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ABSTRACT

To improve the recognition of weak similarities
between proteins a method of aligning two
sequence pro®les is proposed. It is shown that
exploring the sequence space in the vicinity of the
sequence with unknown properties signi®cantly
improves the performance of sequence alignment
methods. Consistent with the previous observations
the recognition sensitivity and alignment accuracy
obtained by a pro®le±pro®le alignment method can
be as much as 30% higher compared to the
sequence±pro®le alignment method. It is demon-
strated that the choice of score function and the
diversity of the test pro®le are very important
factors for achieving the maximum performance of
the method, whereas the optimum range of these
parameters depends on the level of similarity to be
recognized.

INTRODUCTION

The observation that structures and functions of proteins can
be inferred by protein sequence comparisons led to the fast
development of sequence alignment methods. It has been
shown that at short evolutionary distances structures and
sequences of proteins are very similar and easily aligned by
pairwise sequence alignment methods (1,2). For more dis-
tantly related proteins, where only certain sequence features or
structural motifs are conserved, the similarity between two
proteins cannot easily be recognized by pairwise alignment
methods.

There are different ways to infer the connections between
protein sequences in the sequence space; one group of
methods tries to relate the two sequences being matched
through the third sequence (3,4), while others detect increas-
ingly divergent members of a given family by constructing
multiple sequence alignments (5±10). Multiple alignments of
related sequences properly translated into position-speci®c
score matrices (PSSMs), pro®les or hidden Markov models
(HMMs) indeed contain a lot of information about the
conservation patterns and statistical properties of protein
families. As a result, the sensitivity of methods which use
pro®les/HMMs in the database search is shown to be several
times higher compared to the pairwise methods (4,11).

The aforementioned pro®le search methods compare a
single test sequence to a template pro®le, which in some cases
can result in missing some weak sequence similarities. For
example, if the test sequence and its related sequences are
distant from the template family, the template pro®le would
not be sensitive enough to recognize the test sequence as
belonging to the same template family. To increase the radius
of detection of diverse family members one would want to
explore the sequence space around the test sequence and
compare two groups of sequences or two pro®les to each other.

Several methods have been reported lately which align two
protein family models with each other. For example, in the
progressive and iterative multiple alignment methods two
groups of sequences have been compared using the weighted
`sum of pairs' score (12,13). This measure can be pretty
successful in aligning two closely related families, but fails in
other cases since it does not take into account the statistical
properties of the sequence groups. More sophisticated meas-
ures of comparing two pro®les or HMMs have been proposed
recently and proved to be successful in detecting weak
similarities between conserved protein regions or for the
classi®cation of signal peptides (14,15). In the most recent
papers the relative success of pro®le±pro®le alignment
methods over sequence±pro®le alignment methods has been
reported (16,17). For example, Yona et al. (17) used
information theory to derive the pro®le±pro®le similarity
score and found that the relative improvement of their
pro®le±pro®le comparison method with respect to PSI-
BLAST is almost the same as the improvement of PSI-
BLAST compared to BLAST in detecting the SCOP family
relationships within one superfamily.

Despite the fact that pro®le±pro®le comparison methods
have been used successfully in genome annotation, fold
recognition and protein classi®cation (18±20), there has been a
lack of evidence that pro®le±pro®le scoring schemes outper-
form sequence±pro®le scoring schemes. To prove the latter,
one would need to make a direct comparison of two scoring
schemes using the same alignment algorithm, set of param-
eters and protein family models. This work introduces a new
core-based pro®le±pro®le alignment method, which is tested
with different similarity measures for comparing two columns
of pro®les. The performance of the method is evaluated with
respect to sensitivity and speci®city of the database search and
the accuracy of obtained alignments using the benchmark of
structurally similar protein domains or domains from the same
SCOP classi®cation level. Finally, the test procedure enables
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the systematic analysis of the difference in performance
produced by including the test pro®le term in the similarity
measure and examines the factors this difference can be
attributed to.

MATERIALS AND METHODS

A benchmark for comparison of different score
functions

The essential idea in designing the benchmark is to measure
the ability of different score functions to ®nd evolutionary
relationships described by SCOP or correctly identify similar
structures de®ned by the VAST algorithm. To obtain a
representative set of protein domains, ®rst a non-redundant set
of 1310 domains has been selected by single linkage clustering
based on a BLAST P value of 10e±7 or less (21). Domain
boundaries identi®ed using a compactness algorithm (22) are
taken from MMDB (23), which is distributed with ENTREZ
(http://www.ncbi.nlm.nih.gov/Entrez/).

Each selected domain in the list of 1310 domains (list1310)
has at least ®ve structure neighbors and its domain de®nition
agrees with the SCOP domain de®nition to a threshold of 80%
mutual overlap. The list of structure neighbors is distributed
with Entrez and structure±structure alignments in this set are
computed by the VAST algorithm (24,25) based on complete
chains or domains. To select a subset of test protein sequences
for the experiments, the domains formed from only a one
chain continuous segment are selected from list1310 ensuring
that these test domains have at least one VAST neighbor and at
least one member from the same SCOP family level in
list1310. Trying not to use any information about domain
boundaries, the full-length chain sequences are extracted from
the corresponding test domains, which are guaranteed not to
exceed a length of 250 residues for the purpose of speeding up
the search process. As a result, the test set has been reduced to
the 47 test sequences listed in the legend to Figure 1.
According to the SCOP classi®cation (26) the structures of
domains derived from 47 test protein chains spanned four
different classes, 36 folds and 41 superfamilies and by this
criterion can be considered a diverse sample of protein
domains. Test sequences can be found at http://
www.ncbi.nlm.nih.gov/Entrez/ and query/template align-
ments can be obtained upon request.

Fold recognition sensitivity and alignment accuracy

To ®nd all relationships between 47 test sequences and their
homologous (as de®ned by SCOP) or structurally similar (as
de®ned by VAST) domains in list1310, each test sequence was
compared against the database of 1310 domain structures
using the core-based alignment algorithm (27,28). The true
positive rate was calculated as the number of true positives
found during the search above some Z-score threshold divided
by the overall number of true positives. True positives here
were de®ned as domains (out of list1310) with the same fold/
superfamily/family or VAST assignments as a test domain. In
cases where the test chain was composed of more than one
domain (three of 47 test cases), the true positives for this test
entry were identi®ed as true positives for all domains included
in the chain.

The false positive rate was calculated similarly to the
number of false positives found divided by the overall number
of false assignments (database size minus number of true
positives). The Z-score was measured in terms of the momenta
of the score distribution of random sequences with a given
composition as a difference between the obtained alignment
score and the expected score expressed in units of standard
deviation of the random score distribution.

To compare the search sensitivity of different methods,
another measure, the truncated receiver operating character-
istic (ROC), has been used as well (29,30). ROCn was
calculated as the sum of the number of true positives found at
1, 2, 3, ¼, n false positive levels (ti) divided by the overall
number of true positives in the database (T) (30): ROCn =
(SI = 1,¼, n ti)/nT. The distribution of ROC values has
been shown to be approximately normal and its standard
deviation can be calculated analytically as s2(Rn) = (SI = 1,¼, n

(tn + 1 ± ti)2)/n2T2 (30).
The accuracy of obtained alignments, namely accuracy of

molecular models of the test domains implied by the
alignments of their sequences to the structures of the identi®ed
template domains, was calculated using the contact speci®city.
Contact speci®city is de®ned as the fraction of correctly
predicted non-local residue contacts in the molecular model
which are also present in the experimental structure of the test
domain (31): ACSpc = Ncp/Np. Here Ncp is the number of
correctly predicted contacts for residues separated along the
chain by at least ®ve peptide bonds and having Ca atoms <8 AÊ

apart. Np is the total number of non-local contacts in the
predicted model. The measure we use in the alignment
accuracy evaluation has been applied previously in the context
of CASP structure prediction evaluations (31±34) and is based
on correct prediction of residue±residue contacts, not on the
comparison to a `true' structure±structure alignment.

Alignment algorithm

Each test sequence was aligned to core elements of the
template structure using the core-based alignment method
described previously (27,28). Core elements of template
domains were de®ned as continuous segments that were
structurally conserved within a given family of domains
(21,35). In general, core elements could be de®ned from
multiple sequence alignments as continuous segments span-
ning only residues aligned in all sequences of the alignment.
Loop lengths were constrained to disallow models with too
few loop residues to span the distance between sequentially
adjacent core elements.

Alternative alignments of each core segment were sampled
by the Gibbs sampling algorithm. In this procedure the
alignments of the center positions of core elements were
sampled iteratively in the ®eld of other core elements with
®xed positions by using different types of score functions (see
next section). The alignment of the center position of each
core element was followed by the recruitment of additional
residues at the N- or C-termini. Alignments were optimized
using the simulated annealing schedule, which included
50 random alignment starts with 40 iterations of center point
and end-point sampling, and each iteration in turn called for
10 cycles of center point alignments and 10 cycles of end-
point re®nement. Sampling was done iteratively until conver-
gence with respect to recurrence of top-score alignments,
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which determined the overall run times. It should be noted that
the algorithm is not related to any dynamic programming
techniques and does not require gap penalties or `frozen
approximation' since the number of alignment variables is
small enough to allow Gibbs sampling of alternative align-
ments with the direct evaluation of the overall alignment
score. The core-based alignment algorithm has been tested in
the CASP prediction experiment and proved to be successful
in predicting the fold recognition targets (35).

Score functions

The scoring scheme for sequence±pro®le matches was the
same as one described previously (28): it represented the
difference between the score of the native test sequence
aligned with a given template PSSM (Ssp) and the expected
score obtained for random shuf¯es of the aligned residues in
the test sequence (S0) (DSsp = Ssp ± S0), where

S
sp
ij � Wai; j 1

Here, ai is the amino acid type in position i of the test sequence
aligned with position j of the template and Wi,j are elements of

the template PSSM. The shift factor (S0) represents a permuted
sequence reference state and corrects for the test sequence
composition (36).

Unlike the sequence±pro®le score, which involves the
summation over the elements of the template PSSM, the
pro®le±pro®le matching score should rather compare two
aligned columns of pro®les to each other. Three different
measures for comparing two columns of pro®les have been
used in the study: two of them (correlation coef®cient and dot
product) are taken from pure mathematical considerations and
the other uses some biological intuition trying to correctly
encode the conservation patterns and variability in protein
families.

In the simplest case the pro®le±pro®le matching score (Spp)
for a given alignment i®j can be calculated as a dot product
between a vector of observed frequencies and a vector of
PSSM weights (score function 1):

S
pp
ij � F

!
i � W

!
j 2

Here Fi is the column of observed frequencies in the test
pro®le and Wj is the corresponding column of PSSM weights

Figure 1. ROC curves plotted for recognition of VAST neighbors (A) and SCOP domains at the fold (B), superfamily (C) and family (D) levels of
classi®cation. Different symbols denote various score functions (see Materials and Methods). Sequences in the test set are listed by their PDB code (lower
case) and chain identi®er (upper case): 1auoA, 1duzB, 1bftA, 1dbtA, 1bd8, 1a66A, 1aohB, 1exg, 1e®D, 1bqqT, 2occB, 1ctqA, 3pcgA, 1alvA, 2cut, 1ccwA,
1ad6, 1bt7, 1qa7B, 3nul, 1ecpA, 1a7gE, 1audA, 1aihA, 1qreA, 1huw, 1rcb, 1cewI, 1xnb, 1asu, 1czpA, 1guaB, 1aonO, 1cizA, 1tnrA, 1b9lA, 1rtm1, 1prtB,
1cnuA, 1c0gS,1nedA, 1aoiE, 1b5m, 4rhn, 1cjwA, 1dgwA, 3®b.
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of the template pro®le. It should be noted that in the limiting
case of one sequence in the test pro®le or when all sequences
in the test pro®le are identical to each other, this score will be
reduced to the sequence±pro®le score. The expected pro®le±
pro®le matching score is estimated for randomly permuted
columns in the aligned region of the test pro®le similar to
equation 1 and the difference between observed and expected
matching scores is used in the alignment procedure (DSpp = Spp

± S0). Calculating the reference state score directly in the
pro®le±pro®le matching score allows us to avoid the opti-
mization of the shift parameter, which effects the sensitivity of
any chosen scoring scheme.

The second measure takes into account the `thickness' or
degree of divergence of both the test and template pro®les
(score function 2) (adopted with modi®cation from a personal
communication with John Spouge and Stephen Altschul):

S
pp
ij �

ni�F!i � W
!

j� � nj�F!j � W
!

i�
�ni � nj� 3

Here, ni and nj are the numbers of independent observations or
different amino acid types in columns i and j of the test and
template pro®les, respectively, which represent the measures
of the diversity within the columns.

Pearson's correlation coef®cient between two columns
of test and template pro®les can be used as well (score
function 3):

S
pp
ij �

X20

k�1

�Wki ÿWi��Wkj ÿWj�����������������������������������������������������������������X20

k�1

�Wki ÿWi�2
X20

k�1

�Wkj ÿWj�2
s ; 4

where Wi and Wj are vectors of PSSM scores for columns i and
j, respectively. Scores constructed this way span values from
±1, when there is a negative correlation between Wi and Wj, to
1 for columns with identical position-speci®c scores for each
amino acid.

The pro®le±pro®le matching scores Spp calculated accord-
ing to equations 2 and 3 will reduce to the corresponding
elements of the amino acid substitution matrix in the case
where the test and template pro®les consist of identical
sequences or nothing has been aligned to the test or template
sequences in positions i and j. Test and template PSSMs were
built by running PSI-BLAST 2.2.1 for ®ve iterations with the
default parameters and reporting matches which crossed the

threshold of an E-value of 0.001 (http://www.ncbi.nlm.nih.-
gov/BLAST/).

RESULTS

Recognition sensitivity depends on the score function
used

Figure 1 shows the fraction of true positive relationships
detected with the different types of score functions plotted at
various levels of false positive rate. Ideally, one would want to
®nd the maximum number of true positives at a given false
positive rate, so curves yielding better performance would lie
farther to the right lower corner of the plot. There are two
patterns apparent from this ®gure. First, the ROC curve
corresponding to the original sequence±pro®le matching term
lies above other ROC curves, where the test pro®le is used in
the score calculation. For example, at the 1% level of false
positives the original sequence±pro®le score function would
yield 0.35, 0.58, 0.75 and 0.26 fractions of true positives for
SCOP fold, superfamily and family levels and VAST neigh-
bors recognition, respectively. At the same time, yielding the
best performance, score function 2 would result in 0.46, 0.69,
0.84 and 0.37 fractions of true positives for the same levels of
similarity, showing an increase of ~15±30% with respect to
the original sequence±pro®le score function.

The ROC100 statistic provides us with a quantitative
measure to compare different scoring schemes. As can be
seen from Table 1, the ROC100 statistic increases when the test
pro®le is used in the calculation of the score for all types of
pro®le±pro®le score functions. For example, in the case of
score function 2, SCOP fold recognition improves from 0.269
6 0.008 for the sequence±pro®le scoring scheme to 0.373 6
0.010 (28% improvement), which demonstrates the statistic-
ally signi®cant difference between various methods.
Obviously, there is much room for improvement in pro®le±
pro®le alignment methods since ROC100 values are not close
to 1 even for the recognition at the SCOP family level.

It is clear from Table 1 that the Pearson correlation
coef®cient used as a similarity measure between two columns
gives slightly higher ROC100 estimates for the recognition of
VAST neighbors compared to other score functions. It can be
explained by the fact that the Pearson correlation coef®cient
score function emphasizes not only similarities, but also
encodes negative propensities of amino acids to be in a
particular position. It can be crucial for detecting subtle
similarities between, for example, non-homologous structure
neighbors, which have different patterns of functionally
conserved columns in their pro®les. Moreover, from the

Table 1. ROC100 values (mean values and their standard deviations) calculated with various score functions are listed for different SCOP categories and
VAST structure neighbors

Without test pro®le Score function
1 2 3

Vast neighbors 0.197 6 0.009 0.278 6 0.013 0.296 6 0.013 0.313 6 0.012
SCOP fold 0.269 6 0.008 0.349 6 0.011 0.373 6 0.010 0.364 6 0.008
SCOP superfamily 0.456 6 0.008 0.577 6 0.010 0.600 6 0.009 0.503 6 0.008
SCOP family 0.694 6 0.005 0.770 6 0.007 0.800 6 0.006 0.722 6 0.004
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same table we can see that the increase in sensitivity of the
pro®le±pro®le method with respect to the sequence±pro®le
alignment method is greatest for detecting VAST structure
neighbors. This result is consistent with the previous
observation by Yona and Levitt (17) that the position-speci®c
weights of different amino acid types correlate very well with
their secondary structure propensities for a given position and
therefore structural similarities would be more easily recog-
nized by the method based on the comparison of two pro®les.

Recognition sensitivity depends on the test family
diversity and level of detected similarity

A second pattern apparent from Figure 1 and Table 1 is that
the recognition sensitivity strongly depends on the level of
detected SCOP similarity, ranging from 0.46 in the case of the
SCOP fold recognition to 0.84 for SCOP family recognition at
a practical level of 1% false positives (for score function 2).
The sensitivity of detecting structure neighbors is even
smaller, ~0.37, which shows that the SCOP fold level is
de®ned more conservatively compared to VAST neighbors
covering a rather broad range of structural similarities. It
should be noted that test and template pro®les were con-
structed by the PSI-BLAST algorithm, which can miss
similarities based purely on a structural comparison, where
there are no clear sequence motifs. It is consistent with the
previous observations that only a small fraction of structure
neighbors or folds can be detected by sequence comparison
methods (3,37±39).

The sensitivity of the pro®le, or maximum radius of
detection of remote family members, has been shown to
depend on the diversity of the sequences included in the
multiple alignment/pro®le (16,40,41). Pro®les derived from
the alignments of closely related sequences usually perform as
well as pairwise alignment methods in the database search. At
the same time, as more and more diverse sequences are
included in the alignment, the low alignment accuracy can
become an issue and dilute the information content of the
pro®le.

The same pattern can be observed for the improvement of
the ROC100 statistic upon including the test pro®le term
(Fig. 2). If the test family is not very diverse (between one and
three of the number of different amino acid types per column),
the improvement is not signi®cant. The same is true for very
diverse non-informative pro®les, where the number of inde-
pendent observations is >12. As can be seen from Figure 2, at
around four to six amino acid types per column, the
recognition improvement is high enough for all levels of the
SCOP hierarchy, as well as structure neighbors, which is
consistent with the optimal range of diversity reported earlier
(41). More precisely, the desirable range of diversity depends
on the level of similarity to be recognized. For example,
similarity at the SCOP family level is more easily detected
when the informativeness of the pro®le is not too low and
diversity is not too high, whereas families encompassing more
diverse members are more suitable for detecting the similarity
at the SCOP superfamily, fold and VAST levels.

Improvement in alignment accuracy

To assess different score functions for their ability to produce
accurate alignments, the accuracies of models predicted by
obtained sequence±pro®le or pro®le±pro®le alignments have

been calculated. Table 2 shows the contact speci®city values
for models based on the detected domains from the same
SCOP fold category averaged over different bins of sequence
similarity. As can be seen from this table, alignment accuracy
strongly depends on the sequence similarity between the test
and template domains, which is consistent with the previous
observations that accuracy of the alignments decreases with
the evolutionary distance (39,42). In our case, contact
speci®city ranges from ~0.20 for distantly related pairs to
~0.90 for pairs with >40% sequence identity.

To compare the alignment accuracy of models produced
with different score functions, contact speci®city values are
listed for SCOP folds found by all four tested score functions
(Table 2). In other words, additional folds found by pro®le±

Figure 2. Difference in recognition of VAST structure neighbors or SCOP
fold/superfamily/family categories between sequence±pro®le and pro®le±
pro®le alignment methods is plotted against the diversity of the test pro®le.
Diversity is measured as the average number of independent observations
(average number of different amino acid types per column of the align-
ment). Improvement in recognition is calculated as the average difference in
ROC100 statistics between the pro®le±pro®le alignment method with score-
function 2 and the sequence±pro®le alignment method.

Table 2. Average contact speci®city of alignments between test sequences
and template domains detected with Z-score > 7 from the same fold SCOP
category is shown for each bin of similarity between test and template
domains

Identity (%) Without test pro®le Score function
1 2 3

0±5 0.19 0.26 0.16 0.29
5±10 0.26 0.33 0.31 0.34
10±15 0.31 0.33 0.33 0.38
15±20 0.34 0.39 0.40 0.40
20±25 0.50 0.54 0.53 0.51
25±30 0.63 0.58 0.57 0.60
30±40 0.74 0.75 0.75 0.66
>40 0.79 0.79 0.77 0.85

Similarity between test and template domains is calculated as the average
percent identity in structure±structure alignments, given that the test and
template structures are found to be VAST neighbors. For the purposes of
comparison between different score functions contact speci®city was
averaged only over those test±template pairs found by all four types of
score functions.
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pro®le score functions are not considered in this analysis. It is
clear from this table that the alignment accuracy improves
when test pro®le is used in the score calculation. Below 25%
of sequence identity between the test and template domains,
the improvement is maximum and models obtained with
pro®le±pro®le score functions are up to 30% more accurate
than the models obtained with the original sequence±pro®le
score function. The same pattern is observed with another
measure of alignment accuracy, RMSD (not shown). Above
this level of similarity all four score functions and, in general,
all sequence alignment methods yield accurate alignments.

Analysis of the obtained results showed that the pro®le±
pro®le alignment algorithm can sometimes detect relation-
ships between different SCOP families that cannot be easily
inferred from the conventional sequence analysis. For
example, tryptophan biosynthesis enzyme (2tsyA) and
OMP-decarboxylase (1dbtA) belong to two different families
of the same SCOP superfamily of ribulose phosphate-binding
barrels. Although these proteins are very structurally similar
and carry the same type of enzymatic activity (lyases), they act
on different substrates (EC 4.2.1.20 and EC 4.1.1.23) and do
not share signi®cant sequence similarity (11% sequence
identity). In order to detect interlinks between these two
families, a CD search versus a non-redundant sequence
database (43) has been performed and it has been found that
sequences detected by both families constitute <1% of all
detected sequences. In contrast, the pro®le±pro®le alignment
method ®nds the 1dbtA±2tsyA pair with a very high Z-score
equal to 14 and reasonable alignment quality of ~41% of
contact speci®city or 6 A of RMSD. Interestingly enough, the
original sequence±pro®le method is not capable of obtaining
high quality alignment between these two proteins yielding
14% of contact speci®city and 14 A of RMSD.

DISCUSSION

Several decades ago it was observed that protein sequences
can be clustered into well-de®ned protein superfamilies of
related sequences and that this sequence hierarchy may re¯ect
the evolutionary history of contemporary proteins (44). With
the rapid increase in the number of protein sequences and
thoroughly characterized protein families, it has been shown
that statistical properties of protein families are very important
in most cases in establishing the correct evolutionary
connections between sequences in the sequence space
(8,11). This paper presents a next step in this direction,
namely the algorithm, which is based on comparing the
statistical properties of two protein families. The described
pro®le±pro®le comparison algorithm is capable of detecting
weak similarities between protein families, which cannot be
found by sequence±pro®le alignment methods. It has been
shown that the degree of improvement can be very signi®cant
not only in terms of increased sensitivity, but also in terms of
higher accuracy of obtained alignments.

The size and boundaries of protein families in the sequence
space vary to a great extent from one family to another and
different pro®le search strategies would be useful in identi-
fying sequence relationships in each particular case. Among
the factors in de®ning the optimal strategy, the similarity
between the test and template sequences and diversity of
protein families are shown to be the most important ones. In

agreement with this observation, the score function, which
explicitly takes into account the diversity of test and template
families, is found to yield somewhat better results compared to
other pro®le±pro®le comparison score functions. Finally,
analysis of different strategies for comparing two pro®les
presented in this paper can be of practical use for protein
annotation and classi®cation as well as supplementing the
existing sequence alignment methods.
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