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ABSTRACT

Previous work with yeast cells and with Xenopus
egg extracts had shown that eukaryotic pre-replica-
tion complexes assemble on chromatin in a step-
wise manner whereby speci®c loading factors
promote the recruitment of essential Mcm proteins
at pre-bound origin recognition complexes (ORC
with proteins Orc1p±Orc6p). While the order of
assemblyÐMcm binding follows ORC bindingÐ
seems to be conserved in cycling mammalian cells
in culture, it has not been determined whether
mammalian Mcm proteins associate with ORC-bear-
ing chromatin sites. We have used a chromatin
immunoprecipitation approach to investigate the
site of Mcm binding in a genomic region that has
previously been shown to contain an ORC-binding
site and an origin of replication. Using chromatin
from HeLa cells in G1 phase, antibodies against
Orc2p as well as antibodies against Mcm proteins
speci®cally immunoprecipitate chromatin enriched
for a DNA region that includes a replication origin.
However, with chromatin from cells in S phase, only
Orc2p-speci®c antibodies immunoprecipitate the
origin-containing DNA region while Mcm-speci®c
antibodies immunoprecipitate chromatin with DNA
from all parts of the genomic region investigated.
Thus, human Mcm proteins ®rst assemble at or
adjacent to bound ORC and move to other sites
during genome replication.

INTRODUCTION

Mcm proteins were originally discovered in yeast as functions
required for the autonomous replication of extrachromosomal
DNA elements (Mcm, minichromosomal maintenance). They
were subsequently found in all eukaryotes examined and in
archaea (reviewed in 1± 4). The proteins are required for the
initiation of DNA replication and may also be involved in
replicative chain elongation (5±10). In addition, some Mcm
proteins interact with transcription factors and may therefore
function in transcriptional regulation (11±14).

Mcm proteins (Mcm2p±Mcm7p) are divergent in most of
their amino acid sequences, but share an approximately 200
amino acid long central region with similarities to a

nucleotide-binding fold that includes variations of the
Walker A and Walker B motifs, as are found in other
members of the large AAA+ family of proteins (ATPase
associated with various cellular activities) (15,16). In addition,
Mcm2p, Mcm4p, Mcm6p and Mcm7p possess a zinc ®nger
region of the type CX2CXnCX2C that may be involved in
protein±protein interactions (17). In extracts from yeasts,
mammalian cells and Xenopus eggs, Mcm proteins occur in
de®ned subcomplexes such as stable Mcm3p±Mcm5p dimers
and single or double Mcm4p±Mmc6p±Mcm7p trimers as well
as single or double hexamers containing all six Mcm proteins
(18±24). However, the functional complex in vivo is not yet
known.

Mcm proteins are loaded on chromatin at the end of mitosis
and the beginning of the G1 phase of the cell cycle. Work with
yeast cells has shown that Mcm loading is contingent upon the
presence on chromatin of the six subunit origin recognition
complex (ORC with subunits Orc1p±Orc6p) and depends on
Cdc6p which interacts with ORC (25±29). Biochemical
experiments with Xenopus egg extracts support this scheme
showing that ORC must ®rst be present on chromatin,
followed by the binding of the Xenopus homolog of Cdc6p
and of another Mcm-loading factor, Cdt1p (also known as
RLF-B), before Mcm proteins are recruited to complete the
formation of pre-replication complexes on chromatin
(9,22,30±33). It is quite likely that all eukaryotes use the
same general pathway for the assembly of pre-replication
complexes and the formation of replication-competent
chromatin (34,35).

The conversion of pre-replication complexes into active
replication complexes at the G1/S phase transition depends on
the activities of cyclin-dependent kinases (CDK2 with cyclin
A or cyclin E in mammalian cells) and of the Dbf4/Cdc7
kinase (reviewed in 2).

During S phase, Mcm proteins are gradually released from
their chromatin sites (26,36±39). Their reloading appears to be
prevented by several mechanisms, including the function of
the S phase-speci®c protein geminin that binds to and
neutralizes the function of the loading factor Cdt1p (40± 43).
This constitutes a powerful mechanism preventing the re-
replication of chromatin sections that have already replicated
during the same S phase.

The molecular functions of Mcm proteins on replicating
chromatin in vivo are not fully understood. The conserved
nucleotide-binding fold suggests that ATP binding and ATP
hydrolysis are important for the replication functions of Mcm
proteins (44,45). Indeed, ATP stabilizes the interaction of
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Mcm proteins with isolated chromatin (21,46). Importantly,
the mammalian Mcm4p±Mcm6p±Mcm7p trimer has been
reported to possess ATPase and DNA helicase activity in vitro
(47±49), as does a hexameric archaeal protein related to the
Mcm2p±Mcm7p family (50±52). Furthermore, in vivo cross-
linking and chromatin immunoprecipitation (ChIP) experi-
ments have shown that yeast Mcm proteins are associated with
origin sequences in pre-replication complexes, but appear to
move with replication forks after initiation, as expected for a
DNA helicase (5). A participation of yeast Mcm proteins in
replicative chain elongation is strongly supported by an
elegant study with Mcm `degron' mutants which allow the
precise destruction of individual Mcm proteins during ongoing
S phase resulting in a stop of replication chain elongation (8).

ChIP was used to localize Mcm proteins in mammalian
systems. It was shown that Mcm proteins are localized to the
Chinese hamster DHFR origin region in G1 cells and partition
to more distal parts of the DHFR locus in S phase cells (53). In
these experiments, DNA in immunoprecipitated chromatin
was radiolabeled and hybridized to dot-blotted large cosmid-
borne genome fragments, a procedure that inevitably results in
low signal-to-noise ratios and low resolution. Therefore, we
found it of interest to investigate Mcm loading by a procedure
that involves in vivo formaldehyde crosslinking and ChIP to
identify the DNA in immunoprecipitated chromatin by
quantitative real-time PCR. As shown recently, this procedure
allows the localization of ORC-binding sites and replication
origins within regions of ~500 bp in human HeLa cell
chromatin (54,55). Here we investigate whether Mcm proteins
assemble at the ORC-bearing chromatin site. We show that
Mcm-speci®c antibodies preferentially immunoprecipitate
speci®c origin-containing chromatin fragments from G1

cells, but not from S phase cells where Mcm proteins appear
to be distributed over the entire chromatin section investi-
gated. Thus, human Mcm proteins assemble at ORC-binding
sites during G1 phase, but disperse to other chromatin sites
during S phase.

MATERIALS AND METHODS

Cell culture and synchronization

Human HeLa S3 cells were grown to semicon¯uency on
plastic dishes in Dulbecco's modi®ed Eagle's medium plus
5% fetal calf serum.

For S phase synchronization, cells were ®rst subjected to a
double thymidine block (56) and then released for 2±4 h. Cells
in G1 phase were prepared in the following manner: they were
®rst arrested by a single thymidine block, released for 9 h and
then arrested again by a short treatment (3 h) with nocodazole.
Mitotic cells were collected and resuspended in culture
medium without nocodazole and investigated at 4 h without
nocodazole. Synchronization was veri®ed by analysis of DNA
content in a ¯ow cytometer (see Fig. 2).

In vivo crosslinking

Formaldehyde was diluted to 1% in prewarmed medium
(37°C) and added to monolayers of ~108 cells for 4 min (57).
After removal of the medium, cells were washed three times
on plates with cold phosphate-buffered saline (PBS) (58),
scraped off, washed again twice in cold PBS and then

resuspended in hypotonic RSB buffer (10 mM Tris±HCl,
3 mM MgCl2, pH 8.0). All buffers contained 10 mM sodium
bisul®te as a protease inhibitor. After 10 min on ice, the
swollen cells were disrupted by Dounce homogenization.
Nuclear material was collected and washed twice in RSB
buffer and once in high salt NSB buffer (1 M NaCl, 10 mM
Tris±HCl, 0.1% NP-40, 1 mM EDTA, pH 8.0). Nuclear
material was then resuspended in low salt NSB buffer (0.1 M
NaCl) and loaded onto a step gradient made up of 1.75, 1.5 and
1.3 g/ml CsCl in 20 mM Tris±HCl, 0.5% sarcosyl, 1 mM
EDTA, pH 8. Nucleoprotein complexes were collected after
centrifugation (37 000 r.p.m., 24 h, 18°C) and dialyzed
overnight against TE (10 mM Tris±HCl, 1 mM EDTA, pH
7.4) containing 10 mM sodium bisul®te. Nucleoprotein was
then brie¯y sonicated on ice and digested with micrococcal
nuclease in TE with 3 mM CaCl2 (1 U micrococcal nuclease/
100 mg nucleoprotein for 15 min at 37°C) (55).

Chromatin immunoprecipitation

Af®nity-puri®ed antibodies against the human Orc2 (59),
Mcm (60) and replication protein A (RPA) (large subunit)
proteins (61) have been described. The control antibodies
were non-speci®c rabbit IgG from Sigma.

Immunoprecipitations were performed in NET buffer
(50 mM Tris pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.5%
NP-40). Nuclease-digested nucleoprotein was centrifuged for
10 min at 15 000 g for clari®cation. Soluble nucleoprotein
(1 mg) was incubated with antibodies (10 mg) for 2 h at 20°C.
Then, 50 ml of protein A±Sepharose (Amersham Pharmacia
Biotech) was added for an additional 2 h. Immunocomplexes
were washed eight times with RIPA (50 mM Tris±HCl,
150 mM NaCl, 1% NP-40, 0.5% sodium desoxycholate, 0.1%
SDS, pH 8), three times in lithium buffer (10 mM Tris±HCl,
250 mM LiCl2, 0.5% NP-40, 0.5% sodium desoxycholate,
1 mM EDTA, pH 8) and ®ve times in TE buffer. The washed
precipitates were divided for western blotting and DNA
extraction. For western blot analyses, proteins were eluted
from crosslinked chromatin and processed as previously
described (60). For DNA extraction, the immunoprecipitates
were ®rst washed again as described above to maximize the
signal-to-noise ratio. The ®nal pellet was then resuspended in
TE with 1% SDS and incubated overnight at 37°C with
200 mg/ml proteinase K. The DNA was puri®ed by standard
phenol/chloroform extraction and ethanol precipitation. The
precipitated DNA (usually between 5 and 10 ng) was
dissolved in 40 ml of TE. One-twentieth was used for real-time
quantitative PCR.

Quantitative real-time PCR analyses

Real-time PCR was performed with a Light Cycler instrument
(Roche Diagnostics) using a ready-to-use `hot start' reaction
mix (FastStart DNA Master SYBR Green I; Roche
Diagnostics). This mix contains Taq DNA polymerase and a
¯uorescent dye, SYBR Green I, for real-time detection of
double-stranded DNA. Reactions were set up in 10 ml volumes
including 0.5 mM each primer. PCR reactions were performed
for 35 cycles routinely using standard settings as recom-
mended by the manufacturer. Annealing temperatures for each
primer pair are given in Table 1. Standard DNA samples
(human genomic DNA) were serially diluted to 30 and 3 ng
and 300, 30 and 3 pg. Following PCR, the x-axis crossing
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point of each standard sample was plotted against the
logarithm of concentration to produce a standard curve.
Genomic equivalents of DNA samples were determined by
extrapolation from the standard curve (55).

RESULTS

Immunoprecipitations of crosslinked proteins

To determine whether human Mcm proteins are preferentially
associated with distinct sites on chromatin in vivo, we used a
ChIP approach as described before (54,55). We ®rst asked
whether the antibodies used in this study recognize Mcm
proteins in crosslinked chromatin. For that purpose, chromatin
was prepared from proliferating HeLa cells treated for various
lengths of time (1±10 min) with formaldehyde (1%). It could
be shown that a formaldehyde treatment of 4 min was
suf®cient to covalently link chromatin-bound Orc2p and Mcm
proteins to DNA (data not shown; but see 55). Crosslinked
chromatin was treated with micrococcal nuclease to produce
nucleoprotein fragments with ~1 kb of DNA. These fragments
were then incubated with monospeci®c antibodies for
immunoprecipitation.

As a control, we used Orc2p-speci®c antibodies that had
already been tested in previous experiments and shown to
effectively immunoprecipitate chromatin with crosslinked Orc
proteins (54,55,60). Interestingly, Orc2p-speci®c antibodies
failed to co-immunoprecipitate Mcm3p (Fig. 1A) even though
the chromatin sample investigated contained high amounts of
crosslinked Mcm3p (input in Fig. 1B), and a close association
of ORC and Mcm proteins could be expected since chromatin
binding of ORC is necessary in yeast and Xenopus egg extracts
for the subsequent loading of Mcm proteins (see Introduction).
Results similar to those of Figure 1A were obtained when the
blots were probed with antibodies against the other Mcm
proteins (data not shown). An interpretation is that Orc2p (and
by implication other components of ORC) (62) do not
necessarily co-localize with Mcm proteins in proliferating
HeLa cells (60).

Using Mcm3-speci®c antibodies, Mcm3p-bearing chroma-
tin was immunoprecipitated that also contained relatively
large amounts of crosslinked Mcm5p, the dimer partner of
Mcm3p, but only small amounts of the other Mcm proteins,
although they were present in the input sample. Interestingly,
the immunoprecipitated chromatin also carried Orc2p,
although in relatively small amounts (Fig. 1B).

Likewise, Mcm4-speci®c antibodies immunoprecipitated
chromatin with crosslinked Mcm4p as well as Mcm6p and
Mcm7p, components of the stable Mcm4p±Mcm6p±Mcm7p
trimer (Fig. 1C, upper panels). A supernatant blot and the
precipitate blot were also probed with Mcm3 and Mcm5
antibodies showing that only small amounts of the Mcm3p±
Mcm5p dimer co-immunoprecipitated with the Mcm4p±
Mcm6p±Mcm7p trimer (not shown). Signi®cantly, however,
Mcm4 antibodies (just like Mcm3 antibodies; see above) co-
immunoprecipitated some of the crosslinked Orc2p (Fig. 1C,
lower panels).

We conclude from Figure 1, ®rst, that Mcm proteins, known
to occur as stable subcomplexes in protein extracts (the
Mcm3p±Mcm5p dimer and the Mcm4p±Mcm6p±Mcm7p
trimer), preferentially crosslink together in chromatin and,
second, that Mcm3- as well as Mcm4-speci®c antibodies co-
immunoprecipitate small amounts of Orc2p, whereas Orc2-
speci®c antibodies fail to co-immunoprecipitate Mcm
proteins. This could mean that Orc2p and Mcm proteins do
not always crosslink to the same chromatin fragment, but,
when they do, Orc2p becomes inaccessible to Orc2 antibodies
and may be covered by Mcm proteins (which are about 10
times more abundant in nuclei than Orc proteins; 1).

Since the experiments in Figure 1 were performed with
asynchronously proliferating HeLa cells, we repeated the
ChIP assay with Mcm3-speci®c antibodies comparing chro-
matin from cells in G1 phase with chromatin from cells in S
phase (see Material and Methods). The data obtained with G1

chromatin were similar to those of Figure 1 and showed that
immunoprecipitated chromatin carried Mcm3p and Mcm5p in
addition to small amounts of Orc2p. However, S phase
chromatin, immunoprecipitated with Mcm3 antibodies,
contained the Mcm3p±Mcm5p dimer, but lacked detectable

Table 1. Sequences and ampli®cation conditions for primers

Primer Sequence (5¢®3¢) Map positions
(bp)

Length
(bp)

Annealing
temperature
(°C)

EX9-F ATGTCTTCCGGAGACTCCTGAAGC 6342±6365
EX9-R GGCCTCCTATTCTCAGAATCATGC 6705±6728 387 62
EX7-F TAATCCGTCACCTTGACTACCACC 8901±8924
EX7-R ACAGCACGTGCATGATTCTGTAGG 9277±9300 400 62
EX6-F TACCTGTGGGTAAGAGATGAGTTG 10691±10704
EX6-R TGCCTGTTCCCAAATGCTATATGC 10998±11021 331 62
EX2-F TCTGCACTCCGTTCAGCTCCTCTG 11894±11917
EX2-R GAGTGAGGATGCCAGGTCATCTCC 12191±12214 321 68
PROM-F AAACCAGAAGTAGGCCTCGCTCGG 12946±12969
PROM-R GGCCAGTAAGCGCGCCTCTTTGG 13460±13482 537 68
IN1-F ATCTCGCCTAATCCCACCAGTACC 14364±14387
IN1-R CATATTCACTACTAGACCCTCCGG 14633±14656 293 62
IN6-F GACATTCTGCTTCCATAGATGTGG 19943±19966
IN6-R GTTGGGAAAGATGTCATCATCAGG 20265±20288 346 62
IN7-F GAGGAATGCCAGAATTTCCAGAGG 26412±26435
IN7-R TTCCATCTGGAATGAGATCCCAGC 26118±26741 327 62
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Orc2p (Fig. 2). Thus, according to ChIP, Mcm proteins and
Orc2p may co-localize on G1 phase chromatin, but not on S
phase chromatin.

We include in Figure 2 western blots performed with
antibodies against the large subunit of RPA, the major
eukaryotic single strand-binding protein with function at
replication forks (63). We show that the RPA subunit did not

detectably crosslink to Mcm3p±Mcm5p-bearing chromatin
fragments indicating that Mcm proteins and RPA are not
located at closely adjacent sites on chromatin.

We note though that only a fraction of the total crosslinked
chromatin could be immunoprecipitated by Mcm antibodies
(Figs 1 and 2 and related experiments). This fraction remained
unchanged upon the addition of several-fold higher amounts
of Mcm-speci®c antibodies indicating that a considerable
fraction of crosslinked Mcm proteins did not interact with, or
were inaccessible to, antibodies. However, Ritzi et al. (60)
have previously used a different method, which allowed an
investigation of total chromatin, namely partial digestion of
native chromatin with micrococcal nuclease. They showed
that Orc proteins and Mcm proteins usually occur on
chromatin digestion products of different size classes and
concluded that ORC and Mcm proteins are not frequently
bound to neighboring sites in HeLa cell chromatin.

To summarize this section we conclude that a fraction of
Mcm proteins on crosslinked chromatin is accessible to
speci®c antibodies and can be immunoprecipitated. We
therefore extracted DNA from immunoprecipitated chromatin
and used the method of quantitative real-time PCR for the
detection of speci®c DNA sequences.

The MCM4 gene locus in crosslinked chromatin

The chromatin region investigated was the human MCM4/
PRKDC locus, a region of ~25 kb that includes an ORC-
binding site and an origin of replication in an ~500 bp segment
between the two divergently transcribed constitutively
expressed genes (64) (Fig. 3A).

As has been discussed before (54), DNA from different
regions of crosslinked chromatin is not necessarily ampli®ed
with similar ef®ciencies by PCR. One reason for this is that
crosslinked proteins such as transcription factors are unevenly
distributed in chromatin with the consequence that some
regions are better protected than others against micrococcal
nuclease digestion, a routine step in the preparation of
crosslinked chromatin for immunoprecipitation (see above).
We indeed found that promoter-proximal DNA from
crosslinked chromatin could be ampli®ed to 2- to 3-fold
higher values than promoter-distal DNA in the same prepar-
ation (Fig. 3B, input). The different abundance of ampli®able
promoter-proximal and promoter-distal parts of the gene
region in crosslinked chromatin prior to immunoprecipitation
has to be considered when evaluating the PCR results of ChIP
assays.

In Figure 3C, we prepared crosslinked chromatin from
asynchronously proliferating HeLa cells. Irrelevant control
antibodies (control IgG in Fig. 3C) failed to precipitate
speci®c DNA sequences, whereas Orc2-speci®c antibodies
preferentially immunoprecipitated DNA sequences from the
intergenic region that includes upstream promoter sequences
of the MCM4 gene (55) (a-Orc2 in Fig. 3C). Interestingly,
Mcm3-speci®c as well as Mcm4-speci®c antibodies immuno-
precipitated chromatin with the upstream promoter site, but
also chromatin with DNA regions corresponding to more
distal parts of the two divergent genes (Fig. 3C, a-MCM3 and
a-MCM4). The distribution of Mcm4-bearing chromatin
fragments seems to show a gradient-like pattern with
decreased presence of fragments at increased distance from
the origin. As detailed below, this distribution is most

Figure 1. Orc2p and Mcm proteins on crosslinked chromatin. (A)
Immunoprecipitations with antibodies against Orc2p (a-Orc2) and with non-
speci®c control antibodies (IgG). Input (crosslinked, nuclease-treated
chromatin before immunoprecipitation), supernatants (remaining chromatin
after treatment with antibodies and protein A±Sepharose) and immuno-
precipitates were analyzed in western blots with Mcm3p-speci®c (MCM3)
and with Orc2p-speci®c antibodies (ORC2). (B) Immunoprecipitations with
antibodies against Mcm3p (a-MCM3) and with non-speci®c control anti-
bodies (IgG). The input, supernatant and precipitated samples were western
blotted and analyzed with antibodies against Mcm3p (MCM3), Mcm4p
(MCM4), Mcm5p (MCM5) and Mcm7p (MCM7) as well as with antibodies
against Orc2p (ORC2). (C) Immunoprecipitation with antibodies against
Mcm4p (a-MCM4) and with non-speci®c control antibodies (IgG). The
input, supernatant and precipitated samples were western blotted and
analyzed with Mcm4p, Mcm6p and Mcm7p antibodies as well as with
antibodies against Orc2p as indicated.
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probably not signi®cant given the fact that the origin-proximal
sequences can be PCR ampli®ed to a higher degree than
origin-distal sequences.

We noted in this and related experiments (see below) that
the number of total PCR-ampli®able sequences were more
abundant in Orc2 precipitates than in Mcm3 or Mcm4
precipitates. One explanation is that Orc2-speci®c antibodies
were more ef®cient than Mcm-speci®c antibodies in immuno-
precipitating crosslinked chromatin, but it is also possible that
DNA fragments extracted from Orc2 precipitates are more
suitable as templates for PCR than DNA fragments extracted
from Mcm precipitates. This could be due, for example, to an
incomplete reversal of covalent linkages between protein and
DNA or, and probably more likely, to breaks or other
discontinuities in the DNA strands of Mcm-bearing cross-
linked chromatin.

In either case, the data of Figure 3 show that Mcm3- and
Mcm4-speci®c antibodies are able to precipitate chromatin
with PCR-ampli®able DNA. We next determined whether the
location of Mcm proteins varies during the cell cycle and
performed experiments with cells in G1 phase and compared
them with cells that were released into S phase.

Mcm proteins at the origin

We have performed several independent cell synchronization
experiments and prepared crosslinked chromatin, both from

cells before and after release into S phase (see Materials and
Methods and Fig. 2). ChIP assays were performed with
samples from each preparation and the abundance of speci®c
DNA regions in the immunoprecpitates was evaluated by
quantitative PCR using ®ve primer pairs in some and eight
primer pairs in other experiments.

As a summary of the results (Fig. 4) we note the following.
First, Orc2-speci®c antibodies speci®cally precipitated chro-
matin fragments with sequences that could be ampli®ed by
primers corresponding to the upstream promoter region
(Prom) and to the Ex2 region. These two regions are adjacent
to each other (distance <1 kb) and could therefore occur on the
same chromatin fragments. The results were similar for
crosslinked chromatin prepared from G1 phase cells and from
S phase cells (compare left and right panels in Fig. 4A).
Second, Mcm3-speci®c antibodies preferentially immunopre-
cipitated promoter-proximal sequences of crosslinked chro-
matin from cells in G1 phase. In fact, ~75% of the estimated
total ampli®able DNA sequences (`genomic equivalents' in
Fig. 4) in these precipitates corresponded to promoter-
proximal sites (left panel in Fig. 4B). In contrast, immuno-
precipitates performed with S phase chromatin yielded only
~30% of ampli®able promoter-proximal DNA. In these
immunoprecipitates most ampli®able DNA corresponded to
promoter-distal regions (right panel in Fig. 4B). Third, ChIP
experiments with Mcm4-speci®c antibodies gave results that

Figure 2. ChIP assay on crosslinked chromatin from synchronized HeLa cells. Crosslinked chromatin from G1 phase cells and S phase cells was immuno-
precipitated with antibodies against Mcm3p (a-MCM3). The input, supernatant and precipitated samples were western blotted and analyzed with Mcm3p,
Mcm5p and Orc2p antibodies as well as with antibodies against the large subunit of RPA (RPA70) as indicated. Synchronization was veri®ed by analysis of
DNA content on a ¯ow cytometer (shown in the conventional manner).

Figure 3. (Opposite) Speci®c DNA regions in immunoprecipitated crosslinked chromatin from unsynchronized HeLa cells. (A) Genomic organization of the
analyzed region encompassing human genes PRKDC and MCM4 (70). In the double line diagram, exons are shown as black boxes and arrows indicate the
starts and directions of transcription. In the single line diagram, divergent arrowheads show regions complementary to the PCR primers used. (B) Input. DNA
was extracted from crosslinked chromatin before immunoprecipitation and ampli®ed by quantitative PCR using the primer sets indicated. The results are
expressed in `genomic units' relative to serially diluted genomic control DNA. (C) Immunoprecipitated chromatin. Quantitative real-time PCR with DNA
templates extracted from chromatin precipitated with control antibodies and with antibodies against Orc2p, Mcm3p and Mcm4p as indicated.
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con®rmed those obtained with Mcm3-speci®c antibodies,
showing again that Mcm antibodies preferentially immuno-
precipitate chromatin with an ORC-binding site and with a
replication origin from G1 phase cells, and chromatin with
promoter-distal sequences from S phase cells (left and right
panels in Fig. 4C). We have performed several experiments in
addition to those shown in Figure 4. In these experiments, we
used Mcm5- and Mcm7-speci®c antibodies for the immuno-
precipitation of crosslinked chromatin. The data obtained were
very similar to those of Figure 4 and are therefore not shown.
We have also compared chromatin from cells released for 2 h
into S phase and found a distribution very similar to that of
immunoprecipitated chromatin fragments shown in Figure 4
(data not shown). Thus, a wave of apparently synchronous
Mcm protein migration such as that described for yeast
elongation (5) does either not occur in HeLa cells (due to an
inherent asynchrony in origin activation) or cannot be
observed under the present experimental conditions.

As noted above, evaluation of ChIP assays requires a
comparison of the PCR results in the immunoprecipitates
(Fig. 4) with those in the input crosslinked chromatin (Fig. 3B).
Accordingly, we calculated the ratios of ampli®able pre-
cipitated over input DNA. The data show, for the Orc2
immunoprecipitates, that promoter-proximal sequences
(ampli®ed using primer pairs Prom and Ex2) were 10- to
20-fold enriched over promoter-distal sequences (Fig. 5A). In
the Mcm3 and Mcm4 immunoprecipitates of chromatin from
G1 phase cells, promoter-proximal sequences were also
enriched, although more moderately (2- to 6-fold), over
promoter-distal sequences (open squares in Fig. 5B and C).

The preference for promoter-proximal sites was lost in
immunoprecpitated chromatin from S phase cells where all
regions in the MCM4/PRKDC gene locus appeared to be
present in approximately similar copy numbers (closed circles
in Fig. 5B and C).

DISCUSSION

We used the ChIP technology to investigate the location of
components of the pre-replication complex in the human
genome. We previously identi®ed prominent ORC-binding
sites within ~500 bp regions upstream of several constitutively
expressed genes. These sites usually coincide with origins of
replication as determined by the nascent strand abundance
assay (54,55).

We have now used ChIP to determine the position of Mcm
proteins on chromatin. This is of interest because work with
cycling mammalian cells has shown that the binding of Mcm
proteins to chromatin follows the binding of ORC, but, unlike
the situation in yeast and Xenopus egg extracts, it has not been
determined whether human ORC is required for the subse-
quent binding of Mcm proteins, nor is it known whether Mcm
proteins assemble at ORC. While an effective in vitro system
will be necessary to investigate the ®rst point, our data
contribute to the second point as they show that Mcm proteins
preferentially occur at the ORC-binding region in G1 phase
cells.

In our experiments, we used monospeci®c antibodies
against Mcm3p, a component of the stable Mcm3p±Mcm5p
dimer, and antibodies against Mcm4p, a member of the

Figure 4. Speci®c DNA regions in immunoprecipitated crosslinked chromatin from cells in G1 phase and S phase. HeLa cells were synchronized in G1 phase
(left) or released into S phase for 4 h (right) and were subjected to ChIP analysis. Quantitative real-time PCR was performed with DNA templates extracted
from chromatin precipitated with antibodies against (A) Orc2p, (B) Mcm3p and (C) Mcm4p. We show the results of three independent experiments. (Below)
Schematic representation of the genomic region analyzed with the PCR-ampli®ed segments indicated by arrowheads.
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Mcm4p±Mcm6p±Mcm7p trimer that has been reported to
function as a helicase in vitro (47,48,65,66). Immunopre-
cipitation results suggest that the dimer and trimer complexes
seem to crosslink independently of each other (Fig. 1).
However, they crosslink to the same DNA sequences, at least
in the genomic region investigated, and it is therefore likely
that they function together in vivo. For that purpose, we do not
distinguish between Mcm3 and Mcm4 immunoprecipitates in
the following discussion.

It became clear from this and earlier studies that Orc2p and
possibly other Orc proteins remain bound to speci®c
chromatin sites during the cell cycle (with the exception of
Orc1p, which dissociates from chromatin and is degraded
during the S phase of cycling mammalian cells; 59,67). We
now show that Mcm proteins associate in G1 phase with the
ORC-bearing chromatin sites.

While this conclusion is in agreement with the generally
accepted scheme of pre-replication complex formation in
eukaryotes, we made some observations that should be
commented on.

One observation is that Orc2p-speci®c antibodies precipi-
tate chromatin that carries Orc2p, bound to its upstream
promoter site, but lacks Mcm proteins. Thus, a number of
ORCs may not be in contact with Mcm proteins. This was not
only found in ongoing S phase when ORC remains bound
while Mcm proteins move away from the origin (and
eventually dissociate from chromatin), but also in G1 phase.
This could mean that some ORC do not recruit Mcm proteins
and may remain silent during that particular cell cycle.

A second point to consider is that Mcm-speci®c antibodies
precipitate chromatin, which, in addition to high amounts of
Mcm proteins, also carries Orc2p, although in relatively small
amounts. As already mentioned, the fact that Mcm antibodies
co-immunoprecipitate Orc2p but Orc2 antibodies fail to co-
immunoprecipitate Mcm proteins can be explained by
assuming that Mcm proteins cover chromatin-bound Orc2p
which thus becomes inaccessible in these complexes. That
Orc2p and Mcm proteins indeed occur at identical chromatin
sites was shown by PCR analyses of DNA extracted from
immunoprecipitated chromatin from G1 phase cells.

In this regard we note that Mcm antibodies precipitate a
considerable fraction of chromatin with crosslinked Mcm
proteins (Fig. 1). However, PCR analyses resulted in rather
small numbers of Mcm-associated ampli®able sequences, at
least relative to Orc2-associated sequences, which are detected
in 3- to 4-fold higher copy numbers in immunoprecipitated
chromatin (Figs 3 and 4) even though Orc proteins are clearly
less abundant in chromatin than Mcm proteins (1). Thus,
Mcm-bearing DNA extracted from immunoprecipitated chro-
matin cannot be PCR ampli®ed to similar extents as ORC-
bearing DNA in the same preparation. This could be caused by
structural features of the Mcm-bearing DNA such as single-
strand regions or strand discontinuities. In fact, it has been
described that chromatin with associated Mcm proteins is
more readily attacked by micrococcal nuclease than bulk
chromatin or chromatin with Orc proteins, suggesting that
Mcm proteins normally reside in more open chromatin regions
where the underlying DNA may undergo speci®c transitions
such as helix unwinding in S phase (60,68).

This interesting point certainly deserves further investiga-
tion. However, with the present experimental approach we
detect only those Mcm-bearing DNA segments that can be
ampli®ed in PCR analyses. With these reservations in mind,
we conclude that Mcm proteins preferentially occur at an
origin site before S phase, but distribute over more distal parts
of the genes during ongoing S phase. This is similar to
previous results with yeast cells (5,69) and could mean that
Mcm proteins are migrating in both directions from the origin
with the divergently moving replication forks, as expected if
Mcm proteins constitute the replicative DNA helicases in
eukaryotic cells.

However, according to biochemical experiments, only
the Mcm4p±Mcm6p±Mcm7p trimer functions as a DNA
helicase in vitro whereas the Mcm3p±Mcm5p dimer and
the hexameric Mcm complex are enzymatically inactive
(47±49). We suggest now that Mcm3p±Mcm5p dimers and
Mcm4p±Mcm6p±Mcm7p trimers migrate together with
replication forks and may therefore functionally interact
in vivo, although it is presently unclear what their
combined function could be.

Figure 5. Enrichment of speci®c DNA sequences in immunoprecipitates.
Quantitative PCR gives the results in `genomic units' relative to serially
diluted puri®ed genomic DNA. The ratios of precipitated over input geno-
mic units are multiplied by 100 and plotted against the primer sites on the
analyzed region. The results of the precipitations with Orc2 antibodies are
summarized in (A), with Mcm3 antibodies in (B) and with Mcm4 antibodies
in (C). Open squares indicate the mean enrichment of the G1 phase samples
and closed circles indicate the mean enrichment of the samples from S
phase cells.
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