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ABSTRACT

While the genomes of many organisms have been
sequenced over the last few years, transforming
such raw sequence data into knowledge remains a
hard task. A great number of prediction programs
have been developed that try to address one part of
this problem, which consists of locating the genes
along a genome. This paper reviews the existing
approaches to predicting genes in eukaryotic
genomes and underlines their intrinsic advantages
and limitations. The main mathematical models and
computational algorithms adopted are also briefly
described and the resulting software classified
according to both the method and the type of
evidence used. Finally, the several difficulties and
pitfalls encountered by the programs are detailed,
showing that improvements are needed and that
new directions must be considered.

INTRODUCTION

The 21st century has seen the announcement of the draft
version of the human genome sequence (1). Model organisms
have been sequenced in both the plant (2,3) and animal
kingdoms (4) and, currently, more than 60 eukaryotic
genome sequencing projects are underway (see http://igweb.
integratedgenomics.com/GOLDY/).

However, biological interpretation, i.e. annotation, is not
keeping pace with this avalanche of raw sequence data. There
is still a real need for accurate and fast tools to analyze these
sequences and, especially, to find genes and determine their
functions. Unfortunately, finding genes in a genomic sequence
(in this paper, we will only discuss genes encoding proteins) is
far from being a trivial problem (5). The widely used and
recognized approach for genome annotation (6) consists of
employing, first, homology methods, also called ‘extrinsic
methods’ (7), and, second, gene prediction methods or
‘intrinsic methods’ (8,9). Indeed, it seems that only approxi-
mately half of the genes can be found by homology to other

known genes or proteins (although this percentage is of course
increasing as more genomes get sequenced). In order to
determine the 50% of remaining genes, the only solution is
to turn to predictive methods and to elaborate fast, accurate
and reliable gene finders (10).

Many gene prediction programs are currently publicly
available. Most of them are referenced in the Web site
maintained by W. Li (http://linkage.rockefeller.edu/wli/
gene/). Several reviews have also been written on this topic,
among which the most recent are Claverie (11), Guigd (12),
Haussler (13) and Burge and Karlin (14). In the last 15 years, a
competitive spirit has appeared and an ever increasing number
of programs are thus being created, updated and adapted from
one organism to another. While such a scientific rush helps to
improve the quality of existing programs, it is also confusing
for the users, who wonder what makes the programs different,
which one they should use in which situation and for each
what the prediction confidence is. This last question was
addressed, in the case of vertebrate genomes, by Burset and
Guigd (15) and recently by Rogic et al. (16), and in the case of
a plant model genome (of Arabidopsis thaliana) by Pavy et al.
(17). Finally, users also wonder whether current programs can
answer all their questions (11). The answer is most probably
no, and will remain no as it is unrealistic to imagine that such
complex biological processes as transcription and translation
can be explained merely by looking at the DNA sequence.

In this review, we start by giving a general overview of the
classical gene finding approaches, without going too deeply
into the mathematical methods and algorithms themselves (the
interested reader is invited to have a look at the original
papers). For the sake of exposition, the approaches are divided
into finding the evidence for a gene and combining the
evidence in order to better predict the structure of a gene. We
end by focusing on the many remaining problems presented by
the currently available gene prediction methods.

FINDING THE EVIDENCE

We consider in this paper the problem of finding genes coding
for a protein sequence in eukaryotes only. The problem of
finding genes in prokaryotes presents different types of
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difficulties (there are no introns and the intergenic regions are
small, but genes may often overlap each other and the
translation starts are difficult to predict correctly).
Functionally, a eukaryotic gene can be defined as being
composed of a transcribed region and of regions that cis-
regulate the gene expression, such as the promoter region
which controls both the site and the extent of transcription and
is mostly found in the 5" part of the gene. The currently
existing gene prediction software look only for the transcribed
region of genes, which is then called ‘the gene’. We will adopt
this definition of a gene in this review; the region between two
transcribed regions will be called intergenic. In the current
practice, the promoter is seen as sitting in the intergenic
region, immediately upstream of the gene and not overlapping
with it. This is also a simplification of reality. A gene is further
divided into exons and introns, the latter being removed during
the splicing mechanism that leads to the mature mRNA.
Although some exons (or parts of them) may be non-coding,
most gene finding software use the term exon to denote the
coding part of the exons only. In this review, however, we will
refer to the correct biological definition of exons and explicitly
mention when only the coding part of them is concerned.
Indeed, in the mature mRNA, the untranslated terminal
regions (UTRs) are the non-coding transcribed regions,
which are located upstream of the translation initiation (5’
UTR) and downstream (3’-UTR) of the translation stop. They
are known to play a role in the post-transcriptional regulation
of gene expression, such as the regulation of translation and
the control of mRNA decay (18). Inside or at the boundaries of
the various genomic regions, specific functional sites (or
signals) are documented to be involved in the various levels of
protein encoding gene expression, e.g. transcription (tran-
scription factor binding sites and TATA boxes), splicing
(donor and acceptor sites and branch points), polyadenylation
[poly(A) site], translation (initiation site, generally ATG with
exceptions, and stop codons).

Essentially, two different types of information are currently
used to try to locate genes in a genomic sequence. (i) Content
sensors are measures that try to classify a DNA region into
types, e.g. coding versus non-coding. Historically, the exist-
ence of a sufficient similarity with a biologically characterized
sequence has been the main means of obtaining such a
classification. Similarity-based approaches have often been
called extrinsic in opposition to others that try to capture some
of the intrinsic properties of the coding/non-coding sequences
(compositional bias, codon usage, etc). (ii) Signal sensors are
measures that try to detect the presence of the functional sites
specific to a gene.

Content sensors

Extrinsic content sensors. Extrinsic content sensors simply
exploit a sufficient similarity between a genomic sequence
region and a protein or DNA sequence present in a database in
order to determine whether the region is transcribed and/or
coding. The basic tools for detecting sufficient similarity
between sequences are local alignment methods ranging from
the optimal Smith—Waterman algorithm to fast heuristic
approaches such as FASTA (19) and BLAST (20). Besides
the fact that some databases may contain information of poor
quality (a topic that will be discussed later), and independently
of the type of similarities that are considered, the obvious

weakness of such extrinsic approaches is that nothing will be
found if the database does not contain a sufficiently similar
sequence. Furthermore, even when a good similarity is found,
the limits of the regions of similarity, which should indicate
exons, are not always very precise and do not enable an
accurate identification of the structure of the gene. Small
exons are also easily missed.

Overall, similarities with three different types of sequences
may provide information about exon/intron locations. The first
and most widely used are protein sequences that can be found
in databases such as SwissProt or PIR. It is estimated that
almost 50% of the genes can be identified thanks to a sufficient
similarity score with a homologous protein sequence.
However, even when a good hit is obtained, a complete
exact identification of the gene structure can still remain
difficult because homologous proteins may not share all of
their domains. Furthermore, UTRs cannot be delimited in this
way.

The second type of sequences are transcripts, sequenced as
cDNAs (a ¢cDNA is a DNA copy of a mRNA) either in the
classical way for targeted individual genes with high coverage
sequencing of the complete clone or as expressed sequence
tags (ESTs), which are one shot sequences from a whole
cDNA library. ESTs and ‘classical’ cDNAs are the most
relevant information to establish the structure of a gene,
especially if they come from the same source as the genome to
be annotated. ESTs provide information that enable the
identification of (partial) exons, either coding or non-coding,
and give unbiased hints on alternative splicing. However,
ESTs give only local and limited information on the gene
structure as they only reflect a partial mRNA. Furthermore, the
correct attribution of EST sequences to an individual member
in a gene family is not a trivial task.

Finally, under the assumption that coding sequences are
more conserved than non-coding ones, similarity with
genomic DNA can also be a valuable source of information
on exon/intron location. Two approaches are possible: intra-
genomic comparisons can provide data for multigenic
families, apparently representing a large percentage of the
existing genes (e.g. 80% for Arabidopsis); inter-genomic
(cross-species) comparisons can allow the identification of
orthologous genes, even without any preliminary knowledge
of them. Nevertheless, the similarity may not cover entire
coding exons but be limited to the most conserved part of
them. Alternatively, it may sometimes extend to introns and/or
to the UTRs and promoter elements. This will be the case
when genomes are evolutionarily close or when genome
duplications are recent events. In both cases, exactly discrim-
inating between coding and non-coding sequences is not an
obvious task.

In all cases, an important strength of similarity-based
approaches is that predictions rely on accumulated pre-
existing biological data (with the caveat mentioned later of
possible poor database quality). They should thus produce
biologically relevant predictions (even if only partial).
Another important point is that a single match is enough to
detect the presence of a gene, even if it is not canonical. An
interesting study on the human genome concluded that EST
databases represent an effective general purpose probe for
gene detection in the human genome (21). The authors of the
study stress, however, the fact that genes expressed either



under very specific conditions or at a low level are generally
not represented in EST databases.

Intrinsic content sensors. Originally, intrinsic content sensors
were defined for prokaryotic genomes. In such genomes, only
two types of regions are usually considered: the regions that
code for a protein and will be translated, and intergenic
regions. Since coding regions will be translated, they are
characterized by the fact that three successive bases in the
correct frame define a codon which, using the genetic code
rules, will be translated into a specific amino acid in the final
protein.

In prokaryotic sequences, genes define (long) uninterrupted
coding regions that must not contain stop codons. Therefore,
the simplest approach for finding potential coding sequences is
to look for sufficiently long open reading frames (ORFs),
defined as sequences not containing stops, i.e. as sequences
between a start and a stop codon. In eukaryotic sequences,
however, the translated regions may be very short and the
absence of stop codons becomes meaningless (22).

Several other measures have therefore been defined that try
to more finely characterize the fact that a sequence is ‘coding’
for a protein: nucleotide composition and especially (G+C)
content (introns being more A/T-rich than exons, especially in
plants), codon composition, hexamer frequency, base occur-
rence periodicity, etc. Among the large variety of coding
measures that have been tested, hexamer usage (i.e. usage of
6 nt long words) was shown in 1992 to be the most
discriminative variable between coding and non-coding
sequences (23). This characteristic has been widely exploited
by a large number of algorithms through different methods.

Thus, hexamer frequency is one of the main variables used
in SORFIND (24), Genview?2 (25), the quadratic discriminant
analysis approach of MZEF (26) and the neural network
procedure of GeneParser (27). This last program combines the
use of hexamer frequency with local compositional complex-
ity measures estimated on octanucleotide statistics. Such
statistics are also efficiently used, among other variables, in
the linear discriminant analysis of Solovyev’s GeneFinder
(28).

More generally, the kmer composition of coding sequences
is the basis of the now ubiquitous so-called ‘three-periodic
Markov model’ introduced in the pioneering algorithm
GeneMark (29). Very briefly, a Markov model is a stochastic
model which assumes that the probability of appearance of a
given base (A, T, G or C) at a given position depends only on
the k previous nucleotides (k is called the order of the Markov
model). Such a model is defined by the conditional probabil-
ities P(Xlk previous nucleotides), where X = A, T, G or C. In
order to build a Markov model, a learning set of sequences on
which these probabilities will be estimated is required. Given a
sequence and a Markov model, one can then very simply
compute the probability that this sequence has been generated
according to this model, i.e. the likelihood of the sequence,
given the model.

The simplest Markov models are homogeneous zero order
Markov models which assume that each base occurs inde-
pendently with a given frequency. Such simple models are
often used for non-coding regions, although it is now frequent
to use higher order models to represent introns and intergenic
regions as, for instance, in GeneMark, Genscan (30) and
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EuGene (31). The more complex three-periodic Markov
models have been introduced to characterize coding se-
quences. Coding regions are defined by three Markov models,
one for each position inside a codon.

The larger the order of a Markov model, the finer it can
characterize dependencies between adjacent nucleotides.
However, a model of order k requires a very large number
of coding sequences to be reliably estimated. Therefore, most
existing gene prediction programs, such as GeneMark and
Genscan, usually rely on a three-periodic Markov model of
order five (thus exploiting hexamer composition) or less to
characterize coding sequences. To cope with these limitations,
interpolated Markov models (IMMs) have been introduced in
the prokaryotic gene finder Glimmer (32). For each condi-
tional probability, an IMM combines statistics from several
Markov models, from order zero to a given order k (typically k
= 8), according to the information available. These IMMs are
now also used in GlimmerM (33), a version dedicated to
eukaryotes, and in EuGene. The new version of Glimmer
introduces yet another sophistication of Markov models called
interpolated context models, which can capture dependencies
among 12 adjacent nucleotides (34).

Another type of refinement is often needed in eukaryotic
genomes. It consists of estimating several gene models
according to the G+C content of the genomic sequence. This
is done by Genscan and GeneMark.hmm (35). Indeed, it was
shown that differences in gene structure and gene density
along some genomes are closely related to their ‘isochore’
organization (36-38).

In general, most currently existing programs use two types
of content sensors: one for coding sequences and one for non-
coding sequences, i.e. introns, UTRs and intergenic regions. A
few software refine this by using a different model for the
different types of non-coding regions (e.g. one model for
introns, one for intergenic regions and an optional specific 3’-
and 5’-UTR model in EuGéne).

Although these methods are considered as ‘intrinsic’, the
fact that the models are built from known sequences will
inherently limit the applicability of the methods to sequences
that, globally, behave in the same way as the learning set.

Signal sensors

The basic and natural approach to finding a signal that may
represent the presence of a functional site is to search for a
match with a consensus sequence (with possible variations
allowed), the consensus being determined from a multiple
alignment of functionally related documented sequences. This
type of method is used, for instance, for splice sites prediction
in SPLICEVIEW (39) and SplicePredictor (40), the latter
combining it with other kinds of information.

A more flexible representation of signals is offered by the
so-called positional weight matrices (PWMs), which indicate
the probability that a given base appears at each position of the
signal (again computed from a multiple alignment of
functionally related sequences). Equivalently, one can say
that a PWM is defined by one classical zero order Markov
model per position, which is called an inhomogeneous zero
order Markov model. The PWM weights can also be
optimized by a neural network method, as proposed by
Brunak et al. (41) for NetPlantGene (42) and NetGene2 (43)
and used in NNSplice (44).



4106 Nucleic Acids Research, 2002, Vol. 30 No. 19

Table 1. Splice site prediction programs

Program Organism Method
GeneSplicer (152) Arabidopsis, human HMM + MDD
NETPLANTGENE (42) Arabidopsis NN
(http://www.cbs.dtu.dk/services/NetPGene/)

NETGENE2 (43) Human, C.elegans, Arabidopsis NN + HMM

(http://www.cbs.dtu.dk/services/NetGene2/)
SPLICEVIEW (39)
(http://125.itba.mi.cnr.it/~webgene/wwwspliceview.html)
NNSPLICEQ.9 (44)

(http://www fruitfly.org/seq_tools/splice.html)
SPLICEPREDICTOR (40,153)
(http://bioinformatics.iastate.edu/cgi-bin/sp.cgi)
BCM-SPL

(http://www.softberry.com/berry.phtml; http://genomic.sanger.ac.uk/gf/gf.html)

Eukaryotes Score with consensus

Drosophila, human or other NN
Arabidopsis, maize Logitlinear models: (i) score with
consensus; (ii) local composition
Human, Drosophila, C.elegans, Linear discriminant analysis
yeast, plant

HMM, hidden MM; MDD, maximal dependence decomposition; NN, neural networks.

In order to capture possible dependencies between adjacent
positions of a signal, one may use higher order Markov
models. The so-called weight array model (WAM) is essen-
tially an inhomogeneous higher order Markov model. It was
first proposed by Zhang and Marr (45) and later used by
Salzberg (46), who applied it in the VEIL (47) and MORGAN
(48) software. Genscan also uses a modified WAM to model
acceptor splice sites and a second order WAM to represent
branch point information. This is closely related to the
position-dependent triplet frequency model employed by
MZEF for the same signal.

These methods assume a fixed length signal. Hidden
Markov models (HMMs) [see the tutorial from Rabiner (49)
and, for instance, Krogh (50) for applications to biological
sequences] further allow for insertions and deletions. They
have been used in NetGene2 to model the branch point signal.
In order to capture the most significant dependencies between
adjacent as well as non-adjacent positions, Burge proposed
another model for donor sites called the maximal dependence
decomposition (MDD) method.

Most existing programs use such models to represent and
detect splice sites. An alphabetical list of currently available
splice site detection programs is presented in Table 1. These
programs can already integrate the output of several signal
sensors, or even signal and content sensors, as for example
NetGene2, which combines splice site signal and branch point
signal sensors with a global coding content sensor through a
neural network. A similar approach is used in the recent
program GeneSplicer, which combines MDD models for
splice sites with second order Markov models that characterize
coding/non-coding regions around splice sites. Recently, it
was shown that combining sequence-based metrics for splice
sites (WAM) with secondary structure metrics could lead to
valuable improvements in splice site prediction (51).

However, when using splice site prediction programs, one
ends up with a list of potential splice sites, from which various
gene structures may be built. The main purpose of such
programs is not to find the gene structure but to try to find the
correct exon boundaries. They are thus very useful in addition
to an exon or gene predictor in order to refine an existing gene
structure. These programs can also provide insights into
possible alternative splicing, even if, so far, this possibility has
been very poorly investigated.

Finally, HMMSs have also been used to represent other types
of signals, such as poly(A) sites (in 3’-UTRs), promoters, etc.
Although promoter detection is, by nature, closely related to
gene detection, we will not discuss it in this paper, as it
represents, on its own, an important area of research in
computational biology (52). Recently, Pedersen et al. (53)
reviewed the (known) biology of eukaryotic promoters and the
many difficulties encountered in predicting them. As for the
previous ‘intrinsic’ content sensors, the fact that HMMs are
built from a multiple alignment of known functional
sequences inherently limits the sensors to canonical signals.

Another important signal to identify when trying to predict
a coding sequence is the translation initiation codon. A few
programs exist specifically dedicated to this problem (54-56),
but most of them have a rather limited efficiency, which is
maybe related to the lack of proper learning sets for eukaryotic
genomes. Experimental information on the genuine location of
translation starts has indeed been scarce up to now, a situation
that will likely change soon with the advent of proteome data.

COMBINING THE EVIDENCE TO PREDICT GENE
STRUCTURES

Since 1990, following the example of Fields and Soderlund
(57) and of Gelfand (58), programs are no longer limited to
searching for independent exons, but try instead to identify the
whole complex structure of a gene. Given a sequence and
using signal sensors, one can accumulate evidence on the
occurrence of signals: translation starts and stops and splice
sites are the most important ones since they define the
boundaries of coding regions. In theory, each consistent pair of
detected signals defines a potential gene region (intron, exon
or coding part of an exon). If one considers that all these
potential gene regions can be used to build a gene model, the
number of potential gene models grows exponentially with the
number of predicted exons. In practice, this is slightly reduced
by the fact that ‘correct’ gene structures must satisfy a set of
properties: (i) there are no overlapping exons; (ii) coding
exons must be frame compatible; (iii) merging two successive
coding exons will not generate an in-frame stop at the
junction. The number of candidates remains, however,
exponential. In almost all existing approaches, such an



exponential number is coped with in reasonable time by using
dynamic programming techniques.

Until recently, prediction methods that try to determine the
whole gene structure, i.e. to assemble all the pieces, could be
separated into two classes depending on whether the content
of exon/intron regions was assessed using extrinsic or intrinsic
content sensors. We first consider each of these approaches in
turn and then see how more recent programs try to combine
evidence coming from both intrinsic and extrinsic content
Sensors.

Extrinsic approaches

Pioneered by Gelfand er al. (59) with Procrustes, many
software based on similarity searches have emerged during the
last 5 years. They are presented in Table 2. As mentioned
before, one of the main weaknesses of the pure similarity-
based content sensors is that the limits of similarities are never
accurately defined. The principle of most of these programs is
to combine similarity information with signal information
obtained by signal sensors. This information will be used to
refine the region boundaries. These programs inherit all the
strengths and weaknesses of the sensors used and may, for
example, fail when non-canonical splice sites are present.

Very briefly, all the programs in this class may be seen as
sophistications of the traditional Smith—Waterman local
alignment algorithm where the existence of a signal allows
for the opening (donor) or closure (acceptor) of a gap with an
essentially free extension cost. They are often referred to as
‘spliced alignment’ programs. Existing software may be
further divided according to the type of similarity exploited:
genomic DNA/protein, genomic DNA/cDNA or genomic
DNA/genomic DNA. Some of these methods are able to deal
with more than one type and to take into account possible
frameshifts in the genomic DNA or cDNA sequences.

The purpose of Procrustes is to align a genomic sequence
with a protein. The selection of the target protein is left to the
user, who may retrieve it from a BLASTX search for instance.
Procrustes then considers all potential exons from the query
DNA sequence, initially with the only constraint that they
must be bordered by donor and acceptor sites [according to
Gelfand et al. (59), it is recommended to additionally use
content sensors, although this does not seem to be done in the
program available on the Web]. All possible exon assemblies
are explored by translating the exons and aligning them with
the target protein, using the PAM120 matrix for scoring
mismatches. This is done in a time proportional to the product
of the lengths of the query and target sequences. As a result, it
produces an assembly with the highest similarity score to the
target protein. Other programs performing the same task are
GeneWise (60), PredictGenes, ORFgene (61) and ALN (62),
the latter introducing a new code of 23 letters for translated
codons (called a tron).

Some programs, like INFO (63) and ICE (64), use a
dictionary-based approach: they first create dictionaries of
k long segments from a protein or an EST database and then,
using a look-up procedure, find all segments in the query DNA
sequence having a match in the dictionary. A related
alternative is used in the mixture model of Thayer et al.
(65), where only the highly populated protein segments,
derived from multiple protein alignments, are stored and then
used to develop statistical models.
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Other available programs are AAT (66), GeneSeqer
(67,68), SIM4 (69) and Spidey (70), all of which perform an
alignment of the genomic DNA sequence against a cDNA
database. This is a very reliable way of identifying exons,
independently of their coding status, especially when the
genomic sequence is aligned against a cDNA from the same or
a close organism (71). Difficulties may, however, be encoun-
tered when trying to delineate the UTR part of the genes, and
thus the correct translation initiator and stop codons. AAT and
GeneSeqer also allow for the alignment against a protein
database.

The SYNCOD program (72) uses a more original proced-
ure: it compares two DNA sequences (retrieved with
BLASTN) and, for each ORF contained in a high scoring
pair, analyzes the ratio of the number of mismatches resulting
in synonymous (silent) codons to the number of mismatches
resulting in non-synonymous codons. An ORF is then
assumed to be a potential coding region if this ratio
significantly deviates from a random behavior, simulated
with a Monte Carlo procedure.

The approach adopted is rather different for programs
which try to elucidate the gene structure from EST
matches, like EbEST (73), Est2genome (74) or, more
recently, TAP (75) and PAGAN (http://ismbO1.cbs.dtu.dk/
GeneFinding.html#A308). The reason for this comes from the
specific nature of an EST. A first characteristic of ESTs is that
they are very redundant and a large number of them may be
retrieved when performing a BLAST search against dbEST.
EbEST faces this problem in its first step by clustering ESTs
into non-overlapping groups (PAGAN clusters alignments of
ESTs obtained from the results of similarity searches) and then
by selecting the most informative ESTs within each group. A
second characteristic of ESTs is that they are naturally error
prone since they are generated from single-read sequences.
The Smith—Waterman algorithm used in EbEST tolerates the
presence of such errors. Another characteristic of ESTs is that
most of them are 3" ESTs generated from oligo(dT)-primed
cDNA libraries and are therefore useful for detecting the 3’-
UTRs in long sequences. This last point is an important added
value for the EST-driven gene modeling approaches, as it
leads to a rather confident prediction of a gene 3’-end. This
importance may be somewhat weakened by the fact that ESTs
represent only partial mRNA sequences and even clusters of
ESTs may not lead to the complete identification of the gene
structure.

Finally, several programs try to retrieve information on
conservation or synteny between organisms from genomic
alignments, as, for example, MUMmer (76), WABA (77),
PipMaker (78) and DIALIGN (79). Recently, a few algorithms
have appeared that focus more specifically on the
gene recognition problem by comparison of two genomic
sequences: such programs are based on the hypothesis
that coding DNA sequences are more conserved than non-
coding sequences (intronic and intergenic). Comparing two
homologous genomic sequences (cross- or intra-species)
should thus help to reveal conserved exons and allow the
prediction of genes simultaneously on both sequences. Some
programs like ROSETTA (80) and CEM (81) are more
specifically designed for the comparison of closely related
species. In particular, they make the hypothesis of conserved
exon—intron structure in the two sequences. ROSETTA makes
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the further (very strong) hypothesis that the corresponding
exons in the two genes have roughly the same length. More
flexibility is allowed by algorithms which do not assume that
the gene structure is conserved, as in SGP-1 (82), Pro-Gen (83)
and Utopia (84). All these programs, except ROSETTA, can
perform the sequence comparison at the protein level. SGP-1
is also able to use a nucleotide level alignment; it further
combines sequence comparison with information coming
from signal sensors. It seems nevertheless to perform worse
than Pro-Gen and Utopia on sequences not so closely related
or for organisms for which it has not been specifically trained
(P.Blayo, S.Aubourg, P.Peterlongo, P.Rouzé and M.F.Sagot,
manuscript in preparation). However, SGP and a more recent
version of Utopia allow the prediction of partial genes as well
as multiple collinear genes in genomic sequences. Finally, an
original method was recently implemented in the SLAM
program, which introduces a probabilistic cross-species gene
finding algorithm using generalized pair HMMs (85).

All the comparative genomic methods have, theoretically,
the advantage of not being species specific. In practice, their
performance will depend on the evolutionary distance
between the compared sequences. Initial results show that
the relationship is not straightforward. Indeed, a greater
evolutionary distance allows some algorithms to more accur-
ately discriminate between coding and non-coding sequence
conservation. Such programs are often computer intensive and
consequently much work remains to be done. In particular, a
major challenge that could considerably improve the per-
formance of gene finding programs would be to introduce
multiple comparisons into these methods.

In order to retrieve only relevant information from
homology searches against databases, the use of such
programs must be coupled, if not integrated, with other
specific programs to eliminate repeated sequences (SINES,
LINES, etc.), which are very frequent in human genomic
sequences (about one-quarter of the genome). Examples
of such programs are RepeatMasker (http://ftp.genome.
washington.edu/RM/RepeatMasker.html) and CENSOR (86).

Intrinsic approaches

Unlike most of the ‘spliced alignment’ approaches described
in the previous section, which aim at producing a (single) gene
structure based on similarities to known sequences, intrinsic
gene finders (Table 3) aim at locating all the gene elements
that occur in a genomic sequence, including possible partial
gene structures at the border of the sequence.

To efficiently deal with the exponential number of possible
gene structures defined by potential signals, almost all
intrinsic gene finders use dynamic programming (DP) to
identify the most likely gene structures according to the
evidence defined by both content and signal sensors. All such
gene modeling strategies can be formulated with a graph
language (87). Following Guigd (88), such approaches are
said to be exon based or signal based depending on whether a
gene structure is considered to be defined by an assembly of
segments defining the coding part of the exons (exon based) or
by the presence of a succession of signals separated by
‘homogeneous’ regions.

In the exon-based category, the gene assembly is separated
from the coding segments prediction step. The goal is to find
the highest scoring genes, the gene score being a simple
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function (usually the sum) of the scores of the assembled
segments. The strength of this two-step process comes from
the fact that the score of each segment can be quite complex
and may depend on some global characteristics of the coding
part of exons, such as their lengths, for instance. In theory at
least, the segment assembly process can be defined as the
search for an optimal path in a directed acyclic graph where
vertices represent exons and edges represent compatibility
between exons. This is the approach adopted by the Geneld
(89), GenView2, GAP3 (90), FGENE (28) and DAGGER (91)
programs, where the initially adopted algorithms run in a time
proportional to the square of the number of predicted
segments. Recently, the DP algorithm GenAmic (88) solved
the problem in a running time that grew only linearly with the
number of potential segments, which itself is in the worst case
quadratic with the sequence length (however, the assumption
that in-frame stop codons occur following a Poisson process
suffices to make the expected number of possible coding
segments linear with the length of the sequence). It is currently
integrated in the Geneld program as well as in FGENE,
whereas the GeneGenerator (92) program has its own linear
running time algorithm.

In the signal-based methods, the gene assembly is produced
directly from the set of detected signals. In the simplest signal-
based methods, there is an implicit assumption that the
‘content’ score of a segment is defined as the sum of the local
(nucleotide-based) content scores and therefore does not
depend on the global characteristics of the segment. This is,
for instance, the case in a basic HMM. In such models, a given
segment is considered to be generated by a Markov model
associated with a state of the automaton (e.g. coding or non-
coding). Since such states are unknown, they are called hidden
states. In a given state, the ‘content’ score of a segment is
defined as the log-likelihood of the region according to the
corresponding Markov model, i.e. as the sum of the logarithms
of the probabilities that each nucleotide appears given the k
previous nucleotides in the model. Thanks to this assumption,
and in theory at least, the gene parsing can be defined as the
search for an optimal path in a directed acyclic graph. This
search is done using the famous Viterbi algorithm (93), which
produces a most likely gene structure and can be considered as
a specific instance of the older Bellman shortest path
algorithm (94), also used in the first versions of EuGeéne. Its
running time grows linearly with the length of the sequence.
Krogh has developed the first gene finder using a HMM,
ECOPARSE (95), for Escherichia coli. The basic HMM
model can be made more sophisticated by taking into account
the length of the regions in the score. However, this leads to a
quadratic running time. Additional assumptions make the
algorithms usable in practice. This results in the so-called
hidden semi-Markov models or generalized HMM. Such
models are used in HMM-based programs like Genscan,
Genie (44,96), GeneMark.hmm, FGENESH (A.Salamov and
V.Solovyev, unpublished data; see http://genomic.sanger.
ac.uk/) and GRPL (97). HMMgene (98) and VEIL employ a
slightly different method called CHMM, for class HMM.
Interestingly, the GRPL program introduces a new classifica-
tion method for functional sites surrounding exons, called the
regression point logistic. Other kinds of classifiers have
already been integrated in some gene finders, such as a
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decision tree system in MORGAN or discriminant analysis in
FGENE and MZEF.

Integrated approaches

Aware of the added value provided by database similarities,
authors are now combining both intrinsic and extrinsic
approaches in recent gene predictors and, in older software,
updates are made to add information from homology. A
pioneer in the area was the GSA program (Gene Structure
Assembly), born from the fusion between AAT and Genscan,
and whose results on the Burset and Guigd dataset are better
than those obtained with the two programs separately
(X.Huang, personal communication). GenomeScan (99) is
Burge’s own extension of Genscan to incorporate similarity
with a protein retrieved by BLASTX or BLASTP. Genes
predicted by GenomeScan have a maximum probability
conditional on such similarity information. GenomeScan is
thus able to accurately predict coding regions missed by both
Genscan and BLASTX used alone. Although no paper exists
describing them, FGENESH+ and FGENESH_C are other
extensions of an existing algorithm, FGENESH, that use
similarity to a protein or a cDNA sequence, respectively, to
improve gene prediction. In fact, most intrinsic prediction
programs now offer (or will soon offer) the possibility of
integrating similarities with expressed sequences to confirm
their prediction (see Table 3). The integration of similarity
between genomic sequences has so far been considered only in
FGENES-H2 and Twinscan (100), which use the FGENESH
and Genscan programs, respectively. Such integration repre-
sents a very promising approach that will undoubtedly be
much further developed in the future.

A highly integrative approach is used in the EuGene
program: it combines NetGene2 and SplicePredictor for splice
site prediction, NetStart (54) for translation initiation predic-
tion, IMM-based content sensors and similarity information
from protein, EST and cDNA matches. All these sensors are
weighted, with the weights being optimized in order to
maximize the number of successes (as is done in the
GeneParser and Dagger programs). This approach produces
a reliable software, as attested by the results obtained on the
A.thaliana genes that were presented at the Georgia Tech In
silico Biology International Conference in November 1999. Its
good performance probably relies to a large part on the
maximum of success criterion and on the fact that the
program is using a specific model for intergenic regions. It is
also worth mentioning GAZE (http://ismb01.cbs.dtu.dk/
GeneFinding.html#A304), which should allow the integration
of arbitrary prediction information from multiple sources
supplied by the user.

In the same order of ideas, it is possible to directly combine
the predictions of several programs in order to obtain a sort of
consensus. Such an approach was tested by several authors
and involved different software (17,101,102). DIGIT (http://
ismb01.cbs.dtu.dk/GeneFinding.html#A303) is such a soft-
ware. It integrates FGENESH, Genscan and HMMgene. It is
quite obvious that only keeping exons shared by two or more
predictions has the advantage of significantly decreasing the
number of over-predictions but may lead to a poor sensibility
and possible inconsistencies at the gene level. However,
promising results were recently obtained with a new flexible
method for combining any number of gene prediction systems,
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as a combination of experts, inside a Bayesian framework
(103).

Finally, it must be mentioned that there exist annotation
platforms that allow the running of several selected gene
prediction programs and/or which graphically display their
results. Among the more widely used are Genotator (104),
MagPie (105) and Ensembl (106). If such platforms are not
prediction programs themselves, they gather evidence ob-
tained from ab initio or homology-based prediction programs
and thus are complementary and useful tools that facilitate
either human driven or automated annotations.

QUALITY OF THE PREDICTIONS AND PRINCIPAL
REMAINING PROBLEMS

Prediction accuracy

For numerical data on the quality of the predictions obtained
by most ab initio programs, the reader is invited to see Burset
and Guigo (15), Rogic et al. (16) and Pavy et al. (17) or to
refer to the homepage of each software, which sometimes
provides such data.

Although the statistical properties of coding regions allow
for a good discrimination between large coding and non-
coding regions, the exact identification of the limits of the
coding parts of the exons or of gene boundaries remains
difficult. In the first case, predicted coding region limits are
often incorrect. In the second case, the predicted structure
frequently splits a single true gene into several or, alterna-
tively, merges several genes into one. To address these
problems, several teams are currently working on the terminal
parts of genes. Already, a program especially dedicated to
predicting 3’-terminal exons (107) and another for identifying
5’-terminal exons (108) have been made available from
M. Zhang’s laboratory. Such problems are, however, very
complex, as intergenic and intronic sequences do not differ
much. Furthermore, specific signals in the 5’- or 3’-ends of
genes (e.g. the TATA box and the polyadenylation signal),
which could be expected to be useful for predicting gene
boundaries, are often too variable. Once more, improvements
can be achieved by looking for a combination of several
signals together with compositional biases (109). Sometimes,
however, such signals are not even present (53,110).

It is clear, and has recently been underlined (111), that gene
prediction accuracy drops significantly with large DNA
sequences. This is due to a decrease in gene density and to
the presence of larger introns.

No exhaustive evaluation of the homology-based prediction
programs has been published so far, but some general
comments can be made that are based on both experience
and the results discussed in the papers describing each
algorithm. As expected, the programs that use expression
data, such as protein or mRNA sequences, have the advantage
of generating fewer false predictions, i.e. they tend to have
good specificity. The obvious counterpart is of course that
when no gene is predicted, this does not imply that no gene is
present. Moreover, determination of the complete gene
structure by such methods is also difficult or impossible
when either the target expressed sequence is partial or when
the evolutionary distance between the compared sequences is
too great. However, even partial hits can give useful clues to
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the presence of a gene and, therefore, the homology-based
methods are important in all annotation processes.

Whatever the approach, gene prediction depends, to a large
extent, on the current biological knowledge, especially
knowledge at the molecular level of gene expression which
keeps evolving and accumulating. Besides mainstream mech-
anisms, some unexpected non-canonical cases are regularly
reported in the literature, which again increase the complexity
of the problem.

Pitfalls and issues to be addressed

Several issues make the problem of eukaryotic gene finding
extremely difficult. (i) Very long genes: for example, the
largest human gene, the dystrophin gene, is composed of 79
exons spanning nearly 2.3 Mb (112). (ii) Very long introns:
again, in the human dystrophin gene, some introns are >100 kb
long and >99% of the gene is composed of introns. (iii) Very
conserved introns or 3’-UTRs (113), either between different
species or within gene families: this is particularly a problem
when gene prediction is addressed through similarity searches.
A comparative analysis of 77 orthologous mouse and human
gene pairs concluded that 56% of 3’-UTRs are covered by
alignable blocks (114). (iv) Very short exons: some exons are
only 3 bp long in Arabidopsis genes and probably even 1 bp
for the coding part of exons at either end of the coding
sequence, meaning that start or stop codons can be interrupted
by an intron (S.Aubourg, K.Vandepoele, P.Déhais, C.Mathé
and P.Rouzé, personal communication). Such small exons are
easily missed by all content sensors, especially if bordered by
large introns. The more difficult cases are those where the
length of a coding exon is a multiple of three (typically 3, 6 or
9 bp long), because missing such exons will not cause a
problem in the exon assembly as they do not introduce any
change in the frame.

Other issues could be addressed by making the gene model
currently adopted in most gene finders more sophisticated.

(i) Overlapping genes: though very rare in eukaryotic
genomes, there are some documented cases in animals as well
as in plants (115). The number of such cases will probably
increase as soon as we consider them as probable. Overlapping
generally involves the 3’-UTR part of genes, but it can also
happen that there is a gene within an intron of another gene
[the first example was reported by Henikoff et al. (116)].

(i1) Polycistronic gene arrangement: albeit this situation was
initially thought to occur only in prokaryotes, polycistronic
genes have been found in eukaryotes. Many such cases are
known for snoRNA genes in plants (117), as well as for
protein encoding genes in nematodes, and so far isolated
examples have been observed in mammals (118).

(iii) Frameshifts: some sequences stored in databases may
contain errors (either sequencing errors or simply errors made
when editing the sequence) resulting in the introduction of
artificial frameshifts (deletion or insertion of one base). Such
frameshifts greatly increase the difficulty of the computational
gene finding problem by producing erroneous statistics and
masking true solutions. Some programs are said to be able to
detect frameshifts, like GeneMark and AAT. Some homology-
based programs, such as Utopia and Pro-Frame (119), can
handle such cases. Some programs specifically dedicated to
this problem exist, mainly for prokaryotic genomes, but also
for coding eukaryotic sequences such as FSED (120). More

recent programs such as FrameD (121) and ESTScan (122) are
able to deal with noisy sequences and are typically aimed at
detecting and correcting frameshifts in ¢cDNA and more
specifically in EST sequences.

(iv) Introns in non-coding regions: there are genes for which
the genomic region corresponding to the 5’- and/or 3’-UTR in
the mature mRNA is interrupted by one or more intron(s). The
extremity of the gene is then composed of non-coding exons
and intron(s). It was shown that such non-coding exons might
also support alternative splicing (123). Some of the programs
that exploit similarities with ESTs or cDNAs, such as
SplicePredictor, are actually able to predict such introns.
Without such evidence, and since the base composition of
UTRs is more intron-like than coding exon-like (42), most
programs simply ignore this problem.

(v) Non-canonical splice sites (reviewed in 124): they are
not really handled by any program yet. As long as examples of
non-canonical introns are provided in the training set,
programs such as GeneParser or NetPlantGene/NetGene2
(and therefore EuGeéne) should be able to identify some splice
sites that do not use a GT-AG rule. The new FGENESH
program (A.Salamov and V.Solovyev, unpublished) specific-
ally allows for the existence of a GC donor site instead of a
GT. Recently, mammalian annotated genes were controlled
with EST matching sequences, producing new sets of EST-
supported non-canonical splice sites (125). It would be
interesting to do the same work on other genomes, as it
provides very useful data that could be integrated into gene
prediction programs.

(vi) Cases of an alternative biological processing. (a)
Alternative transcription start: e.g. three alternative promoters
regulate the transcription of the 14 kb full-length dystrophin
mRNAs and four ‘intragenic’ promoters control that of
smaller isoforms (112). Another problem related to promoters
concerns the fact that there is not one single class of core
promoter. Instead, many combinations of small elements are
possible (53). (b) Alternative splicing: EST-based methods are
widely used to identify more systematically such events and to
understand their roles (126,127). A recent review on this topic
(128) reports an estimated 35-59% of human genes showing
evidence for at least one alternative splice site form. Some
gene prediction programs try to handle this through the
identification of sub-optimal exons (Genscan and MZEF) and
sub-optimal gene structures [GeneParser, HMMgene,
GeneGenerator and FGENES-M (V.Solovyev, unpublished
data)]. Nevertheless, a more relevant approach would consist
of improving the identification of the intronic and/or exonic
signals that dictate the choice of alternative sites (129).
(c) Alternative polyadenylation: here again, EST data are very
informative and lead to an estimated 20% of human transcripts
showing evidence of alternative polyadenylation (130).
(d) Alternative initiation of translation: finding the right
AUG initiator is still a major concern for gene prediction
methods. The main reason is that experimental data on native
proteins remain scarce. The biological process itself is far
from simple and is therefore not yet fully elucidated [for a
recent review on the initiation of translation, see Kozak (131)].
Briefly, the rule stating that the first AUG in the mRNA is the
initiator codon can be escaped through three mechanisms:
context-dependent leaky scanning, re-initiation and direct
internal initiation. Furthermore, it has been observed that a



non-AUG triplet can sometimes act as the functional codon for
translation initiation, as ACG in Arabidopsis (132) or CUG in
human sequences (133). However, no current program
considers such alternative forms.

Some of these cases remain rare enough so that taking them
into account in the gene prediction algorithms would lower the
overall accuracy of the programs while greatly increasing the
level of difficulty. Current programs thus aim at optimizing
performance on the majority of data. This is laudable, but one
must be aware that this is at the expense of obtaining a good
performance on ‘outliers’ of the population. This may be a
problem, particularly if one considers that such outlier cases
appear marginal only because nobody (including ‘wet’
biologists) is looking for them and that they may in fact be
more frequent than suspected. As mentioned, this may be the
case for overlapping genes.

Problems with databases and/or training sets

A major concern, already stressed by Claverie (11), is that
existing sensors are very conservative since they nearly
always rely on already known sequences, either in the form of
training sets or of databases against which homology searches
are performed. Attempts to tackle this problem have been
proposed (134,135), which were dedicated to prokaryotic
genomes and were anyway not fully satisfying. However, it
seems to be a natural and reasonable procedure to first look for
what is already known and then to try to extrapolate from our
current knowledge. This approach should probably be con-
sidered only as a first step. A first parsing of the data could be
done using one of these ‘conservative’ methods and, either in a
second run or when unusual situations occur, the possibility of
non-canonical cases should be examined, allowing a recon-
sideration of the first prediction proposed.

Another remark about training sets is that several datasets
may be better than a single big one. Indeed, an important fact
considered by only a few programs is that, from a biological
point of view, there is not a unique type of gene. Besides the
fact that genes code for various types of proteins, they also
exhibit differences in their level of expression, condition and
cellular location of expression. There is therefore no reason to
assume that only a unique gene model exists (136,137).
Taking this into account has already proved to be relevant in
the case of E.coli (138). As a consequence, an interesting
problem would be to create such sub-data sets, with enough
data to derive statistical models in a biologically relevant way.
This problem was addressed in the case of prokaryotic
genomes by GeneMark-Genesis, which automatically clusters
OREFs on the basis of their codon usage and derives Markov
models for each cluster obtained (139), and more recently by
GeneMarkS (140). In eukaryotes, the problem is again more
complex since, within a gene, some exons may better fit one
model and others another model. There are nevertheless some
clues indicating that the same kind of procedure would be
relevant (141). This remark also applies to signal sensors, e.g.
for splice sites. Several consensus sequences could thus be
searched for.

Last but not least, whatever method is adopted (intrinsic or
extrinsic), there is a great need for ‘clean’ sequence databases,
i.e. for databases that are not redundant, contain reliable
and relevant annotations and provide all necessary links to
further data (142,143). Without such conditions, much false
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information can be (and currently is) propagated by the
predictions made. If, in the case of extrinsic gene prediction,
the usage of erroneous data has consequences only at the level
of the analyzed sequence itself, in the case of intrinsic
prediction, using corrupted training sets can dramatically
affect the whole performance of the program. In both
situations, it is therefore very important to filter the data
retrieved from the databanks in order to use only experimen-
tally documented sequences as references and not data coming
from predictions, such as those generated by automatic
genome annotations.

CONCLUSIONS

The prediction of protein encoding genes is obviously still in
need of improvement, as discussed in the previous section,
especially for larger genomes. It has also to better tackle the
problem of alternative gene models and to take into account
non-canonical, but nevertheless biologically significant, cases.
Since gene prediction leads to a structural annotation of the
genomes which is then used for experimentation, it would be
wise to weight the predictions by giving a confidence value for
each predicted gene, from high for a gene whose full structure
has been obtained in a non-ambiguous way using cognate
cDNA data to low for a gene whose prediction totally depends
on intrinsic approaches.

Moreover, algorithms and software descriptions provided
by the authors are too often somewhat superficial; in
particular, most papers do not give enough details on precise
parameter tuning, for instance. Until recently, there was also
no common vocabulary adopted among developers, with no
common definitions used between different software for the
phase or frames, etc. It is worth observing an interesting effort
to design a general feature format (GFF) (http://www.sanger.
ac.uk/Software/formats/GFF/). This was the result of an
agreement between many developers. The format aims at
standardizing gene predictor outputs and vocabulary. A
standard output for all gene predictors allows for the
development of common tools that can be used for down-
stream analysis: evaluation, graphical representation and
combination of predictions. A few software are already
producing GFF output, such as HMMgene, SGP-1 and the
exon assembly program GenAmic, which is using GFF files
for both input and output. At a larger scale, the Gene Ontology
consortium (http://www.geneontology.org/) aims at providing
a structured vocabulary that would allow the description of
gene products in any organism (144). Model organism groups
have started joining this consortium, largely contributing to
the unification of biological information, whose importance
was recently emphasized (145).

With the huge amount of EST and cDNA sequences now
available, programs based on the existence of homology with
such expressed sequences are playing an ever increasingly
crucial role in current genome annotations, at least for genes
for which expression can be shown. Even in the case of genes
that are scarcely or tissue specifically expressed, complemen-
tary information can be provided by similarity between
genomic sequences. Consequently, a great deal of effort is
now expended on trying to gather information from genome
comparisons. This is particularly true in the case of the human
genome annotation process, where the availability of other
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complete vertebrate genomes, such as those of mouse and fish,
is a great advantage. With the many genome sequencing
projects currently under way, and although there are still
problems to be solved (146), the comparative genome
approach seems to be a very promising approach not only in
the field of gene prediction but also for the identification of
regulatory sequences and the deciphering of the so-called junk
DNA. The latter has been largely ignored until now, yet much
may be expected to be learned from its analysis (147,148).
Even if in this review we have just discussed programs to
detect protein coding genes, there is also an undetermined (but
probably high) number of genes producing functional non-
coding RNAs (reviewed in 149), which may be identified by
genomic comparison. More interest is now devoted to such
non-coding RNAs (150,151), and this probably stands among
the main future directions in computational approaches for
genome analysis.

Finally, we wish to again warn the users of gene prediction
software that the results produced should be taken with
caution: although such results are becoming increasingly more
reliable, they do only remain predictions. These are very
useful for speeding up gene discovery and knowledge mining
thereof, but biological expertise remains necessary in order to
confirm the existence of a virtual protein and to find or prove
its biological function and its condition of expression in the
organism.

ACKNOWLEDGEMENTS

We wish to thank the anonymous referees for their very
interesting and constructive comments on the manuscript. We
are also very grateful to Jim Middleton and to Alain Vignal for
revising the English text.

REFERENCES

1. The International Human Genome Sequencing Consortium (2001)
Initial sequencing and analysis of the human genome. Nature, 409,
860-921.

2. The Arabidopsis Genome Initiative (2000) Analysis of the genome
sequence of the flowering plant Arabidopsis thaliana. Nature, 408,
796-815.

3. Goff,S.A., Ricke,D., Lan,T.H., Presting,G., Wang,R., Dunn,M.,
Glazebrook,J., Sessions,A., Oeller,P., Varma,H. et al. (2002) A draft
sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,
296, 92-100.

4. Myers,E., Sutton,G., Delcher,A., Dew,l., Fasulo,D., Flanigan,M.,
Kravitz,S., Mobarry,C., Reinert,K., Remington,K. et al. (2000) A
whole-genome assembly of Drosophila. Science, 287, 2196-2204.

5. Claverie,J.M., Poirot,O. and Lopez,F. (1997) The difficulty of
identifying genes in anonymous vertebrate sequences. Comput. Chem.,
21, 203-214.

6. Cho,Y. and Walbot,V. (2001) Computational methods for gene
annotation: the Arabidopsis genome. Curr. Opin. Biotechnol., 12,
126-130.

7. Borodovsky,M., Rudd,K.E. and Koonin,E.V. (1994) Intrinsic and
extrinsic approaches for detecting genes in a bacterial genome. Nucleic
Acids Res., 22, 4756-4767.

8. Fickett,J.W. (1996) The gene identification problem: an overview for
developer. Comput. Chem., 20, 103-118.

9. Rouzé,P., Pavy,N. and Rombauts,S. (1999) Genome annotation: which
tools do we have for it? Curr. Opin. Plant Biol., 2, 90-95.

10. Fickett,J.W. (1996) Finding genes by computer: the state of the art.
Trends Genet., 12, 316-320.

11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Claverie,J.M. (1997) Computational methods for the identification of
genes in vertebrate genomic sequences. Hum. Mol. Genet., 6,
1735-1744.

Guigd,R. (1997) Computational gene identification: an open problem.
Comput. Chem., 21, 215-222.

Haussler,D. (1998) Computational genefinding. Trends Biochem. Sci.,
12-15.

. Burge,C. and Karlin,S. (1998) Finding the genes in genomic DNA.

Curr. Opin. Struct. Biol., 8, 346-354.

Burset,M. and Guigd,R. (1996) Evaluation of gene structure prediction
programs. Genomics, 34, 353-367.

Rogic,S., Mackworth,A. and Ouellette,F. (2001) Evaluation of gene-
finding programs on mammalian sequences. Genome Res., 11, 817-832.

. Pavy,N., Rombauts,S., Déhais,P., Mathé,C., Ramana,D.V.V., Leroy,P.

and Rouzé,P. (1999) Evaluation of gene prediction software using a
genomic data set: application to Arabidopsis thaliana sequences.
Bioinformatics, 15, 887-899.

Mignone,F., Gissi,C., Liuni,S. and Pesole,G. (2002) Untranslated
regions of mRNAs. Genome Biol., 3, reviews0004.1-0004.10.
Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci. USA, 85, 2444-2448.
Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)
Basic local alignment search tool. J. Mol. Biol., 215, 403—410.
Bailey,L.C., Searls,D.B. and Overton,G.C. (1998) Analysis of EST-
driven gene annotation in human genomic sequence. Genome Res., 8,
362-376.

Fickett,J.W. (1995) ORFs and genes: how strong a connection?

J. Comput. Biol., 2, 117-123.

Fickett,J.W. and Tung,C.S. (1992) Assessment of protein coding
measures. Nucleic Acids Res., 20, 6441-6450.

Hutchinson,G.B. and Hayden,M.R. (1992) The prediction of exons
through an analysis of spliceable open reading frames. Nucleic Acids
Res., 20, 3453-3462.

Milanesi,L., Kolchanov,N.A., Rogozin,I.B., Ischenko,I.V., Kel,A.E.,
Orlov,Y.L., Ponomarenko,M.P. and Vezzoni,P. (1993) GenView: a
computing tool for protein-coding regions prediction in nucleotide
sequences. In Lim,H.A., Fickett,J.W., Cantor,C.R. and Robbins,R.J.
(eds), Proceedings of the Second International Conference on
Bioinformatics, Supercomputing and Complex Genome Analysis. World
Scientific Publishing, Singapore, pp. 573-588.

Zhang,M.Q. (1997) Identification of protein coding regions in the
human genome by quadratic discriminant analysis. Proc. Natl Acad.
Sci. USA, 94, 565-568. [Erratum (1997) Proc. Natl Acad. Sci. USA, 94,
5495]

Snyder,E.E. and Stormo,G.D. (1995) Identification of protein coding
regions in genomic DNA. J. Mol. Biol., 248, 1-18.

Solovyev,V. and Salamov,A. (1997) The Gene-Finder computer tools
for analysis of human and model organisms genome sequences. In
Gaasterland,T., Karp,P., Karplus,K., Ouzounis,C., Sander,C. and
Valencia,A. (eds), The Fifth International Conference on Intelligent
Systems for Molecular Biology. AAAI Press, Menlo Park, CA,

pp. 294-302.

Borodovsky,M. and Mclninch,J. (1993) GENMARK: parallel gene
recognition for both DNA strands. Comput. Chem., 17, 123-133.
Burge,C. and Karlin,S. (1997) Prediction of complete gene structures in
human genomic DNA. J. Mol. Biol., 268, 78-94.

Schiex,T., Moisan,A. and Rouzé,P. (2001) EuGene: an eukaryotic gene
finder that combines several sources of evidence. In Gascuel,O. and
Sagot,M.-F. (eds), Lecture Notes in Computer Science, Vol. 2006, First
International Conference on Biology, Informatics, and Mathematics,
JOBIM 2000. Springer-Verlag, Germany, pp. 111-125.

Salzberg,S., Delcher,A., Kasif,S. and White,O. (1998) Microbial gene
identification using interpolated Markov models. Nucleic Acids Res., 26,
544-548.

Salzberg,S.L., Pertea,M., Delcher,A.L., Gardner,M.J. and Tettelin,H.
(1999) Interpolated Markov models for eukaryotic gene finding.
Genomics, 59, 24-31.

Delcher,A.L., Harmon,D., Kasif,S., White,O. and Salzberg,S.L. (1999)
Improved microbial gene identification with GLIMMER. Nucleic Acids
Res., 27, 4636-4641.

Lukashin,A.V. and Borodovsky,M. (1998) GeneMark.hmm: new
solutions for gene finding. Nucleic Acids Res., 26, 1107-1115.
Bernardi,G. (1989) The isochore organization of the human genome.
Annu. Rev. Genet., 23, 637-661.



37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

Montero,L..M., Salinas,J., Matassi,G. and Bernardi,G. (1990) Gene
distribution and isochore organization in the nuclear genome of plants.
Nucleic Acids Res., 18, 1859-1867.

Duret,L., Mouchiroud,D. and Gautier,C. (1995) Statistical analysis of
vertebrate sequences reveals that long genes are scarce in GC-rich
isochores. J. Mol. Evol., 40, 308-317.

Rogozin,I.B. and Milanesi,L. (1997) Analysis of donor splice signals in
different organisms. J. Mol. Evol., 45, 50-59.

Kleffe,J., Hermann,K., Vahrson,W., Wittig,B. and Brendel,V. (1996)
Logitlinear models for the prediction of splice sites in plant pre-mRNA
sequences. Nucleic Acids Res., 24, 4709-4718.

Brunak,S., Engelbrecht,J. and Knudsen,S. (1991) Prediction of human
mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol.,
220, 49-65.

Hebsgaard,S.M., Korning,P.G., Tolstrup,N., Engelbrecht,J., Rouzé,P.
and Brunak,S. (1996) Splice site prediction in Arabidopsis thaliana pre
mRNA by combining local and global sequence information. Nucleic
Acids Res., 24, 3439-3452.

Tolstrup,N., Rouzé,P. and Brunak,S. (1997) A branch point consensus
from Arabidopsis found by non-circular analysis allows for better
prediction of acceptor sites. Nucleic Acids Res., 25, 3159-3163.
Reese,M.G., Eeckman,F.H., Kulp,D. and Haussler,D. (1997) Improved
splice site detection in Genie. In Istrail,S., Pevzner,P. and Waterman,M.
(eds), First Annual International Conference on Computational
Molecular Biology (RECOMB). ACM Press, New York, NY,

pp. 232-240.

Zhang,M.Q. and Marr,T.G. (1993) A weight array method for splicing
signal analysis. Comput. Appl. Biosci., 9, 499-509.

Salzberg,S.L. (1997) A method for identifying splice sites and
translational start sites in eukaryotic mRNA. Comput. Appl. Biosci., 13,
365-376.

Henderson,J., Salzberg,S. and Fasman,K. (1997) Finding genes in
human DNA with a hidden Markov model. J. Comput. Biol., 4,
127-141.

Salzberg,S., Delcher,A., Fasman,K. and Henderson,J. (1998) A decision
tree system for finding genes in DNA. J. Comput. Biol., 5, 667-680.
Rabiner,L.R. (1989) A tutorial on hidden Markov models and selected
applications for speech recognition. Proc. IEEE, 77, 257-285.
Krogh,A. (1998) An introduction to hidden Markov models for
biological sequences. In Salzberg,S.L., Searls,D.B. and Kasif,S. (eds),
Computational Methods in Molecular Biology. Elsevier, Amsterdam,
The Netherlands, pp. 46-63.

Patterson,D.J., Yasuhara,K. and Ruzzo,W.L. (2002) Pre-mRNA
secondary structure prediction aids splice site prediction. In
Altman,R.B., Dunker,A.K., Hunter,L., Lauderdale,K. and Klein,T.E.
(eds), Pacific Symposium on Biocomputing, Vol. 7, World Scientific,
Singapore, pp. 223-234.

Ohler,U. and Niemann,H. (2001) Identification and analysis of
eukaryotic promoters: recent computational approaches. Trends Genet.,
17, 56-60.

Pedersen,A.G., Baldi,P., Chauvin,Y. and Brunak,S. (1999) The biology
of eukaryotic promoter prediction—a review. Comput. Chem., 23,
191-207.

Pedersen,A.G. and Nielsen,H. (1997) Neural network prediction of
translation initiation sites in eukaryotes: perspectives for EST and
genome analysis. In Gaasterland,T., Karp,P., Karplus,K., Ouzounis,C.,
Sander,C. and Valencia,A. (eds), The Fifth International Conference on
Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park,
CA, pp. 226-233.

Zien,A., Ratsch,G., Mika,S., Scholkopf,B., Lengauer,T. and Muller,K.
(2000) Engineering support vector machine kernels that recognize
translation initiation sites. Bioinformatics, 16, 799-807.

Nishikawa,T., Ota,T. and Isogai,T. (2000) Prediction whether a human
c¢DNA sequence contains initiation codon by combining statistical
information and similarity with protein sequences. Bioinformatics, 16,
960-967.

Fields,C.A. and Soderlund,C.A. (1990) gm: a practical tool for
automating DNA sequence analysis. Comput. Appl. Biosci., 6, 263-270.
Gelfand,M.S. (1990) Computer prediction of the exon—intron structure
of mammalian pre-mRNAs. Nucleic Acids Res., 18, 5865-5869.
Gelfand,M.S., Mironov,A.A. and Pevzner,P.A. (1996) Gene recognition
via spliced sequence alignment. Proc. Natl Acad. Sci. USA, 93,
9061-9066.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

Nucleic Acids Research, 2002, Vol. 30 No. 19 4115

Birney,E. and Durbin,R. (1997) Dynamite: a flexible code generating
language for dynamic programming methods used in sequence
comparison. Proc. Int. Conf. Intell. Syst. Mol. Biol., 5, 56-64.
Rogozin,I.B., Milanesi,L. and Kolchanov,N.A. (1996) Gene structure
prediction using information on homologous protein sequence. Comput.
Appl. Biosci., 12, 161-170.

Gotoh,0. (2000) Homology-based gene structure prediction: simplified
matching algorithm using a translated codon (tron) and improved
accuracy by allowing for long gaps. Bioinformatics, 16, 190-202.
Laub,M.T. and Smith,D.W. (1998) Finding intron/exon splice junctions
using INFO, INterruption Finder and Organizer. J. Comput. Biol., 5,
307-321.

Pachter,L., Batzoglou,S., Spitkovsky,V.I., Banks,E., Lander,E.S.,
Kleitman,D.J. and Berger,B. (1999) A dictionary-based approach for
gene annotation. J. Comput. Biol., 6, 419-430.

Thayer,E., Bystroff,C. and Baker,D. (2000) Detection of protein coding
sequences using a mixture model for local protein amino acid sequence.
J. Comput. Biol., 7, 317-327.

Huang,X., Adams,M.D., Zhou,H. and Kerlavage,A.R. (1997) A tool for
analyzing and annotating genomic sequences. Genomics, 46, 37-45.
Usuka,J. and Brendel,V. (2000) Gene structure prediction by spliced
alignment of genomic DNA with protein sequences: increased accuracy
by differential splice site scoring. J. Mol. Biol., 297, 1075-1085.
Usuka,J., Zhu,W. and Brendel,V. (2000) Optimal spliced alignment of
homologous cDNA to a genomic DNA template. Bioinformatics, 16,
203-211.

Florea,L., Hartzell,G., Zhang,Z., Rubin,G.M. and Miller,W. (1998) A
computer program for aligning a cDNA sequence with a genomic DNA
sequence. Genome Res., 8, 967-974.

Wheelan,S.J., Church,D.M. and Ostell,J.M. (2001) Spidey: a tool for
mRNA-to-genomic alignments. Genome Res., 11, 1952-1957.
Fukunishi,Y., Suzuki,H., Yoshino,M., Konno,H. and Hayashizaki,Y.
(1999) Prediction of human cDNA from its homologous mouse full-
length cDNA and human shotgun database. FEBS Lett., 464, 129-132.
Rogozin,I.B., D’Angelo,D. and Milanesi,L. (1999) Protein-coding
regions prediction combining similarity searches and conservative
evolutionary properties of protein-coding sequences. Gene, 226,
129-137.

Jiang,J. and Jacob,H.J. (1998) EbEST: an automated tool using
expressed sequence tags to delineate gene structure. Genome Res., 8,
268-275.

Mott,R. (1997) EST_GENOME: a program to align spliced DNA
sequences to unspliced genomic DNA. Comput. Appl. Biosci., 13,
477-478.

Kan,Z., Rouchka,E.C., Gish,W.R. and States,D.J. (2001) Gene structure
prediction and alternative splicing analysis using genomically aligned
ESTs. Genome Res., 11, 889-900.

Delcher,A.L., Kasif,S., Fleischmann,R.D., Peterson,J., White,O. and
Salzberg,S.L. (1999) Alignment of whole genomes. Nucleic Acids Res.,
27, 2369-2376.

Kent,W.J. and Zahler,A.M. (2000) Conservation, regulation, synteny,
and introns in a large-scale C. briggsae—C. elegans genomic alignment.
Genome Res., 10, 1115-1125.

Schwartz,S., Zhang,Z., Frazer,K., Smit,A., Riemer,C., Bouck,J.,
Gibbs,R., Hardison,R. and Miller,W. (2000) PipMaker—a web server
for aligning two genomic DNA sequences. Genome Res., 10, 577-586.
Morgenstern,B. (2000) A space-efficient algorithm for aligning large
genomic sequences. Bioinformatics, 16, 948-949.

Batzoglou,S., Pachter,L., Mesirov,J., Berger,B. and Lander,E.S. (2000)
Human and mouse gene structure: comparative analysis and application
to exon prediction. Genome Res., 10, 950-958.

Bafna,V. and Huson,D. (2000) The conserved exon method for gene
finding. In Bourne,P., Gribskov,M., Altman,R., Jensen,N., Hope,D.,
Lengauer,T., Mitchell,J., Scheeff,E., Smith,C., Strande,S. and
Weissig,H. (eds), Eighth International Conference on Intelligent
Systems for Molecular Biology. AAAI Press, Menlo Park, CA, pp. 3-12.
Wiehe,T., Gebauer-Jung,S., Mitchell-Olds,T. and Guigo,R. (2001)
SGP-1: prediction and validation of homologous genes based on
sequence alignments. Genome Res., 11, 1574-1583.

Novichkov,P.S., Gelfand,M.S. and Mironov,A.A. (2001) Gene
recognition in eukaryotic DNA by comparison of genomic sequences.
Bioinformatics, 17, 1011-1018.

Blayo,P., Rouzé,P. and Sagot,M.-F. (2002) Orphan gene finding—an
exon assembly approach. Theor. Comput. Sci., in press.



4116 Nucleic Acids Research, 2002, Vol. 30 No. 19

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

. Pachter,L., Alexandersson,M. and Cawley,S. (2002) Applications of
generalized pair hidden Markov models to alignment and gene finding
problems. J. Comput. Biol., 9, 389-399.

Jurka,J., Klonowski,P., Dagman,V. and Pelton,P. (1996) CENSOR—a
program for identification and elimination of repetitive elements from
DNA sequences. Comput. Chem., 20, 119-112.

Roytberg, M.A., Astakhova,T.V. and Gelfand,M.S. (1997)
Combinatorial approaches to gene recognition. Comput. Chem., 21,
229-235.

Guigd,R. (1998) Assembling genes from predicted exons in linear time
with dynamic programming. J. Comput. Biol., 5, 681-702.

Guigd,R., Knudsen,S., Drake,N. and Smith,T. (1992) Prediction of gene
structure. J. Mol. Biol., 226, 141-157.

Xu,Y., Mural,R.J. and Uberbaker,E.C. (1994) Constructing gene models
from accurately predicted exons: an application of dynamic
programming. Comput. Appl. Biosci., 10, 613-623.

Chuang,J.S. and Roth,D. (2001) Gene recognition based on DAG
shortest paths. Bioinformatics, 1, 1-9.

Kleffe,J., Hermann,K., Vahrson,W., Wittig,B. and Brendel,V. (1998)
GeneGenerator—a flexible algorithm for gene prediction and its
application to maize sequences. Bioinformatics, 14, 232-243.
Viterbi,A. (1967) Error bounds for convolutional codes and an
asymptotically optimal decoding algorithm. IEEE Trans. Informat.
Theor., IT-13, 260-269.

Bellman,R.E. (1957) Dynamic Programming. Princeton University
Press, Princeton, NJ.

Krogh,A., Mian,L.S. and Haussler,D. (1994) A hidden Markov model
that finds genes in E. coli DNA. Nucleic Acids Res., 22, 4768-4778.
Kulp,D., Haussler,D., Reese,M.G. and Eeckman,F.H. (1996) A
generalized Hidden Markov Model for the recognition of human genes
in DNA. In States,D.J., Agarwal,P., Gaasterland,T., Hunter,L. and
Smith,R.F. (eds), Proceedings of the Fourth International Conference
on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park,
CA, pp. 134-142.

Hooper,P., Zhang,H. and Wishart,D. (2000) Prediction of genetic
structure in eukaryotic DNA using reference point logistic regression
and sequence alignment. Bioinformatics, 16, 425-438.

Krogh,A. (1997) Two methods for improving performace of a HMM
and their application for gene finding. In Gaasterland,T., Karp,P.,
Karplus,K., Ouzounis,C., Sander,C. and Valencia,A. (eds), The Fifth
International Conference on Intelligent Systems for Molecular Biology.
AAALI Press, Menlo Park, CA, pp. 179-186.

Yeh,R.-F., Lim,L.P. and Burge,C.B. (2001) Computational inference of
homologous gene structures in the human genome. Genome Res., 11,
803-816.

Korf 1., Flicek,P., Duan,D. and Brent,M.R. (2001) Integrating genomic
homology into gene structure prediction. Bioinformatics, 17,
S140-S148.

Murakami,K. and Tagaki,T. (1998) Gene recognition by combination of
several gene-finding programs. Bioinformatics, 14, 665-675.
Solovyev,V.V. and Salamov,A.A. (1999) INFOGENE: a database of
known gene structures and predicted genes and proteins in sequences of
genome sequencing projects. Nucleic Acids Res., 27, 248-250.
Pavlovic,V., Garg,A. and Kasif,S. (2002) A Bayesian framework for
combining gene predictions. Bioinformatics, 18, 19-27.

Harris,N.L. (1997) Genotator: a workbench for sequence annotation.
Genome Res., 7, 754-762.

Gaasterland,T. and Sensen,C.W. (1996) Fully automated genome
analysis that reflects user needs and preferences. A detailed introduction
to the MAGPIE system architecture. Biochimie, 78, 302-310.
Hubbard,T., Barker,D., Birney,E., Cameron,G., Chen,Y., Clark,L.,
Cox,T., Cuff,]., Curwen,V., Down,T. et al. (2002) The Ensembl
genome database project. Nucleic Acids Res., 30, 38—41.

Tabaska,J., Davuluri,R. and Zhang,M. (2001) Identifying the
3’-terminal exon in human DNA. Bioinformatics, 17, 602-607.
Davuluri,R.V., Grosse,l. and Zhang,M.Q. (2001) Computational
identification of promoters and first exons in the human genome. Nature
Genet., 29, 412-417.

Down,T.A. and Hubbard,T.J. (2002) Computational detection and
location of transcription start sites in mammalian genomic DNA.
Genome Res., 12, 458-461.

Graber,J.H., Cantor,C.R., Mohr,S.C. and Smith,T.F. (1999) In silico
detection of control signals: mRNA 3’-end-processing sequences in
diverse species. Proc. Natl Acad. Sci. USA, 96, 14055-14060.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

Guigo,R., Agarwal,P., Abril,J., Burset,M. and Fickett,J. (2000) An
assessment of gene prediction accuracy in large DNA sequences.
Genome Res., 10, 1631-1642.

Nobile,C., Marchi,J., Nigro,V., Roberts,R.G. and Danieli,G.A. (1997)
Exon-intron organization of the human dystrophin gene. Genomics, 45,
421-424.

Duret,L., Dorkeld,F. and Gautier,C. (1993) Strong conservation of
vertebrate non-coding sequences during vertebrate evolution: potential
involvement in post-transcriptional regulation of gene expression.
Nucleic Acids Res., 21, 2315-2322.

Jareborg,N., Birney,E. and Durbin,R. (1999) Comparative analysis of
noncoding regions of 77 orthologous mouse and human gene pairs.
Genome Res., 9, 815-824.

Quesada,V., Ponce,M.R. and Micol,J.L. (1999) OTC and AULI, two
convergent and overlapping genes in the nuclear genome of Arabidopsis
thaliana. FEBS Lett., 461, 101-106.

Henikoff,S., Keene,M.A., Fechtel,K. and Fristrom,J.W. (1986) Gene
within a gene: nested Drosophila genes encode unrelated proteins on
opposite DNA strands. Cell, 44, 33-42.

Leader,D.J., Clark,G.P., Watters,J., Beven,A.F., Shaw,P.J. and
Brown,J.W. (1997) Clusters of multiple different small nucleolar RNA
genes in plants are expressed as and processed from polycistronic pre-
snoRNAs. EMBO J., 16, 5742-5751.

Blumenthal, T. (1998) Gene clusters and polycistronic transcription in
eukaryotes. Bioessays, 20, 480-487.

Mironov,A.A., Novichkov,P.S. and Gelfand,M.S. (2001) Pro-Frame:
similarity-based gene recognition in eukaryotic DNA sequences with
errors. Bioinformatics, 17, 13-15.

Fichant,G.A. and Quentin,Y. (1995) A frameshift error detection
algorithm for DNA sequencing projects. Nucleic Acids Res., 23,
2900-2908.

Salanoubat,M., Genin,S., Artiguenave,F., Gouzy,J., Mangenot,S.,
Arlat,M., Billault,A., Brottier,P., Camus,J.C., Cattolico,L. et al. (2002)
Genome sequence of the plant pathogen Ralstonia solanacearum.
Nature, 415, 497-502.

Iseli,C., Jongeneel,C.V. and Bucher,P. (1999) ESTScan: a program for
detecting, evaluating, and reconstructing potential coding regions in
EST sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 138-148.
Klein,M., Pieri,I., Uhlmann,F., Pfizenmaier,K. and Eisel,U. (1998)
Cloning and characterization of promoter and 5’-UTR of the NMDA
receptor subunit epsilon 2: evidence for alternative splicing of 5’-non-
coding exon. Gene, 208, 259-269.

Sharp,P.A. and Burge,C.B. (1997) Classification of introns: U2-type or
Ul2-type. Cell, 91, 875-879.

Burset,M., Seledtsov,I. and Solovyev,V. (2000) Analysis of canonical
and non-canonical splice sites in mammalian genomes. Nucleic Acids
Res., 28, 4364-4375.

Croft,L., Schandorff,S., Clark,F., Burrage,K., Arctander,P. and
Mattick,J. (2000) ISIS, the intron information system, reveals the high
frequency of alternative splicing in the human genome. Nature Genet.,
24, 340-341.

Modrek,B., Resch,A., Grasso,C. and Lee,C. (2001) Genome-wide
detection of alternative splicing in expressed sequences of human genes.
Nucleic Acids Res., 29, 2850-2859.

Modrek,B. and Lee,C. (2002) A genomic view of alternative splicing.
Nature Genet., 30, 13—-19.

Hastings,M.L. and Krainer,A.R. (2001) Pre-mRNA splicing in the new
millennium. Curr. Opin. Cell Biol., 13, 302-309.

Gautheret,D., Poirot,O., Lopez,F., Audic,S. and Claverie Jean,M.
(1998) Alternate polyadenylation in human mRNAs: a large-scale
analysis by EST clustering. Genome Res., 8, 524-530.

Kozak,M. (1999) Initiation of translation in prokaryotes and eukaryotes.
Gene, 234, 187-208.

Riechmann,J.L., Ito,T. and Meyerowitz,E. (1999) Non-AUG initiation
of AGAMOUS mRNA translation in Arabidpsis thaliana. Mol. Cell.
Biol., 19, 8505-8512.

Vagner,S., Touriol,C., Galy,B., Audigier,S., Gensac,M., Amalric,F.,
Bayard,F., Prats,H. and Prats,A. (1996) Translation of CUG- but not
AUG-initiated forms of human fibroblast growth factor 2 is activated in
transformed and stressed cells. J. Cell Biol., 135, 1391-1402.
Audic,S. and Claverie,J.-M. (1998) Self-identification of protein-coding
regions in microbial genomes. Proc. Natl Acad. Sci. USA, 95,
10026-10031.



135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

Besemer,J. and Borodovsky,M. (1999) Heuristic approach to deriving
models for gene finding. Nucleic Acids Res., 27, 3911-3920.
Médigue,C., Rouxel,T., Vigier,P., Hénaut,A. and Danchin,A. (1991)
Evidence for horizontal gene transfer in Escherichia coli speciation.

J. Mol. Biol., 222, 851-856.

Mathé,C., Peresetsky,A., Déhais,P., Van Montagu,M. and Rouzé,P.
(1999) Classification of Arabidopsis thaliana gene sequences:
clustering of coding sequences into two groups according to codon
usage improves gene prediction. J. Mol. Biol., 285, 1977-1991.
Borodovsky,M., McIninch,J.D., Koonin,E.V., Rudd,K.E., Médigue,C.
and Danchin,A. (1995) Detection of new genes in a bacterial genome
using Markov models for three gene classes. Nucleic Acids Res., 23,
3554-3562.

Hayes,W.S. and Borodovsky,M. (1998) How to interpret an anonymous
bacterial genome: machine learning approach to gene identification.
Genome Res., 8, 1154-1171.

Besemer,J., Lomsadze,A. and Borodovsky,M. (2001) GeneMarkS: a
self-training method for prediction of gene starts in microbial genomes.
Implications for finding sequence motifs in regulatory regions. Nucleic
Acids Res., 29, 2607-2618.

Mathé,C., Déhais,P., Pavy,N., Rombauts,S., Van Montagu,M. and
Rouzé,P. (2000) Gene prediction and gene classes in Arabidopsis
thaliana. J. Biotechnol., 78, 293-299.

Pennisi,E. (1999) Keeping genome databases clean and up to date.
Science, 286, 447-450.

Smith,T.F. (1998) Functional genomics—bioinformatics is ready for the
challenge. Trends Genet., 14, 291-293.

The Gene Ontology Consortium (2001) Creating the gene ontology
resource: design and implementation. Genome Res., 11, 1425-1433.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

Nucleic Acids Research, 2002, Vol. 30 No. 19 4117

Brazma,A. (2001) On the importance of standardisation in life sciences.
Bioinformatics, 17, 113-114.

Miller,W. (2001) Comparison of genomic DNA sequences: solved and
unsolved problems. Bioinformatics, 17, 391-397.

Makalowski,W. (2000) Genomic scrap yard: how genomes utilize all
that junk. Gene, 259, 61-67.

Bergman,C. and Kreitman,M. (2001) Analysis of conserved noncoding
DNA in Drosophila reveals similar constraints in intergenic and intronic
sequences. Genome Res., 11, 1335-1345.

Eddy,S.R. (1999) Noncoding RNA genes. Curr. Opin. Genet. Dev., 9,
695-699.

Erdmann,V., Szymanski,M., Hochberg,A., Groot,N. and
Barciszewski,J. (2000) Non-coding, mRNA-like RNAs database Y2K.
Nucleic Acids Res., 28, 197-200.

Rivas,E. and Eddy,S. (2000) Secondary structure alone is generally not
statistically significant for the detection of noncoding RNAs.
Bioinformatics, 16, 583—605.

Pertea,M., Lin,X. and Salzberg,S. (2001) GeneSplicer: a new
computational method for splice site prediction. Nucleic Acids Res., 29,
1185-1190.

Brendel,V., Kleffe,J., Carle Urioste,J.C. and Walbot,V. (1998)
Prediction of splice sites in plant pre-mRNA from sequence properties.
J. Mol. Biol., 276, 85-104.

Dong,S. and Searls,D.B. (1994) Gene structure prediction by linguistic
methods. Genomics, 23, 540-551.

Xu,Y.X. and Uberbacher,E.C. (1997) Automated gene identification in
large-scale genomic sequences. J. Comput. Biol., 4, 325-338.
Thomas,A. and Skolnick,M.H. (1994) A probabilistic model for
detecting coding regions in DNA sequences. IMA J. Math. Appl. Med.
Biol., 11, 149-160.



