Only after

identifying these points, and the intervals between them, can

we classify the different types of bifurcation diagrams and

construct specific examples (Fig. 3). If only positive values

of the bifurcation parameter are examined, we risk missing a

boundary between regions in the full classification diagram

(Fig. 4), as well as incorrectly identifying the transitions

between them (see Table 2).

For example, examining negative [5-HT] allows us to

locate the BLS2 limit point. BLS2 represents the boundary

between regions c and d in the classification diagram (Fig. 6)

corresponding to the bifurcation diagrams of the irreversible

switch type (Fig. 5 C) and monotonic type (Fig. 5 D),

respectively. The irreversible switch is a potential mecha-

nism for the induction or maintenance of LTM. In addition,

without the analysis with negative [5-HT], it is not possible

to establish that the bifurcation diagrams containing an irre-

versible switch (Fig. 5 C, corresponding to both intervals 4

and 5 of kApSyn in Fig. 2 B) mainly originate from a broken

isola bifurcation, and not from a broken hysteretic loop. The

origin of the irreversible switch can be observed from Figs.

2 B and 4, in which interval or region 5 (corresponding to

the isola bifurcation diagram in Fig. 3, panel 5) is large,

whereas interval or region 4 (corresponding to the hystere-

tic bifurcation diagram in Fig. 3, panel 4) is small (see Fig.

2 B, inset).

Bifurcation analysis and simulation complement
each other

Simulation is essential to study the temporal evolution of a

model, whereas bifurcation analysis provides a steady-state

view. These two methods of analysis complement each other,

as illustrated by comparing the simulations of Figs. 9, B–E,

and 10 with the bifurcation diagrams of Fig. 9 A. Simulations

with the full model (Table 1) including the time delay t are

consistent with steady-state features of bifurcation diagrams

derived without t. This comparison emphasizes the necessity

of performing both steady-state analysis and simulations to

understand the complex interactions within a biochemical

network. Bifurcation analysis systematically characterizes the

parameter space to determine regions that generate qualita-

tively different steady-state or oscillatory solutions. For

complex models, this analysis is necessary, because it is com-

putationally impractical to characterize the dynamics by a

very large number of random or systematic simulations

throughout the multidimensional parameter space. In con-

trast, simulations can generate time courses of system variables

that provide detailed information on how the variables

respond to stimuli and interact with each other. Simulations

also provide insights into the methods that may be used to

reach steady states (e.g., by determining the minimum stim-

ulus amplitude and duration required to reach a specific

steady state).

Irreversible switch dynamics may contribute to
the formation of LTM

Irreversible switches have been suggested to be important for

cellular differentiation and development (18–23); entry into

mitosis in the cell cycle (3); ligand-induced autocrine growth

factor signaling (38); Sonic Hedgehog signaling (39); and

long-term memory formation (40–44). The common feature

is conversion of a transient stimulus into an irreversible re-

sponse through the activation of a network of intrinsically

reversible signaling molecules and gene products.

Several types of irreversible switches have been proposed

to contribute to the maintenance of LTM. Lisman and Fallon

(41) and Roberson and Sweatt (44,45) suggested several

possible switches that might sustain long-term changes in the

strength of synapses. Lisman and co-workers (43,46,47) pro-

posed CaMKII activity may be sustained indefinitely by

positive feedback in which active, phosphorylated CAMKII

multimers further phosphorylate their subunits, and this

CAMKII activity might maintain long-lasting synaptic strength-

ening or potentiation (LTP) and therefore LTM. Iyengar and

co-workers (40,48) showed that a feedback loop involving

protein kinase activities and second messengers (including

protein kinase C, Raf, MAP kinase kinase, and MAP kinase)

can produce a bistable molecular switch at a synapse, which

when activated may induce LTP. Kandel and co-workers

proposed a positive feedback mechanism for protein oligo-

merization (49–51) that may be important for sustaining

persistent modification of synaptic structure, allowing for

LTM. The irreversible switch exhibited by the present model

is similarly based on a positive feedback loop, with re-

ciprocal induction of PKA activation and Ap-uch expression

(see Methods). Such a switch (Figs. 5 C and 6) could main-

tain long-lasting PKA activation, transcription factor (TF)

phosphorylation, and gene induction in response to relatively

brief stimuli, and could therefore be important for consol-

idation of LTM, which is known to require gene expression.

Switches based on positive feedback loops, such as the

irreversible switch (Fig. 5 C), are commonly described by

deterministic ODEs or DDEs, which use chemical concen-

trations as continuous variables. This representation implic-

itly assumes that the number of molecules in the system is

sufficiently large to ensure that deterministic, mass-action

kinetics can describe the dynamics. However, if the copy

numbers of some key kinases, or other molecular species, in

the feedback loop are relatively low (e.g., tens), then sto-

chastic noise and fluctuations in molecular copy numbers

may induce spontaneous transitions between states (23,52).

Therefore, molecular noise may be a key factor that affects

the robustness of the bistable switch when the copy numbers

of molecules are low.

Whether the PKA/Ap-Uch positive feedback loop does, in

fact, play an important role in the formation of LTM remains

to be determined experimentally. If this loop exhibits

switchlike behavior, then a relatively brief activation of PKA
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by an agonist that elevates cAMP levels, such as forskolin or

5-HT, should induce a subsequent, long-lasting (many hours

or days) phase of PKA activation and Ap-uch expression.

Indeed, in Aplysia neuronal ganglia, application of five

5-min pulses of 5-HT induces PKA activation measured 24 h

later (36). Although this result is compatible with long-

lasting positive feedback, the time course of PKA activation

needs to be examined at additional time points. Crucially,

concomitant long-lasting induction of Ap-uch would need to

occur to support the hypothesis that brief stimuli can induce

irreversible switchlike activation of the positive feedback.

Furthermore, a molecular pathway from PKA activation to

Ap-uch gene induction should be identified. As discussed

above (see Methods), Ap-uch does not appear to be induced

via phosphorylation of the CREB1 transcriptional activator.

However, PKA activation could lead to phosphorylation of

an unspecified TF that induces Ap-uch. A major goal of this

article, not dependent on these model details, is to point out

that positive feedback loops may be important for sustaining

long-lasting kinase activation and gene expression to induce,

or maintain, LTM.

We note that in vivo, any biochemical switch associated

with the induction of LTM is not likely to remain irrevers-

ible. It is likely that processes of molecular turnover, not

represented in the present model, would tend to return kinase

activities and synaptic strengths to average levels. For ex-

ample, several current theories of long-term synaptic plas-

ticity envision homeostatic mechanisms that rescale synaptic

weights over time (53,54).

Classification diagrams can help predict effects
of drugs or other environmental stimuli

Classification diagrams of parameter space (e.g., Figs. 4 and

6–8) provide boundaries within the parameter space that dif-

ferentiate among multiple bifurcation diagrams and multiple

stimulus-response outcomes (e.g., hysteresis or irreversible

switches). Classification diagrams help to determine which

dynamic features are robust to variation of parameter values.

Only those bifurcation diagrams that occupy a region of

significant size in multiple classification diagrams (e.g., Figs.

6 c and 7 c, and perturbations of this region in Fig. 8) are

likely to describe the physiological dynamics.

Codimension-1 bifurcation diagrams analogous to Fig. 2 B
can be used to determine parameters that, if varied by phar-

macological or environmental intervention, would have a

major qualitative effect on the dynamics of the system. For

example, Fig. 2 B illustrates that a compound affecting the

rate of Ap-uch transcription or protein synthesis (the rate

constant kApSyn) would significantly alter the dynamics (e.g.,

by changing hysteretic behavior to monotonic or irreversible-

switch behavior). Diagrams similar to Fig. 2 B can be

combined with considerations of which parameters could be

altered relatively selectively by chemical or other stimuli. In

this way, potential targets could be identified for drug design

and therapy, as well as for toxins or other environmental

stimuli.

Classification diagrams analogous to Figs. 4 and 6 provide

a visual map to determine how the system will respond if two

parameters are varied simultaneously by pharmacological or

environmental stimuli, or if one parameter is varied in sys-

tems characterized by differing values of a second parameter.

Therefore, classification diagrams may provide a visual means

of determining the effect of two drugs applied simultaneously,

and possibly illustrate a synergetic effect, which would not

be observed if the drugs were applied individually or se-

quentially. For example, Fig. 6 illustrates that compounds or

drugs might enhance the induction of LTM by altering either

kApSyn or kAp-Uch or both. Increasing the strength of positive

feedback by increasing kApSyn and/or kAp-Uch favors more

prolonged and greater activation of PKA. A monotonic re-

lationship of PKA activity versus [5-HT] (region a) is con-

verted sequentially to a hysteretic reversible switch (region

b), then to an irreversible switch (region c). In vivo, com-

pounds that increase Ap-Uch synthesis (kApSyn) and/or

increase the effectiveness with which Ap-Uch promotes

PKA activation (kAp-Uch) would plausibly promote persistent

PKA activation, TF phosphorylation, and synaptic strength-

ening. Near boundary curves of classification diagrams, the

system is particularly sensitive to parameter changes, be-

cause small changes can qualitatively alter system behavior.

Pettigrew et al. (17) proposed (their Fig. 6 A) that a com-

pound able to reduce the dephosphorylation rates of

MAPKK (kb, MAPKK) and ERK (kb, ERK), might enhance

5-HT-induced Ap-uch expression and PKA activation. The

effect of reducing both these rate constants was therefore

examined. Bifurcation analysis of the unaltered system

(kb, MAPKK ¼ kb, ERK ¼ 0.12 min�1) and the altered system

(kb, MAPKK ¼ kb, ERK ¼ 0.06 min�1) (other parameters as in

Table 1) show that the qualitative nature of the bifurcation

diagram (a hysteretic loop/reversible switch) is not changed

by decreasing kb, MAPKK and kb, ERK, although the threshold

for PKA activation by 5-HT is considerably reduced (not

shown). An irreversible-switch type of bifurcation diagram

cannot be generated by further decreasing kb,MAPKK and

kb,ERK (not shown), because the strength of the positive

feedback loop (which is governed by kApSyn and kAp-Uch)

remains insufficient. These simulations suggest alteration of

kinetic parameters outside the positive feedback loop can de-

crease the threshold for 5-HT necessary for significant PKA

activation, but is less likely to enhance the duration of PKA

activation, TF phosphorylation, and gene induction. The

analysis predicts that alteration of kinetic parameters within

the positive feedback loop might be more likely to enhance

both the intensity and duration of gene induction, and the

magnitude of LTM.

The proposal that alteration of MAPKK/ERK kinetic

parameters might enhance PKA activation was based orig-

inally on sensitivity analysis (17). For each parameter in the

model, a small change was made, and the resulting change in
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the magnitude of PKA activation was determined. PKA

activation was found to be particularly sensitive to kb,MAPKK

and kb,ERK. However, a caveat of sensitivity analysis is that

small parameter changes will not change the qualitative bi-

furcation diagram when a state is not located near the bound-

ary curves of a classification diagram. Larger parameter

changes can qualitatively alter the bifurcation diagram. Such

changes might simulate a mutation or a pharmacological

intervention. Such alteration often corresponds to a nonlinear

change in dynamic stimulus responses that could not be pre-

dicted by scaling up the effect of a small parameter change.

Classification diagrams of parameter space (Figs. 4 and 6)

and codimension-1 bifurcation diagrams (Fig. 2 B) may be

used to identify parameters which, when varied, may move

system behavior into a regime described by a different type

of bifurcation diagram.

However, sensitivity analysis cannot be discounted. It is

rapid and easily performed. A complex parameter space

generally has too many dimensions to be explored thor-

oughly by bifurcation analysis. Therefore, sensitivity anal-

ysis is needed to determine a class of control parameters,

defined as those that strongly affect the stimulus response of

a system. Bifurcation analysis can then focus, at least ini-

tially, on characterizing how the dynamics are altered by

larger changes in the subset of control parameters, which are

plausible targets for drugs or other biochemical stimuli (17).

There appears to be significant conservation of biochem-

ical mechanisms underlying synaptic strengthening and mem-

ory formation between organisms as diverse as Aplysia and

vertebrates, including mammals. In mammals, as in Aplysia,

the formation of many examples of LTM correlates with

changes in synaptic strength (55,56). These changes, like

Aplysia LTF, are associated with MAP kinase and PKA

activation and gene induction (57–60), and with phosphor-

ylation and activation of the CREB family of transcription

factors (61–63). Activation of CREB appears critical for the

formation of at least some forms of vertebrate LTM (64–68).

Because of this conservation of mechanisms, it is likely that

the methods of analyses used here will help us to understand

the dynamics of memory formation in other organisms, and

the ways in which memory formation might be altered by

drugs or other environmental interventions.

APPENDIX

Further details of the equations and methods for calculation of steady-state

singular points (8,31,69) are given here. The codimension-1 singularity termed

a limit point is defined by the set of conditions

fðx; lð¼ ½5-HT�Þ; PÞ ¼ 0
Jðx; l; PÞ � u ¼ 0
Æu; uæ¼ 1

;

8<
: (18)

with f as in Eq. 17 and with Æ.,.æ denoting the standard inner product, i.e.,

Æu, uæ ¼ uT � u. J is the Jacobian matrix of f, with the elements

Jij ¼ ð@fi=@xjÞji;j¼1;2;...15. The value u is the eigenvector of J corresponding

to zero eigenvalue. The proceeding set of 15 3 2 1 1 algebraic equations

determines the 15 3 2 variables (x,u) and the bifurcation parameter l.

Because these equations only determine one parameter, l, the limit point is

codimension-1. By varying continuously an additional parameter P1, the loci

of the limit points in the (P1,l)-plane can be obtained. This curve, or the

corresponding hypersurface of singular points in the full parameter space, is

usually termed a limit set (LS) (the intersection of the hypersurface with the

(P1,l) plane yields the curve). The LS curve can be effectively traced out by

an arc-length continuation scheme (32,33). It has been shown (see Results)

that the LS enables rapid determination of all the qualitatively different

bifurcation diagrams that can be attained for different values of the param-

eter P1.

Codimension-2 singular points on HS, isola, or BLS hypersurfaces (see

their bifurcation diagrams in Fig. 3 and Table 2) are defined as follows. On

an HS,

fðx; l; PÞ ¼ 0
Jðx; l; PÞ � u ¼ 0
J�ðx; l; PÞ � v ¼ 0
Æv;D2

xxfðx; l;PÞ � ðu; uÞæ ¼ 0

Æu; væ¼ 1

;

8>>>><
>>>>:

(19)

where J* is the conjugate transpose of the Jacobian matrix J. The values u
and v are the eigenvector and adjoint eigenvector of J, and the second

differential vector of the vector function f is

D2
xxfðx;l;PÞ � ðu; uÞ ¼ +

15

i¼1

+
15

j¼1

@
2f

@xi@xj

uiuj: (20)

The set of Eqs. 19 includes 3 3 15 1 2 equations that determine the 3 3 15

variables (x,u,v), the bifurcation parameter l, and an additional parameter

P1. Because both l and P1 are determined, the point is codimension-2.

A point on an isola surface (elliptic or hyperbolic) (8,31) satisfies the

conditions

fðx; l; PÞ ¼ 0
J�ðx; l; PÞ � v ¼ 0
Æv;Dlfðx; l;PÞæ ¼ 0

Æv; væ¼1

:

8>><
>>: (21)

These 2 3 15 1 2 equations determine 2 3 15 variables (x,v), the

bifurcation parameter l, and an additional parameter P1. By continuously

varying another parameter P2 and using arc-length continuation, the curve of

isola points in the (P2,P1)-plane can be obtained.

A boundary limit set (BLS) is a hypersurface on which a limit point in the

bifurcation diagram (x vs. l) occurs at the physiological boundary of the

bifurcation parameter. In our model, the physiological boundary occurs

when the concentration of 5-HT reaches 0. A point on the BLS therefore

satisfies the conditions

fðx; l; PÞ ¼ 0
Jðx; l; PÞ � u ¼ 0
Æu; væ ¼1

l ¼ 0

:

8>><
>>: (22)

These 2 3 15 1 2 equations determine the 2 3 15 variables (x,u), the

bifurcation parameter l, and an additional parameter P1. By varying

continuously another parameter P2 the BLS curve can be constructed in the

(P2,P1) plane using an arc-length continuation scheme. In our model,

additional BLS surfaces could be defined for each biochemical rate constant,

because they are constrained to be nonnegative.

To solve the above equations, the differential equations (Eq. 16) are first

numerically integrated to obtain an approximate steady state. The steady

state is more precisely computed by the Newton-Raphson method (34). Arc-

length continuation is then used to trace out the bifurcation diagram in the

(x,l) plane and obtain the codimension-1 limit points (the turning points of
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the bifurcation diagram). Arc-length continuation is used again to trace out a

curve of limit points in the (l,P1) plane. Some of these points may be

identified as codimension-2 points that solve Eqs. 19, 21, or 22 for the fixed

value of a second parameter P2. If so, arc-length continuation is used yet

again, varying P1 and P2, and tracing out curves of the codimension-2 points

in the (P2,P1) plane. As discussed above, these curves are intersections of

the HS, isola, or BLS surfaces with the (P2,P1) plane, and make up the

classification diagram that divides the (P2,P1) plane into regions with

qualitatively different x versus l-bifurcation diagrams.

Supported by National Institutes of Health grants No. P01 NS38310 and

No. R01 NS50532.

REFERENCES

1. Smolen, P., D. A. Baxter, and J. H. Byrne. 2000. Mathematical
modeling of gene networks. Neuron. 26:567–580.

2. Goldbeter, A. 2002. Computational approaches to cellular rhythms.
Nature. 420:238–245.

3. Tyson, J. J., K. C. Chen, and B. Novak. 2003. Sniffers, buzzers, toggles
and blinkers: dynamics of regulatory and signaling pathways in the
cell. Curr. Opin. Cell Biol. 15:221–231.

4. Kitano, H. 2002. Systems biology: a brief overview. Science. 295:
1662–1664.

5. Guckenheimer, J., and P. Holmes. 1983. Nonlinear Oscillations,
Dynamical Systems and Bifurcation of Vector Fields. Springer, New
York.

6. Strogatz, S. H. 1994. Nonlinear Dynamics and Chaos: With Applica-
tions to Physics, Biology, Chemistry, and Engineering. Addison-
Wesley, Reading, MA.

7. Balakotaiah, V., and D. Luss. 1984. Global analysis of the multiplicity
features of multi-reaction lumped-parameter models. Chem. Eng. Sci.
39:865–881.

8. Golubitsky, M., and D. G. Schaeffer. 1985. Singularities and Groups in
Bifurcation Theory, Vol. 1. Springer-Verlag, New York.

9. Scholz, K. P., and J. H. Byrne. 1987. Long-term sensitization in
Aplysia: biophysical correlates in tail sensory neurons. Science. 235:
685–687.

10. Mauelshagen, J., G. R. Parker, and T. J. Carew. 1996. Dynamics of
induction and expression of long-term synaptic facilitation in Aplysia.
J. Neurosci. 16:7099–7108.

11. Sutton, M. A., J. Ide, S. E. Master, and T. J. Carew. 2002. Interaction
between amount and pattern of training in the induction of interme-
diate- and long-term memory for sensitization in Aplysia. Learn. Mem.
9:29–40.

12. Wainwright, M. L., J. H. Byrne, and L. J. Cleary. 2004. Dissociation of
morphological and physiological changes associated with long-term
memory in Aplysia. J. Neurophysiol. 92:2628–2632.

13. Kandel, E. R. 2001. The molecular biology of memory storage: a dia-
logue between genes and synapses. Science. 294:1030–1038.

14. Frost, W. N., V. F. Castelluci, R. D. Hawkins, and E. R. Kandel. 1985.
Monosynaptic connections made by the sensory neurons of the gill-
and siphon-withdrawal reflex in Aplysia participate in the storage of
long-term memory for sensitization. Proc. Natl. Acad. Sci. USA. 82:
8266–8269.

15. Cleary, L. J., W. L. Lee, and J. H. Byrne. 1998. Cellular correlates of
long-term sensitization in Aplysia. J. Neurosci. 18:5988–5998.

16. Pittenger, C., and E. R. Kandel. 2003. In search of general mechanisms
for long-lasting plasticity: Aplysia and the hippocampus. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 358:757–763.

17. Pettigrew, D., P. Smolen, D. A. Baxter, and J. H. Byrne. 2005.
Dynamic properties of regulatory motifs associated with induction of
three temporal domains of memory in Aplysia. J. Comput. Neurosci.
18:163–181.

18. Laurent, M., and N. Kellershohn. 1999. Multistability: a major means
of differentiation and evolution in biological systems. Trends Biochem.
Sci. 24:418–422.

19. Hofer, T., H. Mathansen, M. Lohning, A. Radbruch, and R. Heinrich.
2002. GATA-3 transcriptional imprinting in Th2 lymphocytes: a math-
ematical model. Proc. Natl. Acad. Sci. USA. 99:9364–9368.

20. Mariani, L., M. Lohning, A. Radbuch, and T. Hofer. 2004. Transcrip-
tional control networks of cell differentiation: insights from helper T
lymphocytes. Prog. Biophys. Mol. Biol. 86:45–76.

21. Ferrell, J. E., and W. Xiong. 2001. Bistability in cell signaling: how
to make continuous processes discontinuous, and reversible processes
irreversible. Chaos. 11:227–236.

22. Ferrell, J. E. 2002. Self-perpetuating states in signal transduction:
positive feedback, double-negative feedback and bistability. Curr.
Opin. Chem. Biol. 6:104–114.

23. Xiong, W., and J. E. Ferrell. 2003. A positive feedback-based bistable
‘‘memory module’’ that governs a cell fate decision. Nature. 426:
460–465.

24. Mohamed, H. A., W. Yao, D. Fioravante, P. D. Smolen, and J. H.
Byrne. 2005. cAMP-response elements in Aplysia creb1, creb2, and
Ap-uch promoters: implications for feedback loops modulating long
term memory. J. Biol. Chem. 280:27035–27043.

25. Hegde, A. N., K. Inokuchi, W. Pei, A. Casadio, M. Ghirardi, D. G.
Chain, K. C. Martin, E. R. Kandel, and J. H. Schwartz. 1997. Ubiquitin
C-terminal hydrolase is an immediate-early gene essential for long-
term facilitation in Aplysia. Cell. 89:115–126.

26. Dugan, L. L., J. S. Kim, Y. Zhang, R. D. Bart, Y. Sun, D. M.
Holtzman, and D. H. Gutmann. 1999. Differential effects of cAMP in
neurons and astrocytes. Role of B-raf. J. Biol. Chem. 274:25842–25848.

27. Morozov, A., I. A. Muzzio, R. Bourtchouladze, N. Van-Strien, K.
Lapidus, D. Yin, D. G. Winder, J. P. Adams, and J. D. Sweatt. 2003.
Rap1 couples cAMP signaling to a distinct pool of p42/44 MAPK
regulating excitability, synaptic plasticity, learning, and memory.
Neuron. 39:309–325.

28. Chain, D. G., A. Casadio, S. Schacher, A. N. Hegde, M. Valbrun, N.
Yamamoto, A. L. Goldberg, D. Bartsch, E. R. Kandel, and J. H.
Schwartz. 1999. Mechanisms for generating the autonomous cAMP-
dependent protein kinase required for long-term facilitation in Aplysia.
Neuron. 22:147–156.

29. Doedel, E., H. B. Keller, and J. P. Kernevez. 1991. Numerical analysis
and control of bifurcation problems. I. Bifurcation in finite dimensions.
Int. J. Bifurcat. Chaos. 1:493–520.

30. Kuznetsov, Y. A. 1995. Elements of Applied Bifurcation Theory.
Springer-Verlag, New York.

31. Khinast, J., D. Luss, M. P. Harold, J. J. Ostermaier, and R. McGill.
1998. Continuously stirred decanting reactor: operability and stability
considerations. Am. Inst. Chem. Eng. J. 44:372–387.

32. Keller, H. B. 1977. Numerical solutions of bifurcation and nonlinear
eigenvalue problems. In Applications of Bifurcation Theory. P. H.
Rabinowitz, editor. Academic Press, New York.

33. Seydel, R., and V. Hlavacek. 1987. Role of continuation in engineering
analysis. Chem. Eng. Sci. 42:1281–1295.

34. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
1992. Numerical Recipes in Fortran 77. Cambridge University Press,
Cambridge.

35. Murray, J. D. 1993. Mathematical Biology, 2nd Ed. Springer-Verlag,
Berlin.

36. Müller, U., and T. J. Carew. 1998. Serotonin induces temporally and
mechanistically distinct phases of persistent PKA activity in Aplysia
sensory neurons. Neuron. 21:1423–1434.

37. Mauelshagen, J., G. R. Parker, and T. J. Carew. 1998. Differential
induction of long-term synaptic facilitation by spaced and massed
applications of serotonin at sensory neuron synapses of Aplysia
Californica. Learn. Mem. 5:246–256.

38. Shvartsman, S. Y., M. P. Hagan, A. Yacoub, P. Dent, H. S. Wiley, and
D. A. Lauffenburger. 2002. Autocrine loops with positive feedback

2324 Song et al.

Biophysical Journal 90(7) 2309–2325



enable context-dependent cell signaling. Am. J. Physiol. 282:C545–
C559.

39. Lai, K., M. J. Robertson, and D. V. Shaffer. 2004. The sonic hedgehog
signaling system as a bistable genetic switch. Biophys. J. 86:2748–
2757.

40. Bhalla, U. S., and R. Iyengar. 1999. Emergent properties of networks
of biological signaling pathways. Science. 283:381–387.

41. Lisman, J. E., and J. R. Fallon. 1999. What maintains memories?
Science. 283:339–340.

42. Zhabotinsky, A. 2000. Bistability in the Ca21/Calmodulin-dependent
protein kinase-phosphatase system. Biophys. J. 79:2211–2221.

43. Lisman, J. E., and A. M. Zhabotinsky. 2001. A model of synaptic
memory: a CaMKII/PP1 switch that potentiates transmission by orga-
nizing an AMPA receptor anchoring assembly. Neuron. 31:191–201.

44. Roberson, E. D., and J. D. Sweatt. 2001. Memory-forming chemical
reactions. Rev. Neurosci. 12:41–50.

45. Roberson, E. D., and J. D. Sweatt. 1999. A biochemical blueprint for
long-term memory. Learn. Mem. 6:381–388.

46. Lisman, J. E., H. Schulman, and H. Cline. 2002. The molecular basis
of CaMKII function in synaptic and behavioral memory. Nat. Rev.
Neurosci. 3:175–190.

47. Miller, P., A. M. Zhabotinsky, J. E. Lisman, and X. J. Wang. 2005. The
stability of a stochastic CaMKII switch: dependence on the number of
enzyme molecules and protein turnover. PLoS Biol. 3:705–717.

48. Bhalla, U. S., P. T. Ram, and R. Iyengar. 2002. MAP kinase
phosphatase as a locus of flexibility in a mitogen-activated protein
kinase signaling network. Science. 297:1018–1023.

49. Si, K., M. Giustetto, A. Etkin, R. Hsu, A. M. Janisiewicz, M. C.
Miniaci, J. H. Kim, H. Zhu, and E. R. Kandel. 2003. A neuronal
isoform of CPEB regulates local protein synthesis and stabilizes
synapse-specific long-term facilitation in Aplysia. Cell. 115:893–904.

50. Bailey, C. H., E. R. Kandel, and K. Si. 2004. The persistence of long-
term memory: a molecular approach to self-sustaining changes in
learning-induced synaptic growth. Neuron. 44:49–57.

51. Levenson, J. M., and J. D. Sweatt. 2004. Translating prions at the
synapse. Nat. Cell Biol. 6:184–187.

52. Arkin, A., J. Ross, and H. H. McAdams. 1998. Stochastic kinetic
analysis of developmental pathway bifurcation in phase l-infected
Escherichia coli cells. Genetics. 149:1633–1648.

53. Fonseca, R., U. V. Nagerl, R. G. Morris, and T. Bonhoeffer. 2004.
Competing for memory: hippocampal LTP under regimes of reduced
protein synthesis. Neuron. 44:1011–1020.

54. Burrone, J., and V. N. Murthy. 2003. Synaptic gain control and homeo-
stasis. Curr. Opin. Neurobiol. 13:560–567.

55. Martin, S. J., and R. G. Morris. 2002. New life in an old idea: the
synaptic plasticity and memory hypothesis revisited. Hippocampus. 12:
609–636.

56. Lynch, M. A. 2004. Long-term potentiation and memory. Physiol. Rev.
84:87–136.

57. English, J. D., and J. D. Sweatt. 1997. A requirement for the mitogen-
activated protein kinase cascade in hippocampal long term potentiation.
J. Biol. Chem. 272:19103–19106.

58. Huang, Y. Y., K. C. Martin, and E. R. Kandel. 2000. Both protein
kinase A and mitogen-activated protein kinase are required in the
amygdala for the macromolecular synthesis-dependent late phase of
long-term potentiation. J. Neurosci. 20:6317–6325.

59. Matsushita, M., K. Tomizawa, A. Moriwaki, and S. T. Li. 2001. A
high-efficiency protein transduction system demonstrating the role of
PKA in long-lasting long-term potentiation. J. Neurosci. 21:6000–6007.

60. Waltereit, R., B. Dammermann, P. Wulff, J. Scafidi, U. Staubli, G.
Kauselmann, M. Bundman, and D. Kuhl. 2001. Arg3.1/Arc mRNA
induction by Ca21 and cAMP requires protein kinase A and mitogen-
activated protein kinase/extracellular regulated kinase activation.
J. Neurosci. 21:5484–5493.

61. Bailey, C. H., D. Bartsch, and E. R. Kandel. 1996. Toward a molecular
definition of long-term memory storage. Proc. Natl. Acad. Sci. USA.
93:13445–13552.

62. Barth, A. L., M. McKenna, S. Glazewski, P. Hill, S. Impey, D. Storm,
and K. Fox. 2000. Upregulation of cAMP response element-mediated
gene expression during experience-dependent plasticity in adult neo-
cortex. J. Neurosci. 20:4206–4216.

63. Leutgeb, J. K., J. U. Frey, and T. Behnisch. 2005. Single cell analysis
of activity-dependent cyclic AMP-responsive element-binding protein
phosphorylation during long-lasting long-term potentiation in area CA1
of mature rat hippocampal-organotypic cultures. Neuroscience. 131:
601–610.

64. Mayford, M., and E. R. Kandel. 1999. Genetic approaches to memory
storage. Trends Genet. 15:463–470.

65. Josselyn, S. A., C. Shi, W. A. Carlezon, R. L. Neve, E. J. Nestler, and
M. Davis. 2001. Long-term memory is facilitated by cAMP response
element-binding protein overexpression in the amygdala. J. Neurosci.
21:2404–2412.

66. Kida, S., S. A. Josselyn, S. P. de Ortiz, J. H. Kogan, I. Chevere, S.
Masushige, and A. J. Silva. 2002. CREB required for the stability of
new and reactivated fear memories. Nat. Neurosci. 5:348–355.

67. Lonze, B. E., and D. D. Ginty. 2002. Function and regulation of CREB
family transcription factors in the nervous system. Neuron. 35:605–623.

68. Pittenger, C., Y. Y. Huang, R. F. Paletzki, R. Bourtchouladze, H.
Scanlin, S. Vronskaya, and E. R. Kandel. 2002. Reversible inhibition
of CREB/ATF transcription factors in region CA1 of the dorsal hip-
pocampus disrupts hippocampus-dependent spatial memory. Neuron. 34:
447–462.

69. Balakotaiah, V., D. Luss, and B. L. Keyfitz. 1985. Steady state
multiplicity analysis of lumped-parameter systems described by a set of
algebraic equations. Chem. Eng. Commun. 36:121–147.

Singularity Analysis of a Molecular Network 2325

Biophysical Journal 90(7) 2309–2325


