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ABSTRACT

An mRNA transcript contains many potential anti-
sense oligodeoxynucleotide target sites. Identi®-
cation of the most ef®cacious targets remains an
important and challenging problem. Building on
separate work that revealed a strong correlation
between the inclusion of short sequence motifs
and the activity level of an oligo, we have developed
a predictive arti®cial neural network system for
mapping tetranucleotide motif content to antisense
oligo activity. Trained for high-speci®city prediction,
the system has been cross-validated against a
database of 348 oligos from the literature and a
larger proprietary database of 908 oligos. In cross-
validation tests the system identi®ed effective
oligos (i.e. oligos capable of reducing target mRNA
expression to <25% that of the control) with 53%
accuracy, in contrast to the <10% success rates
commonly reported for trial-and-error oligo selec-
tion, suggesting a possible 5-fold reduction in the
in vivo screening required to ®nd an active oligo.
We have implemented a web interface to a trained
neural network. Given an RNA transcript as
input, the system identi®es the most likely oligo
targets and provides estimates of the probabilities
that oligos targeted against these sites will be
effective.

INTRODUCTION

The development of reliable in vivo gene inactivation
strategies is an important scienti®c and therapeutic goal.
Antisense oligodeoxynucleotide (ODN) technology allows the
targeted reduction of mRNA expression through the in vivo
application of short (10±20 nt) DNA molecules with a base
sequence complementarity to a region of the transcript.
Binding of an antisense molecule triggers cleavage and

subsequent degradation of the transcript by mechanisms still
under investigation (1). This technology provides a powerful
tool for studying gene dynamics. It also shows promise for
treatment, through direct control of gene expression, of
diseases such as AIDS and cancer (2,3). Advances in
chemistry have improved selectivity, stability and speci®city
of action of ODNs, resulting in several antisense drugs
reaching human clinical trials (4). However, in spite of some
notable successes, a number of problems associated with the
use of ODNs have not yet been solved (5±7).

The designer of antisense oligos must choose between
hundreds of potential sites along the RNA targeted for down-
regulation. There is a great deal of variation in the ef®cacy of
an oligo depending on the target site selected (8,9). Ef®cacy is
usually measured by comparing the in vivo concentration of
the target RNA (or protein product) in treated cells with the
concentration in controls. In typical experiments, ef®cacy
ranges from the complete knock-out of target RNAs (within
the assay's limits) to no apparent effect.

This variability presents a signi®cant obstacle to the
practical application of the technology. Expensive and time-
consuming in vivo screenings are usually required to deter-
mine which of multiple ODNs is most effective. Several
in vitro approaches have been developed to reduce time and
cost, but because these methods do not perfectly mimic the
cellular environment their ability to predict in vivo activity is
limited (9±11).

Computational approaches to antisense ef®cacy prediction
have been developed by several groups. Working from the
hypothesis that ODN ef®cacy is determined by the structural
and energetic favorability of oligo±RNA binding, calculations
made for oligo, mRNA and hybrid duplex identify sites
favoring oligo binding (12±14). It is dif®cult to assess the
effectiveness of these methods. Each was tested with a
different experimental dataset. One study utilized compari-
sons against in vitro binding assays only (14). Others were
validated on limited datasets that make it dif®cult to derive
statistically signi®cant conclusions about their performance on
previously untested data. None were cross-validated against a
large database.
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Though empirical evidence indicates that structural and
energetic factors play an important role, these factors are not
necessarily the sole moderators of antisense ef®cacy. Other
considerations include biases in oligo delivery and the
sequence speci®city of RNase H. Tu et al. (15) observed
that the single tetranucleotide motif TCCC, when present in an
oligo, increases the likelihood of the oligo being effective
from a background rate of <10% to ~50%. Following Tu's
work, our previous efforts further explored the relationship
between short textual motifs (primarily 3mers and 4mers) and
antisense ODN effectiveness. An analysis of 349 oligos from
the literature found several dozen other motifs correlated with
in vivo antisense activity (16). While the mechanism behind
this motif-related bias has not been explained, the clear
correlation between motivic composition and ef®cacy has
considerable potential as a predictive tool. The question is
whether the local sequence of the antisense target region
contains enough information to determine the activity of the
oligo. Our hypothesis, motivated by the statistical studies
referenced above, is that although there may be more than one
mechanism at play, motif content by itself has predictive
power for determining oligo ef®cacy.

In the present work we apply arti®cial neural networks
(ANNs) to the challenge of motif-based prediction. This
problem could be addressed using ANNs in either of two
ways: as a classi®cation task, in which the oligo sequence is
identi®ed as belonging to a class, e.g. active or inactive; or as a
regression task, in which the sequence is mapped to a value
within a function established by training, e.g. a quantitative
measure of the activity of the oligo. While either approach to
the problem could have been taken, we chose to view it as a
regression task: networks were trained to map the motivic
composition of an antisense oligo to a value quantifying its
predicted in vivo activity.

MATERIALS AND METHODS

Important design issues for the problem have included data
representation, network architecture, training method and
learning parameters.

Data

The primary database used for this work consists of a set of
oligos, collected from the literature, meeting the following
criteria. (i) At least 10 oligos were assayed for in vivo effect on
a given RNA target in mammalian species. (ii) Gene
expression after oligo application was measured relative to
untreated controls. (iii) Virus targets were excluded because
assays are often performed by viral load, which can produce
distinctly different results to gene expression assays. (iv) The
experiments employed oligonucleotides with a phosphoro-
thioate backbone. (v) The database currently contains entries
for 348 oligos ranging from 10 to 22 nt in length. The oligos
were compiled from 13 published experiments targeting 11
distinct mRNAs. Reported activity values range from 0
(complete knock-out) to 1 (no effect). One source reported
oligos as inactive without providing a numeric value; the
curators assigned activity values of 0.75 to these oligos.
Available on the World Wide Web at http://antisense.
genetics.utah.edu under `ODNBase', the database is described
in more detail in Giddings et al. (17).

The network architecture and design developed in experi-
ments with ODNBase were cross-validated in experiments
incorporating a larger, independent dataset provided by ISIS
Pharmaceuticals (Carlsbad, CA). The database contains
entries for 131 18-nt and 777 20-nt oligos tested against
about 100 different transcripts. In the typical experiment, 80
DNA phosphorothioate oligonucleotides complementary to
the target mRNA or pre-mRNA were synthesized and
screened for antisense activity. The optimal tranfection
agent (usually cationic lipid) and concentration of oligonu-
cleotide were determined for each cell line. Total RNA was
isolated from treated and untreated cells using RNAeasy
(Qiagen) and target mRNA levels were measured using real
time quantitative RT±PCR (TAQman; Perkin-Elmer). Each
reported activity value is the average of duplicate measure-
ments at a constant oligonucleotide dose and is expressed as
percent untreated control.

The ISIS dataset differs from ODNBase in several ways.
Oligo concentrations, determined as described above, were
typically at least two orders of magnitude lower than those
reported in the literature. The low dosage may account for the
lower proportion of active oligos in the ISIS dataset: 4%
compared with 16% in ODNBase. Also, the data were derived
from experiments performed under homogenous conditions,
with uniform protocols for agent and assay design, measure-
ment, etc.; ODNBase was compiled from experiments
performed under a variety of conditions.

Access to the ISIS database allowed us to assess the
performance of the system on an independent dataset. Results
from these cross-validation tests are presented to demonstrate
the ef®cacy of the prediction method, but because we cannot
provide them to other researchers for independent testing,
these data were not used in the majority of experiments.

Input to network

Fundamentally, the input for the problem is a sequence string
from the DNA alphabet and the output is a number relating to the
activity of the corresponding oligo in vivo. An oligo of length n
can be decomposed into (n ± l + 1) overlapping motifs of length l.
The four nucleotides (A, C, G, T) allow k = 4l possible motifs of
this length. With these k motifs enumerated in some fashion (e.g.
alphabetical order), oligo i can be represented by the number of
occurrences (cij) in the oligo of each possible motif j. For a
20-nt oligo composed of 17 overlapping 4mers, most of the
motif counts will be 0, with a few 1s and occasionally a larger
number for a motif that occurs multiple times. Oligos typically
range from 10 to 20 nt in length. To correct for different length
oligos we can represent the proportion (pij) of oligo i that
consists of motif j, rather than the direct motif count, by
normalizing the counts by a factor Ni:

Ni �
Xk

j�1

cij � ni ÿ l� 1 1

The proportion (pij) of oligo i that consists of motif j is
calculated as:

pij � 10cij

Ni

2

The constant 10 scales the proportion values approximately to
the range [0,1].
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This mapping from sequence to activity can be represented
as:

pi1; pi2; :::; pik

+ 3

ai

where ai is the empirically measured activity of oligo i. This
representation ignores information about the positions of
motifs within the oligo and thus is not a unique mapping
between oligo and motif counts (since a single set of counts
can be scrambled into multiple different oligos). Motifs were
considered in a position independent manner because the prior
publications correlating motif composition did not indicate the
need for positional information. While they do not exclude the
future use of positional information, our experiments demon-
strate that a good model can be built without it.

Neural networks

For all experiments the Stuttgart Neural Network Simulator
(SNNS) was used (18), http://www-ra.informatik.uni-
tuebingen.de/SNNS. The system consists of a kernel, batch
language and graphical interface. Initial experiments in
network design were carried out with the graphical interface,
using randomly chosen train and test data from the database
(typically in a ratio of 90/10%, or 10-fold) to observe learning
characteristics. After settling on a few architectures and ranges
of training parameters, thorough cross-validation followed
using the kernel, batch language and custom PERL scripts
(available on request).

Various feed-forward network architectures were explored.
These included fully connected networks mapping all 256
tetranucleotide motifs to input nodes, with one or two hidden
layers containing between 4 and 20 nodes. The large size of
these networks contributed to their inability to effectively
generalize from the training set to test data. Two approaches to
preventing over-®tting are available: to prune the system
during or after training by removing nodes and weights that
contribute little to the mapping, or to begin with a smaller
network and fewer inputs. Pruning is recommended in
situations where little is known about the relative importance
of the various inputs. Optimal Brain Damage (19) and Optimal
Brain Surgeon (20) are two popular pruning algorithms.
Because previous studies had identi®ed the correlation
between particular motifs and activity, instead of pruning we
opted to begin with a smaller network and limit the input to
those motifs that are most highly correlated with activity. A c2

test for signi®cance (21) performed on the motifs for all oligos
in the database was used to rank the motifs from most to least
signi®cant. The input set was thereby reduced to the 40 motifs
exhibiting maximal statistical correlation to oligo activity
(`Chi-40' networks). A table listing these 40 motifs is
available as Supplementary Material.

The selection of the c2 ranked tetranucleotide motifs is
performed once for the whole ODNBase dataset. After
beginning work using ODNBase we discovered that the
compilation contained a duplicate entry. Because the dupli-
cated oligo contains 10 motifs highly correlated with activity,
removal of the duplicate changes the top-40 set considerably.
To provide consistency with earlier experiments, we chose to

continue using the original motif choices. Validation experi-
ments training with the independent ISIS data used the same
set of original motifs found most signi®cant by c2 selection on
ODNBase; motifs were not re-selected, thus providing an
independent cross-validation of these motif choices.

The motif length at which the correlation between motif
content and activity is maximized remains an open question.
There is likely a length l that optimizes the correlation. We
performed some experiments exploring short motifs. At the
length l = 1 (i.e. nucleotide composition) there was some bias
present favoring C, but predictions based on this were weak.
Limited tests with di- and tri-nucleotide motifs showed an
improvement in prediction accuracy with each step up in
length. At the transition from l = 3 to l = 4 the jump in input
®eld size (from 64 to 256 nodes) predisposed the network to
over-®tting. However, by reducing the input ®eld for l = 4
using the c2 pruning, the performance was again improved
with this transition. Longer motifs have not yet been explored.

Each network has a single output unit corresponding to the
activity of the oligo. Activity is usually quanti®ed as the
percentage of control (e.g. scrambled oligo) of the target RNA
after oligo application, so values lie in the [0.0,1.0] interval
with lower activities indicating greater ef®cacy. The output
node can be trained with either the continuous-valued oligo
activities or some function thereof. Experimental results led us
to investigate the three-way threshold function given by:

o �
0; a � 0:25

0:50; 0:25 < a � 0:5
1:0; a > 0:5

8<:
9=; 4

where a is activity.
Training with threshold functions of this type improved

generalization. Although the oligos in the public database
were tested by different laboratories at various concentrations,
high potency oligos may be more likely to display a
measurable effect regardless of concentration, making their
measurement more reliable. Thus, grouping oligos for training
using equation 4 may facilitate the mapping from motif
content to activity value.

Related to these observations, a log-scale function was
developed to provide a non-threshold-based transformation
that emphasizes the differences amongst high-activity oligos
while de-emphasizing the differences between low-activity
oligos by grouping the latter into a very narrow region. The
function is:

o � ln�1� ak�
ln�1� k� 5

where a is the empirical activity value and k is a scale constant
for which we use the value of 100. Training with this function
further improved generalization. This function was used in all
experiments reported below.

It was also observed that a linear (identity) activation
function on the output neuron improves performance (all other
nodes use the standard logistic activation function). This held
true for a variety of training conditions. This might be
explained by the fact that the oligo activity values are already
transformed with the non-linear functions of equations 4 or 5.
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These functions are better suited to the peculiarities of the data
than the standard logistic function is, since the latter is
symmetrical about the center and therefore accentuates
differences in the central region of the curve, which is not
the desired emphasis. The linear activation function on the
output node has the side effect that the network can produce
values outside the range [0,1], e.g. negative numbers. A
negative number simply indicates that the network predicts an
oligo will be highly effective, whereas a number greater than 1
is a prediction that the oligo is very ineffective.

While several supervised learning algorithms provided by
SNNS were tested on the problem, all experiments reported
herein were performed using the back-propagation (backprop)
algorithm with a momentum term (22). Backprop performs
connection weight adjustments in order to minimize the
difference between training signal and network output.
Weights are recursively adjusted as the model descends the
gradient of a sum-of-squared-errors cost function calculated
on each pass through the network. The rate of descent is
controlled by the learning parameter h. The backprop
momentum method utilizes two additional parameters: m
(momentum term) to reduce oscillation during learning, and c
(¯at spot elimination term), a constant value added to the
derivative of the activation function to allow the network to
avoid ¯at spots in the error space (23).

In all experiments, connection weights are initialized with
random numbers in the range [±1,1]. The random weight
initialization plays a large role in determining how effectively
a particular network generalizes for the problem. Experiments
described below were performed with either all or a 10 net
subset (in the computationally intensive `±oligo' process) of a
common group of 50 randomly initialized nets. Patterns are
presented to the networks in randomized order during each
training cycle. Node activation values are calculated in
topological order moving from the input to the output layer.

Interpretation of network output

Prediction performance is often measured in terms of speci-
®city (Sp) and sensitivity (Se):

Sp � Tn

Tn� Fp
; Se � Tp

Tp� Fn
6

where Tn is true negative predictions, Fn is false negative
predictions, Tp is true positive predictions and Fp is false
positive predictions. A related quantity is the probability of a
positive prediction being correct, given by

P� � Tp

Tp� Fp
7

The Matthews calculation (24) generates a coef®cient in the
range [±1,1] quantifying the correlation between actual and
predicted values:

M � �TnTp� ÿ �FnFp��������������������������������������������������������������������������������������ÿ�Tn� Fp��Tn� Fn��Tp� Fp��Tp� Fn��q 8

A problem with these metrics is that they rely on the use of a
threshold value that distinguishes between positive and
negative cases in the prediction output. Sampling at only
one threshold gives a limited perspective on performance,
since across the space of possible thresholds there is natural
variation due to noise. One way to overcome this limitation is
to measure these threshold-dependent quantities at a variety of
different thresholds to get a global view of their possible
values. For example, along with the Matthews correlation
coef®cient at the threshold at which Sp, Sn, etc. are reported,
we also report the maximum correlation observed over the
range of threshold values (`peak Matthews'). A more general
means of dealing with the threshold dependency of speci®city
and sensitivity is ROC (receiver operating characteristic)
analysis, which consists of sampling the values of Sp and Se at
many different thresholds spanning the range from minimum
to maximum model output (prediction values) and plotting
them against each other (25). Because, for continuous models,
there is generally an inverse relationship between speci®city
and sensitivity, the area under a ROC curve provides a concise
measure of performance. The ROC curve for a perfect
prediction model shows no tradeoff between speci®city and
sensitivity, so its area is 1.0. The opposite situationÐa random
prediction modelÐis a diagonal ROC curve from (0,1) to (1,0)
with an area of 0.5. So the useful range of ROC curve areas is
0.5±1.0.

For the present task, ROC curves are sought which have
their area distribution biased towards the high-speci®city end
of the curve. The goal is to ®nd a few oligos that have a high
likelihood of success for a given RNA. It is not a problem if
there are many false negatives (low sensitivity), as long as a
few targets are found likely to be active in vivo.

ROC analysis also requires a threshold, to classify the input
data (i.e. the database of oligos) into categories of positive/
negative (active/inactive). The choice of threshold has some
effect on the ROC area, particularly if the threshold is an
extreme value very near zero or one. To make useful
measurements of accuracy the threshold is chosen so that
the set of positives (or negatives) is not too small. For
experiments herein, the value of 0.25 was used (i.e. reduction
of RNA to 25% or less of control is considered an active
oligo).

Another measure that has been used to report antisense
prediction accuracy is the correlation coef®cient (R) and
signi®cance value (P) (12,14), which indicate how well a set of
predictions relate to experimental measurements. However,
because it is dif®cult to translate an R-value into a useful
measure of accuracy (e.g. the probability of a correct
prediction), this approach was not emphasized in the present
investigation.

Combining predictors

Several methods were used to combine the predictions of
multiple networks and combine the predictions of network(s)
with the results of other predictors. One approach is to average
the outputs of several selected networks for a given oligo
input. Another is logistic regression (http://m2.aol.com/
johnp71/logistic.html) (26), which consists of transforming
the linear regression of the data with a logistic function to
generate a probability estimator. This was used to combine the
outputs of a few predictors into an overall probability that an
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oligo will be active. It was applied in one instance to combine
the predictions of several networks, and in another to combine
a neural-network prediction with an estimate of the free-
energy change associated with oligo±RNA duplex formation.
The free energy change was calculated using the di-nucleotide
energies given by Sugimoto et al. (27), without secondary
structure or accessibility considerations.

Logistic regression can also be used to improve interpret-
ation of the outputs from individual networks by mapping
them into probability values. The process consists of per-
forming cross-validation on the dataset and using the set of
predicted activity values to calibrate the regression coef®cient.
The result is a function that maps from the network output for
a given oligo to an estimator of the probability that the oligo
will be active.

Cross-validation of network performance

Several cross-validation methods have been used to assess the
system's ability to generalize from training to test data. One is
a `minus 10%' or 10-fold system, where 10% of the database
is randomly selected as the test set. Networks trained on the
remaining 90% were then tested on the unseen 10%. This was
used for initial network design experiments. Subsequently a
`take one out' approach has been used to more thoroughly
assess performance of the chosen designs. Using PERL
scripts, a single oligo is selected from the database for testing
and the model is trained with the remainder. Following
training, the model is tested for accuracy in predicting the
activity of the single test oligo. The result for the test oligo is
recorded and the procedure repeated, using the same training
parameters, for each oligo in the database. For brevity, this
process is hereafter referred to as `±oligo' cross-validation.

One issue that has arisen regarding the use of the data in
±oligo cross-validation is the substantial sequence overlap
between oligos targeting the same transcript. There are two
distinct reasons for this circumstance. The ®rst is that
experimenters tested oligos complimentary to overlapping
regions of the target mRNA (`oligo walking'). In the second
case, identical (or nearly identical) oligos targeting the same
mRNA were tested by separate laboratories. To eliminate any
potential information leakage a regime was developed
consisting of removing all oligos corresponding to a given
RNA from the training database, training, and then testing the
networks' performance in predicting activity values of the
excluded oligos. This process is repeated for each of the 11
unique RNAs against which oligos in the database were
targeted. This process is called `minus-one-RNA' cross-
validation (±RNA). Although there is variation in the size of
the split between the train and test sets using this scheme (test
set sizes range from 11 to 59 oligos), in each round the oligos
used for training versus testing are different, with each oligo
present in a test set exactly once (i.e. when not present in the
training set).

In a ®nal set of experiments, networks were trained and
tested respectively on each of two independent datasets,
ODNBase and the ISIS database. This process was performed
in both directions. We reason that because of oligo decom-
position, information leakage between even highly similar
oligos should be insigni®cant. For example, a single mismatch
or gap in the central region of the alignment of two 20-nt
sequences corresponds to a 25% difference in the constituent

tetramers and a proportional difference in the input to the
network. Smith±Waterman alignments (28) comparing each
oligo in the ISIS data set to each oligo in ODNBase identi®ed
no identical oligos nor any cases where the full sequence of
one oligo matched a continuous substring of another. Almost
all aligned regions contained multiple mismatches. Most
importantly, all paired oligos are dissimilar enough that they
would be unlikely to bind the same RNA target. For example,
in the highest similarity pairing a very short 10-nt oligo from
the public dataset matches a 20-nt ISIS oligo in all 10 positions
with a single gap. Because of the gap, only 4 of the 7 tetramers
from the decomposition of the short oligo match tetramers
from the longer oligo. The longer oligo shares only 4 of its 17
tetramers with the short oligo. Furthermore, the short oligo
could only bind the same target as the larger by forming a
bulge in the gap position, a conformation that is energetically
unfavorable and therefore unlikely.

RESULTS AND DISCUSSION

Early in the project various tests were performed to investigate
network architectures, training parameters, motif lengths and
learning algorithms. The large space of options was quickly
narrowed to a few ranges of values for these. This type of
parameter space exploration can raise the concern that a large
number of trials will eventually lead to a chance combination
of parameters which work on that particular dataset but will
not generalize to other data. However, in this work a
multiplicity of parameter sets produced working predictors
with only small variations in performance. Experiments with
the data from ISIS Pharmaceuticals con®rm that the general-
ization is not unique to the ODNBase data. Average results for
groups of networks are presented as evidence that an effective
mapping from motifs to activity is not an idiosyncrasy of a
particular network but the result of an effective machine-
learning system.

All experiments reported below were performed with a
single group of 50 Chi-40 fully connected feed-forward
networks (differing only in the random initialization of their
connection weights) containing four units in the single hidden
layer and a linear (identity) activation function on the output
node (logistic function on all others). Networks were trained
for 1000 cycles using back-propagation with learning param-
eters h = 0.1, m = .0.5 and c = 0.1. The logarithmic (equation 5)
function was used to transform oligo activity values in all
experiments except A, which compared the use of the different
transform functions. Table 1 lists the averages of various
performance measures for the group of networks. Threshold-
dependent performance measurements are reported for each
experiment for a threshold at which all networks demonstrated
a sensitivity >0.07 with speci®city near maximum. To assess
relative performance the networks in an identically trained
group are ranked with respect to the various performance
measures. The sum of these ordinals is used to identify
networks that perform well both overall (as measured by the
ROC area and the peak Matthews coef®cient) and at the
particular threshold used to classify network outputs. Table 2
lists results for some representative high-performance
networks.
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Effect of random initialization

To determine the effect of random initialization upon network
performance an experiment was performed wherein the group
of 50 networks was trained and tested using ±RNA cross-
validation against the 348 oligo database. The resulting ROC
curves range from 0.62 to 0.76 in area. Though this is a wide
spread of values, it is notable that all networks generate ROC
curves with areas considerably greater than random prediction
would produce. The predictions generate an average ROC area
of 0.71 and an average peak Matthews correlation coef®cient
of 0.32. Using a threshold of 0.10 below which oligos are
predicted as active the networks score an average P+ of 0.49, a
signi®cant improvement over a trial-and-error approach
(Table 1, experiment A1). The best network in the group
generates a ROC area of 0.74, peak Matthews correlation
coef®cient of 0.39, and probability score of 0.55 (Table 2,
experiment A1).

In the above experiment networks were trained against
oligo activity values transformed by the logarithmic function
of equation 5. To compare the effectiveness of the two output-
training functions the same group of networks was re-trained
using activity values transformed by the piecewise function of
equation 4. The resulting ROC curves range from 0.57 to 0.74
in area, with an average of 0.66. The average peak Matthews
coef®cient for these predictions is 0.28. Results for the best
network from this experiment are presented in Table 2
(experiment A2).

All but seven nets generated a greater ROC area when
trained with data transformed by the log function. The ROC
curves for networks trained with log-transformed data also
tend to have greater area in the high-speci®city region. One
explanation for the better performance is that the measured

differences in activity between active oligos may be repeat-
able effects of motif content upon activity. If that is the case,
the log function may work better because it not only retains
but enhances the differences between the high activity oligos.

Comparison of cross-validation methods

The two primary cross-validation methods were compared by
re-training and testing the 10 networks that produced the
highest ROC areas during ±RNA cross-validation (experiment
A1), now using ±oligo cross-validation (Table 1, experiments
B1 and B2). The average ROC area for the 10 networks using
±oligo is 0.77, and using ±RNA is 0.74. ROC curves for
network number 3 of this experiment are illustrated in Figure 1,
and the network's performance measures are presented in
Table 2, experiments B1 and B2. Though overall ROC area is
reduced for ±RNA cross-validation, in the critical high-
speci®city region, prediction ability is not signi®cantly
affected.

The slight reduction in accuracy due to the switch from
±oligo to ±RNA cross-validation prompts two possible
explanations: (i) the elimination of some oligos eliminates
information leakage (from oligo overlap) that was arti®cially
in¯ating the performance measures; and (ii) the reduction in
training set size used in ±RNA cross-validation is decreasing
accuracy. To assess the impact of the latter, an experiment was
performed measuring the correlation between training set size
and prediction accuracy. This was done in a manner similar to
the ±oligo cross-validation except that the training set size was
varied from 25 oligos to the full database. In each of the 14
iterations each oligo is successively selected for testing and
the training set of the proper size is randomly selected from the
remaining database. Figure 2 shows the results of this
procedure using the two networks that generated the highest

Table 1. Summary of performance of groups of networks differing only in random initialization of training weights

Experiment No. of
nets

Activity
transformation

Cross
validation

ROC range Average
ROC

Peak M
range

Average
peak M

Threshold Average

M P+ Fp Tp Sp Se

A1 50 Logarithmic ODN±RNA 0.62±0.76 0.71 0.24±0.40 0.32 0.10 0.22 0.49 10.4 10.0 0.96 0.18
A2 50 Piecewise ODN±RNA 0.57±0.74 0.66 0.20±0.38 0.28 0.10 0.22 0.45 14.5 11.6 0.95 0.20
B1 10 Logarithmic ODN±RNA 0.73±0.76 0.74 0.30±0.39 0.35 0.10 0.21 0.48 10.5 9.7 0.96 0.17
B2 10 Logarithmic ODN±oligo 0.73±0.80 0.77 0.35±0.47 0.40 0.10 0.25 0.58 6.9 9.6 0.98 0.17
D1 50 Logarithmic ISIS/ODN 0.72±0.82 0.77 0.31±0.49 0.40 0.30 0.21 0.46 11.5 9.9 0.96 0.17
D2 50 Logarithmic ODN/ISIS 0.63±0.77 0.71 0.12±0.24 0.18 0.25 0.12 0.10 85.0 9.9 0.90 0.28

Reported values of P+, Fp, Tp, Sp and Se are averages at the listed threshold (an output value smaller than the threshold value indicates a prediction that the
oligo is active).

Table 2. Results for representative high-performance networks, including the thresholds at which threshold-dependent values were measured

Experiment Activity transformation Cross-validation ROC Peak M R P Threshold M P+ Fp Tp Sp Se

A1 Logarithmic ODN±RNA 0.74 0.39 0.30 1.0 E ±8 0.10 0.27 0.55 10 12 0.97 0.21
A2 Piecewise ODN±RNA 0.73 0.35 0.34 4.4 E ±7 0.10 0.27 0.52 12 13 0.96 0.23
B1 Logarithmic ODN±RNA 0.75 0.39 0.30 1.5 E ±8 0.10 0.25 0.52 10 11 0.97 0.19
B2 Logarithmic ODN±oligo 0.77 0.40 0.37 2.1 E ±12 0.10 0.29 0.67 5 10 0.98 0.18
B2 + DG N/A N/A 0.82 0.41 0.38 1.1 E ±13 0.50 0.33 0.71 5 12 0.98 0.21
D1 Logarithmic ISIS/ODN 0.80 0.46 0.43 2.2 E ±17 0.30 0.27 0.63 6 10 0.98 0.18
D2 Logarithmic ODN/ISIS 0.77 0.21 0.24 3.8 E ±13 0.25 0.13 0.13 52 8 0.94 0.23

M = Matthews correlation coef®cient; R = linear regression correlation coef®cient; P = signi®cance.
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ROC areas in ±oligo cross-validation. The graph shows a
strong correlation between prediction accuracy and the size of
the training set (R = 0.89). The bumpiness of the curves is due
to random selections of training sub-sets.

The average test set removed from the database in ±RNA
cross-validation is 32 oligos. With respect to the plot in
Figure 2, this translates into a reduction of 0.012 in ROC area
due to the loss of this many training examples when compared
with the ±oligo method. The average difference of 0.03 ROC
curve area between the two primary cross-validation methods
therefore appears to be a combined effect of the decrease in the
number of training examples and some information leakage.

Results from combining predictors

The combination of two or more predictors produced mixed
results. The averaged prediction of multiple networks pro-
vided a result with an ROC area greater than that of the
average network in the group, but generally there were one or
more individual networks that made better predictions than the
group averaging did. Better results were generated by
combining a neural network output with the free energy
(DG) calculation for binding between oligo and target using
logistic regression (Table 2, experiment B2 shows results for
the network alone, and experiment B2 + DG shows results for
the combined predictor). The ROC curves for these experi-
ments are shown in Figure 3. While the DG calculation by
itself performs well in general, it does poorly in the high-
speci®city region. The combined prediction appears to bene®t
by the strengths of both independent predictors. It generates a
ROC area of 0.82 and a peak Matthews correlation coef®cient
of 0.41, some of the best results obtained.

Cross-validation using ISIS data

The group of 50 nets was used in a ®nal set of experiments
testing the ability of networks trained with one full data set to
predict the ef®cacy of oligos in the other, independent
database. Homogeneity in the experimental conditions under
which the ISIS data were generated does not appear to impair
networks trained with the ISIS dataset; they predict the
activities of the oligos in ODNBase with ROC areas ranging
from 0.72 to 0.82. The P+ scores range from 0.29 to 0.63, and
the average peak Matthews correlation coef®cient is 0.40

Figure 1. ROC curves for a standard Chi-40 network tested using minus-
one-oligo cross-validation and minus-one-RNA cross-validation. The circles
indicate the points at which the networks scored their peak Matthews
correlation coef®cients (in this chart the circles are superimposed), the
values of which are listed. Also shown for reference is the single point
representing the sensitivity and speci®city of Tu's method (15) applied to
predict the activities of oligos in the database.

Figure 2. Plot of the average of two experiments measuring ROC area
versus cross-validation training set size for a Chi-40 network, and the
regression line. R = 0.89, P = 1.57 3 10±5.

Figure 3. ROC curves for the simple free-energy predictor, Chi-40 neural
network predictor (±oligo cross-validation), and a logistic regression
combining the two into a probability score. The circles indicate the points at
which the networks scored their peak Matthews correlation coef®cients, the
values of which are listed.
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(Table 1, experiment D1). The best network in the group
generates a peak Matthews correlation coef®cient of 0.46 and
a linear regression R-value of 0.43 with a signi®cance of 10 ±17

(Table 2, experiment D1). Figure 4 shows the ROC curves for
this network.

Networks trained with the ODN data also make useful
predictions for the ISIS oligos. The best network produces a
peak Matthews correlation coef®cient of 0.21 and a linear
regression R-value of 0.24 with a signi®cance of 10±13

(Table 2, experiment D2). While ROC scores are strong,
ranging from 0.63 to 0.77, the probability that an oligo
predicted as active is actually active consistently falls near 1 in
10 (Table 1, experiment D2).

A possible explanation for the poorer performance testing
on the ISIS data is that the large proportion of actives in
ODNBase (0.16) is encouraging the system to set a low bar for
activity. The ISIS dataset contains a relatively small percent-
age of actives: using a threshold of 0.25 to distinguish active
oligos, only 4%, 35 of the 908, are active. The large proportion
of positive predictions on a large dataset with few positives
inclines the network to false positive predictions. Also,
because the performance of a network depends on the size
of the training set, networks developed with the public
database would be expected to perform less well than those
trained on the larger ISIS dataset. Nevertheless, using the
predictions of the average network in the group one is still 2.6
times more likely to select an active oligo than by random
selection from the ISIS dataset, again representing a consid-
erable improvement over trial and error.

Practical implications

It is important to put into perspective what these results may
mean to someone looking for an effective tool to ®nd active

oligos for an RNA target. We address this using a speci®c
network in place on our web site whose cross-validation
results are shown in Figure 1. With ±oligo cross-validation, the
ROC area is 0.77 (Table 2, experiment B2). At a threshold of
0.10 used to distinguish predictions as positive/negative, there
are ®ve false positive predictions and 10 true positive
predictions, for a P+ of 0.67. For comparison, using the
same database with Tu et. al's method (TCCC selection), 29
true positives and 36 false positives predictions are produced
for a P+ of 0.45.

A linear regression analysis comparing the outputs from this
network to empirical activity values produces a ®t with an R-
value of 0.37 and a signi®cance of 10±12 (Fig. 5). The
signi®cance value indicates that it is quite unlikely these
predictions were an accident of a particular experiment. The
R-value falls between those reported above for cross-valid-
ation experiments incorporating the ISIS dataset.

Note that the public database contains the bias that there are
more positive examples than is expected in the general
population of oligos to be tested. Estimates for the probability
of ®nding active oligos by random selection on an mRNA
vary, but it likely falls between 0.05 and 0.1. For comparison,
using a threshold of 0.25 to distinguish active oligos, the
proportion of positives in ODNBase is 0.16. A calculation was
made to adjust for this discrepancy when cross-validating
against the public data. Considering that the ratio of false
positives to true positives will increase corresponding to the
difference between the ratio of negative to positive oligos
expected in nature compared with the database, a higher ratio
of negatives (inactive oligos) in nature should lead to more
mis-predictions. Correcting for this based on an estimated
active oligo frequency of 0.10 in nature versus an active rate of
0.16 in the database, the above P+ values become 0.31 for Tu's
method and 0.53 for the neural network.

Web-based interface

We have created a web-based interface to the neural network
predictors. It is available to non-commercial researchers free
of charge with the execution of a license agreement (please

Figure 5. Linear regression of Chi-40 predicted versus actual oligo
activities using ±oligo cross-validation for the 348 oligo database. R = 0.37
with a signi®cance of 2.1 3 10 ±12.

Figure 4. ROC curves for a Chi-40 network trained/tested on each of the
two independent datasets. The circles indicate the points at which the
networks scored their highest Matthews correlation coef®cients, the values
of which are listed.
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contact the corresponding author for more information). The
program scans across the input sequence, stepping from left to
right one base at a time, with a default oligo size of 20 nt (user
adjustable). At each step the network evaluates the comple-
mentary oligo. After all sites are evaluated the results are
sorted from best to worst predicted oligo. The network score
(lower better) is provided along with a probability estimator
calculated by logistic regression. The probability value, based
on the ±oligo cross-validation data, gives a rough estimate of
the probability that a given oligo will be active (opposite from
the activity data, a higher number is better). Due to the cross-
validation used this measure appears to provide somewhat low
estimates of the probability of an oligo being active. An
example of how the system would be used to predict effective
targets against Hepatitis C is included in the Supplementary
Material.

It is expected that an experimentalist wishing to ®nd active
sites on a target will enter an RNA sequence into the web site,
select the top n oligos returned by the predictor and test them
in the laboratory. The number n depends on resources, the
need to ®nd an extremely active oligo, and so on, but a
reasonable number might be two to four. To illustrate, using a
network with the same initial weights as the net available on
the web to make ±oligo cross-validated predictions for the 348
oligo database, the 20 oligos predicted most active by the
network are shown in Table 3. Of the top 10 in Table 3, seven
are in fact active (again with an activity threshold of 0.25). Of
the 20 oligos in Table 3, 13 are active, with three near misses
(empirical activity = 0.26). Even if the predictions are affected
by the lower incidence of positive sites in nature than in our
database, these results are good enough that the user is likely
to ®nd an effective oligo among the top two to four oligos
predicted active by our system. Considering the network result
from experiment B2 (Table 2) corrected for the background
positive rate as above, with a P+ of 0.53, the savings on
average should be at least 5-fold in the number of oligos that

must be screened to ®nd an active one. The reduction in effort
should be greater if oligos are tested in order of predicted
ef®cacy.

Conclusion

The good performance of these neural network predictors
indicates the likelihood of a strong sequence-speci®c effect
upon antisense oligodeoxynucleotide action. One possible
explanation for the motif bias is RNase H sequence speci®city.
It is also possible that the oligo delivery process is biased
towards particular motifs. Whatever the mechanism, we hope
that these results combined with those of Tu et al. (15) and
Matveeva et al. (16) are enough evidence of motif-based
effects on oligo ef®cacy to motivate further exploration of this
phenomenon.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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