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ABSTRACT

lllegitimate recombination (IR) is the process by
which two DNA molecules not sharing homology
to each other are joined. In Kluyveromyces lactis,
integration of heterologous DNA occurred very fre-
quently therefore constituting an excellent model
organism to study IR. IR was completely dependent
on the nonhomologous end-joining (NHEJ) pathway
for DNA double strand break (DSB) repair and
we detected no other pathways capable of mediating
IR. NHEJ was very versatile, capable of repairing
both blunt and non-complementary ends efficiently.
Mapping the locations of genomic IR-events revealed
target site preferences, in which intergenic regions
(IGRs) and ribosomal DNA were overrepresented
six-fold compared to open reading frames (ORFs).
The IGR-events occurred predominantly within tran-
scriptional regulatory regions. In a rad52 mutant
strain IR still preferentially occurred at IGRs, indicat-
ing that DSBs in ORFs were not primarily repaired
by homologous recombination (HR). Introduction
of ectopic DSBs resulted in the efficient targeting
of IR to these sites, strongly suggesting that
IR occurred at spontaneous mitotic DSBs. The
targeting efficiency was equal when ectopic breaks
were introduced in an ORF or an IGR. We propose
that spontaneous DSBs arise more frequently in
transcriptional regulatory regions and in rDNA and
such DSBs can be mapped by analyzing IR target
sites.

INTRODUCTION

Living cells are challenged with a large number of DNA
lesions in every cell cycle. Among these lesions, the DNA
double strand break (DSB) is the most severe, leading to cell

death if not repaired. Moreover, DSBs repaired in an incorrect
manner can also be detrimental to the organism. Examples
are the formation of oncogenic fusion genes or the juxtaposi-
tion of oncogenes to strong enhancers, both of which are a
primary cause of malignancy. Studying how DSBs arise and
how they are repaired is thus of vital interest. Cells have
evolved two major pathways for DSB repair, the homologous
recombination (HR) and the nonhomologous end-joining
(NHEJ) pathways. The HR pathway (1,2) depends on the
presence of a homologous chromosome or sister chromatid
that is used as a template for homology-driven and mostly
error-free repair. HR in fact refers to several different pro-
cesses, including gene conversion and alternative pathways
called break-induced replication (BIR) and single strand
annealing (SSA). A key-protein in HR is Rad52, which
forms a heptameric ring in vitro (3), that interacts with single
stranded DNA and facilitates the strand invasion reaction
(4,5). Rad52 is thought to act early during HR and strains
lacking Rad52 are completely deficient for all types of HR
in Saccharomyces cerevisiae. Another important protein is
Rad51 (similar to bacterial RecA), which facilitates the strand
exchange reaction between the damaged substrate and the
undamaged template molecule (6).

In contrast, the NHEJ pathway requires little or no homo-
logy and simply fuses two free DNA-ends, often generating
small deletions and insertions. Among the proteins required
for NHEJ are the Ku70/Ku80 heterodimer (7), which has high
affinity for DNA ends. The heterodimer binds to the DSB
protecting the free ends from extensive degradation and
holds the DNA ends in an appropriate configuration for sub-
sequent end-processing and ligation (8). Binding of Ku70/
Ku80 is required for the recruitment of a second complex
to the DSB (9). This complex consists of a DNA ligase,
Dnl4 (or Lig4) (10-12) and Lifl (Ligase four interacting
factor 1) (13), the latter being the yeast functional homologue
of mammalian Xrcc4. Lifl is required for the stability and full
activity of Dnl4 (14). A third complex consisting of Mrel 1,
Rad50 and Xrs2 (MRX), is also required for efficient NHEJ
in S.cerevisiae (15,16), but not in mammals or fission yeast
(17-20). Mrell has an endo/exo nuclease activity, but this
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activity appears to be dispensable for NHEJ in vivo (21).
The MRX-complex promotes the end-joining reaction in
vitro (22), but the exact role of this complex in NHEJ remains
unclear. In S.cerevisiae, cell-type regulates NHEJ, haploid
MATa or MATo. strains perform NHE] efficiently, but diploid
MATa/MATo. strains perform NHEJ inefficiently (23,24). In
diploids, the al/a2 repressor inhibits the transcription of the
NEJI gene. Nejl interacts with Lif1 and constitutes an essen-
tial component of the NHEJ pathway (25-28). Diploid
cells can rely on the HR pathway to repair DSBs even in
the G, phase of the cell cycle, since these cells contain a
homologous chromosome. Because HR is more accurate
than NHEJ this cell-type regulation may have evolved to pro-
mote genome stability in S.cerevisiae.

Despite the high degree of molecular conservation in
NHEJ mechanisms between yeast and mammalian cells,
there are some striking differences regarding the in vivo
function. In mammals, NHEJ is the major pathway for DSB
repair. In S.cerevisiae, the HR pathway for DSB repair is
very active and the NHEJ pathway has largely a back-up
function at least under laboratory conditions. Consequently,
S.cerevisiae mutant strains deficient for NHEJ do not have any
obvious growth disadvantages. In contrast, in mice some
NHEJ proteins (Ligase IV and Xrcc4) are required for
embryonic development (29,30). In addition, S.cerevisiae
strains lacking proteins essential for NHEJ such as Lig4,
Lifl and Nejl are not more sensitive to DNA damaging
agents than a wild-type strain, whereas mammalian cells
lacking NHEJ components are highly sensitive to DNA
damage (31).

Since both the HR and NHEJ pathways use the same
substrate, a DSB, a competition between them can be
envisaged. Thus, inactivation of the NHEJ pathway would
lead to an increase of homologous integration events upon
introduction of a gene targeting cassette. This hypothesis
was tested in mouse ES-cells, but NHEJ mutant cells did
not have a more favorable gene targeting frequency (32).
In S.cerevisiae, the reciprocal experiment showed that the
NHEJ efficiency did not increase in the absence of
HR-components (23,33). A moderate competition between
NHEJ and HR has been observed, however, when genomic
DSBs were introduced in vivo using inducible endonucleases
(20,32,34,35).

NHE]J, the direct rejoining of DNA DSBs, is closely
associated with illegitimate recombination (IR) and chromo-
somal rearrangements. Hence, IR between two genomic loci
results in deletions, duplications, insertions or translocations.
In S.cerevisiae, the frequency of IR is reduced in rad50,
mrell, xrs2 and hdfl (yku70) mutant strains (36,37), indicat-
ing that IR takes place through the NHEJ pathway. Target sites
of IR correlate with consensus sites for Topoisomerase I (38)
and are dependent on the TOP! gene. In addition, overexpres-
sion of Topl leads to increased IR, demonstrating that the
nicking activity of Topl promotes IR (38).

In this study, we investigated IR and NHEJ in
Kluyveromyces lactis (milk yeast). Similarly to mammalian
cells, milk yeast NHEJ was capable of repairing blunt and
noncohesive ends efficiently. Integration of a nonhomologous
DNA molecule into the genome was 1000-fold more frequent
than in S.cerevisiae and ectopically introduced DSBs were
hotspots for integration. We present evidence supporting a

model in which IR takes place at spontaneous mitotic DSB
and that these breaks occurred more frequently within
promoter regions and rDNA.

MATERIALS AND METHODS
Plasmids

For the gene disruption of K.lactis NEJI, two PCR-fragments
corresponding to the nucleotides —166 to +250, (the ATG start
codon corresponding to nucleotides +1 to 4+3) and +474 to
+895 were digested with Sacl-BamHI and BamHI-Xhol,
respectively. Both PCR-fragments were combined with a
Sacl-Xhol digested pBluescript SK(+) in a three-factor clon-
ing, generating plasmid pAKP68. Targeting constructs for
two-step gene disruption of the RAD52, RADSI and YKUS0
genes were all generated using a similar approach. For RAD5?2,
two PCR fragments corresponding to nucleotides —329 to
+112 (Sacl-BamHI) and +835 to +1353 (BamHI-Xhol)
were combined with SacI-Sall digested pRS406 (39) gener-
ating vector p580. For RAD51, two PCR fragments corres-
ponding to nucleotides —536 to +65 (Xhol-BamHI) and +435
to +1085 (BamHI-Xbal) were combined with Xhol-Xbal
digested pRS406 generating vector p182. For YKUS0, two
PCR fragments corresponding to nucleotides +5 to +177
(Xhol-BamHI) and +1267 to +1866 (BamHI-Xbal) were lig-
ated with Xhol-Xbal digested pRS406 generating plasmid
pAKP120. Into the resulting BamHI site of pAKP68, p580,
p182 and pAKP120, a 2.9 kb Bglll-fragment containing the
LEU2 gene from vector pCXJ20 (40) was cloned, generating
plasmid pAKP69 (pBluescript SK(+)-nejl::LEU2), p582
(pRS406-rad52::LEU2), p183 (pRS406-rad5!::LEU2) and
pAKP122 (pRS406-yku80::LEU?2), respectively.

Introduction of the I-Scel-endonuclease recognition site
within the VMR promoter region and within the VMR coding
sequence was accomplished as follows. Two PCR fragments
corresponding to nucleotides +1455 to —189, and to nucle-
otides —187 to —974 with respect to VMR start codon were
digested with Xhol-HindIIl and HindIII-Notl, respectively
and ligated into Xhol-Notl digested pRS406, generating
plasmid pAKP175. Two oligonucleotides (5 pmol/ul) (5'-agc-
tacgctagggataacagggtaataca-3') and (5'-agctgtattaccetgttatcec-
tagcgt-3') were annealed in 2 mM Tris—-HCI (pH7.4), 0.2 mM
MgCl, and 5 mM NaCl and cloned into the HindIII site of
pAKP175, generating plasmid pAKP179. A PCR fragment
corresponding to nucleotide +2190 to +5097 with respect to
the VMRI start codon was digested with Sacl-Xhol and
ligated into Sacl-Xhol digested pRS406, creating plasmid
pPMB19. Two oligonucleotides, (5'-gcgccgctagggataacaggg-
taatac-3’) and (5'-gcgcgtattaccctgttatccetageg-3'),  were
annealed and cloned into the VMRI endogenous Kasl site
at position +3871, creating plasmid pPMB20. To express
the I-Scel endonuclease in K.lactis, an Xhol-Sall fragment
containing Pgaz;-I-SCEI from plasmid pTW468 (kindly
provided by T. E. Wilson) was ligated into Sall digested
pCXJ18 (40), generating plasmid pAKP164. To measure IR
at a specific DSB the promoter regions of two S.cerevisiae
genes ADHI (—1/—479) and TEF2 (—1/—1000) were
PCR-amplified and digested with Xbal-BamHI and Xhol-
BamHI, respectively. Both PCR-fragments were combined
with Spel-Xhol digested pRS405 in a three-factor cloning,



Table 1. Yeast strains used in this study
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K.lactis Genotype Reference
CK213-4c MATa leu2 lysAl metAl trpl uraAl (73)

SAY102 MATa leu2 lysAl metAl trpl uraAl sir2::URA3 (74)

SAY119 MATo. ade?2 leu2 trpl metAl uraAl (56)

SAY186 MATa leu2 lysAl metAl trpl uraAl hmloAp (56)

SAY189 MATa leu2 trpl uraAl sir2::URA3 hmloAp (56)

SAYS507 CK213-4C rad52::LEU2 This study
SAY509 MATa. ade? leu2 metAl trpl uraAl nejl::LEU2 This study
SAYS510 CK213-4C nejl::LEU2 rad52::LEU2 This study
SAYS516 CK213-4C rad51::LEU2 This study
SAYS517 CK213-4C nejl::LEU2 rad51::LEU This study
SAYS545 CK213-4C nejl ::LEU2 lig4::KANMX This study
SAYS554 CK213-4C nejl ::LEU2 rad50::KANMX This study
SAYSS5 CK213-4C nejl::LEU2 mrell ::KANMX This study
SAYS557 MATa leu2 lysAl metAl trpl uraAl rad50::KANMX This study
SAY559 MATa leu2 lysAl metAl trpl uraAl mrell::KANMX This study
SAYS572 CK213-4C nejl::LEU2 This study
SAYS573 CK213-4C ku80::EU2 This study
SAY574 MATo. ade? leu2 metAl trpl uraAl ku80::LEU2 nejl::LEU2 This study
SAY681 MATa/MATo. lysA1/LYSAI leu2/leu2 uraAlluraAl adel/ADEI This study
SAY683 MATa leu2 lysAl metAl trpl uraAl lig4::KANMX This study
SAY684 CK213-4C Pypg; (—189 I-Scel) This study
SAY685 MATa leu2 metAl trpl uraAl nejl::LEU2 Pypmg; (—189 I-Scel) This study
SAY686 MATa leu2 lysAl metAl trpl uraAl rad52::LEU2 Pyygr; (—189 I-Scel) This study
SAY687 MATo. ade2 leu2 metAl trpl uraAl rad52::LEU2 This study
PMY2 MATa/MATa lysA1/LYSAL trpl/trpl leu2/leu2 metAl/metAl uraAl/uraAl ade2/ADE2 rad52::LEU2/rad52::LEU2 This study
PMY34 CK213-4C VMRI (+ 3871 I-Scel) This study

generating plasmid pPMB18. The oligonucleotide sequences
used in this study are available upon request.

Yeast strains

The strains used in this study are listed in Table 1. All
null alleles generated were confirmed by genomic DNA-
blots or locus specific PCR. Crossing the strain SAY119
with CK213-4c generated a diploid MATa/MATo. strain
(SAY681). Strain SAYS572 (nejl::LEU2) was generated by
a one-step gene disruption procedure (41) by transforming
CK213-4c with a PCR-fragment using pAKP69 as template.
Strain SAY573 (ku80::LEU2) was generated by a two-step
gene disruption procedure (42) transforming CK213-4¢ with
Nhel-linearized pAKP122. A segregant from the cross of
strain SAY 119 with SAY572 generated a MATo. nej::LEU?2
strain (SAY509). SAY509 was crossed to SAY573 and
from this cross the double mutant nejl::LEU2 ku80::LEU2
segregant (SAY574) was recovered by screening for a
non-parental ditype (NPD) for Leu’. Strain SAY516
(rad51::LEU2) and strain SAY507 (rad52::LEU2) were gen-
erated in a two-step gene disruption procedure transforming
CK213-4c with PmllI-linearized p183, and Bglll-linearized
p582, respectively. Crossing strain SAY516 with SAY509
and SAY507 with SAY509 generated the double mutant
strains SAY510 (rad52::LEU2 nejl::LEU2) and SAY517
(rad51::LEU2 nejl::LEU2). The strains SAY545 (lig4::
KANMX nejl::LEU2), SAY554 (rad50::KANMX nejl::
LEU2) and SAYSS5 (mrell::KANMX nejl::LEU2) were
generated from the parental SAYS572 strain (MATa nejl::
LEU?) using the PCR-based gene-targeting method described
below. Strains SAY545, SAY554 and SAY555 were further
crossed to SAY119 to obtain the wild-type NEJI segregants
SAY683 (lig4::KANMX), SAY559 (mrell::KANMX) and
SAYS557 (rad50::KANMX).

Strain SAY684 and PMY34 were generated in a two-
step gene replacement procedure transforming CK213-4c
with  either  Clal-linearized pAKP179 or Agel-
linearized pPMB20, respectively. Crossing strain SAY684
either with SAY509 or SAY687 generated the mutant segreg-
ants SAY685 (nejl ::LEU2) and SAY686 (rad52::LEU2) both
containing the I-Scel site in the VMR promoter. Strain
SAY687 (MATo. rad52::LEU2) is a segregant from the
cross of strains SAY119 and SAYS507. Strain PMY2
(MATa/MATo. rad52::LEU2/rad52::LEU2 mutant strain was
generated by crossing SAY687 and SAYS507.

Growth media and standard methods

Media for growth of yeast and bacteria, protocols for RNA
and DNA-blots, DNA and RNA preparation, yeast and bac-
terial transformations were carried out as described elsewhere
(43-45). For detecting the NEJI transcript a [o*>-P]dCTP-
labeled PCR-fragment corresponding to the NEJI open read-
ing frame (ORF) was used. The RNA-blot was analyzed using
a phosphorimager. NHE] efficiency was tested in a plasmid
re-circularization assay (16). The plasmid pCXJ18 was
cleaved either with HindIII, Smal, Pstl or HindIII and PstI
and the linearized vector (0.5 ng) was used to transform the
yeast strains as indicated. In parallel, the cells of the same
strain were transformed with the same amount of super-coiled
plasmid to normalize for differences in transformation effici-
ency. Cells were plated on SC-medium lacking uracil
(SC-Ura), incubated at 30°C and colonies were counted
after 48 to 72 h.

Gene targeting in K.lactis

A general method for performing accurate gene targeting
was developed in K.lactis, similar to a previously described
method for S.cerevisiae (46), but using the modifications
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described below. For each side of the target gene two 70mer
oligonucleotides were designed sharing ~50 bp of homology
to the target locus (LIG4, MRE11 and RADS50). The stretches
of homology were chosen so that the resulting deletions
were from the start codon to the stop codon. On the 3’ end
of the oligonucleotides 20 bp of homology to the KANMX gene
was included (5’ n50-ccagcgacatggaggeccag-3' and 5’ n50-
ggatggeggegttagtatcg-3'). PCR amplifications using these
oligonucleotides and pFA6a-KANMX (47) as template were
performed. The resulting fragments were cloned into the
pGEM-T Easy vector. An aliquot of 4-10 pug of the resulting
plasmid was digested with EcoRI and Spel and the linear DNA
fragments used to transform strain SAYS572 (nejl::LEU2).
Large colonies, indicating the integration of the KANMX gene
into the genome, were picked after 48 to 72 h of incubation
at 30°C. For confirmation of the correct genotypes, a gene-
specific oligonucleotide homologous to a region 300-500 bp
upstream of the target gene and an oligonucleotide (5'-cggcce-
tcgaaacgtgagtc-3') complementary to the KANMX gene were
used in PCR amplifications, using genomic DNA as template.

Plasmid rescue and inverse PCR

To analyze the genomic target sites of IR of pFA6a-KANMX,
the vector was digested with Sacll and the enzyme was heat
inactivated at 65°C for 20 min. The linearized pFA6a-KANMX
was transformed either into wild-type cells CK213-4c or
PMY?2. Cells were plated on rich medium and incubated at
30°C for 24 h, replica-printed on rich medium containing
200 pg/ml G*'® and incubated for 72 h. Approximately
250 colonies were re-streaked on fresh 200 pg/ml G*'® plates.
Chromosomal DNA was prepared and 1-5 pug of genomic
DNA was digested with EcoRI for 3 h at 37°C in a total
volume of 20 pl in plasmid rescue experiments. The samples
were heated at 65°C for 20 min and then diluted to 100 ul.
Following addition of T4 DNA ligase the samples were incub-
ated at 16°C for 12 h. After adding 0.5 vol of 7.5 M NH4Ac
and 3 vol of 2-propanol, the DNA was recovered by centri-
fugation. The DNA pellet was washed once in 70% ethanol,
air-dried and resuspended in 10 ul of sterile water. For plasmid
rescue, 1-5 pl of DNA was transformed into Escherichia coli
DH5a by electroporation. Plasmid DNA was prepared from a
single bacterial colony and the Sacll junction was DNA
sequenced (Macrogen-South Korea) using a custom primer
(5'-ctaacgccgecatccagtgteg-3'). For sequencing of both ends
of the target sites an identical procedure was used, but the
restriction enzymes used for plasmid rescue were Hpal,
Xbal or Xhol and an additional sequencing primer (5'-
cecegegegttggecgatte-3') was included. The data obtained
were compared with the Genolevures database (48) to assign
a genomic coordinate to the insertions.

The PMY?2 transformants were analyzed by inverse PCR.
Genomic DNA was prepared and digested with either Hpall or
Mspl and following intramolecular ligation, inverse PCR was
performed with primer PMOS5-F (5'-cgtatgtgaatgctggtcget-3")
and PMOG6-R (5'-tgacgcatgatattactttct-3") using standard con-
ditions. The Sacll junction was sequenced and analyzed as
described above.

Statistical methods

To identify any unusual clusters of insertions (or regions with
higher insertion intensity), x*-tests and scan statistics were

used. Under the null hypothesis, insertions occurred indep-
endently, completely at random and were equally likely to
occur anywhere on the chromosomes. y*-tests were used to
investigate if there were differences in insertion intensity
between the six chromosomes and between other divisions
of the genome (rDNA/not rDNA, ORF/ not ORF). To discover
any unexpected clusters within a chromosome we looked at
the maximum number of insertions on a fixed proportion of
the chromosome length. This number is a scan statistic, and the
probability to find k& or more insertions in any such subinterval
of the chromosome was calculated with an approximate
formula (49). To calculate the probability for the observed
smallest distance between any of the insertions on a chro-
mosome an exact formula (50) was used. All protein coding
gene sequences from K.lactis were downloaded from http://
cbi.labri.fr/Genolevures/raw/seq/K_lactis.rc2.nt. The codon
adaptation index (CAI) values were calculated with the web-
based software ‘The CAI calculator version 2’ (http://www.
evolvingcode.net/codon/CalculateCAls.php) using the ribo-
somal protein genes as the reference set. The ribosomal protein
coding genes were determined based on the genome annotation.

RESULTS
Identification of K.lactis NHE] genes

Based on sequence conservation, we identified the potential
MREII (KLLAOC06930g), RAD50 (KLLAOC02915g), YKUSO
(KLLAOB12672g), NEJI (KLLAOF20339g) and LIG4
(KLLAODO01089g) genes from K.lactis using the Genolevures
database (51). The predicted proteins encoded by these genes
shared homology with their S.cerevisiae orthologs; Yku80 was
29% identical and 55% similar, Mrel1 (53/72), Rad50 (50/71),
Lig4 (41/63) and Nejl (18/42). To investigate the role of these
genes in maintaining genome stability we generated yku80::
LEU2, nejl::LEU2, rad50::KANMX, mrell::KANMX and
lig4::KANMX null mutant strains. We also generated strains
compromised for HR carrying rad51::LEU2 and rad52::LEU?2
null alleles (52,53). Strains carrying the above mentioned
mutations were crossed to each other and following tetrad ana-
lysis different double mutant combinations were recovered.

The molecular requirements for NHE]J were
conserved in K.lactis

We investigated the molecular requirements for NHEJ in
K.lactis. In particular, we wanted to see if the genes identified
by us were required for efficient NHEJ, like their S.cerevisiae
orthologs. Furthermore, we wanted to investigate whether
haploids and diploids performed NHEJ with different effici-
ency. For this purpose, we performed a plasmid rejoining
assay (16) using a centromeric plasmid linearized in the
multiple cloning cassette, a region of the plasmid not sharing
homology with the milk yeast genome. To obtain stable
transformants the plasmid must be re-circularized using the
NHEJ] pathway, and the number of transformants using
the linear vector was normalized to parallel transformations
using circular plasmid. The ratio of linearized/circular trans-
formants is a measure of NHEJ efficiency (16). In contrast
to S.cerevisiae, the NHEJ efficiency in a MATa haploid and
a MATa/MATo. diploid strain was similar (Figure 1A),
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Pstl HindIll
5'-tagagtcgacctgca agcttggcgtaatca-3"
3'-atctcagctgg accgcattagt-5"

5'-tagagtcgaccidelefels tggcgtaatca-3 "’
3'-atctcagctggEledeeElaccgcattagt-5"

5'-tagagtcgacc tggcgtaatca-3”
3'-atctcagctgg] ccgcattagt-5"

5'-tagagtcgaccefadtggcgtaatca-3 "
3'-atctcagctggElgelaccgcattagt-57

2 bp deletion (x3)
3 bp deletion (x4)
4 bp deletion (x3)

5 —tagagtcgacctggcgtaatca—3 6 bp deletion (x1)

3'-atctcagctgggklaccgcattagt-5-
5'-tagagtcgaccpgtaatca-3 11 bp deletion (x1)
3'-atctcagctggglcattagt-5"

5'-tagggcgtaatcatggtca-3’

17 bp deletion (x1)
3'-atcccgcattagtaccagt-57
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Figure 1. K.lactis NHEJ was versatile and cell-type independent. (A) Molecular requirements for K.lactis NHEJ measured in a plasmid re-circularization assay.
Strains CK213-4c (wt), SAY681 (MATa/MATo), SAYS572 (nejl ::LEU2), SAYS573 (ku80::LEU2), SAY574 (nejl ::LEU2 ku80::LEU2), SAY683 (ligd::KANMX),
SAYS559 (mrell::LEU2), SAY557 (rad50::KANMX), SAY516 (rad51::LEU2) and SAY507 (rad52::LEU2) were tested for end-joining efficiency by parallel
transformation of super-coiled or HindIII-linearized pCXJ18. The data are expressed as the relative ratio between the number of transformants obtained with the
linearized and the super-coiled plasmid, normalized to the value obtained for the wild-type strain that was defined as 100%. (B) Versatility of K.lactis NHEJ.
Wild-type strain CK213-4c transformed with linearized pCXJ18 bearing blunt (Smal), 5" cohesive (HindIIl) 3’ cohesive (Pstl) or noncohesive (HindIII + Pstl)
overhangs were analyzed for transformation efficiency. The results represent the transformation efficiency obtained with the linearized plasmid relative to the
efficiency obtained with super-coiled (ccc) pCXJ18, defined as 100%. The data shown in (A) and (B) correspond to the average value from two or three independent
experiments. (C) Repair events from NHEJ of noncohesive overhangs. Plasmids were rescued from 13 independent K./actis colonies transformed with HindIII/PstI
double digested pCXJ18. The DNA sequences of the junctions (black boxes indicating the bases remaining from the overhangs) were determined, and the type of
alteration and how many times they were obtained is indicated on the right. (D) RNA blot hybridization of K./actis total RNA from CK213-4c (MATa), SAY102
(MATa sir2), SAY189 (MATa sir2 hmloAp) and SAY186 (MATa hmloAp) strains. The blot was hybridized with a 500 bp [0*?P]-labeled PCR fragment

corresponding to NEJI gene (top), and then the blot was stripped and re-probed with an actin probe (bottom).

suggesting that none of the proteins required for NHEJ was
regulated by cell-type. Strains lacking the genes encoding
Nejl, Yku80, Lig4, Mrell and Rad50 were severely defi-
cient for NHEJ. The nejl yku80 double mutant strain
was not more deficient than either single mutant strain indic-
ating that Nejl and Yku80 acted in the same pathway. As
expected, Rad51 and Rad52 were not required for efficient
NHE]J.

NHE] was efficient with a wide variety of DNA ends and
NEJ1I transcription was not regulated by cell-type

In S.cerevisiae, utilization of either NHEJ or HR is regulated
by the nature of the DSB and by cell-type. In S.cerevisiae,
NHE]J is efficient in rejoining ends with cohesive overhangs,
but ~40-fold less efficient in rejoining blunt ends (13,54) and
substantially less efficient at joining non-cohesive ends (55).
To test if K.lactis had a similar specificity, we compared the
transformation efficiency of supercoiled plasmid pCXJ18 with

the same plasmid digested with various restriction enzymes
(Figure 1B). No significant differences were detected for blunt
ends (Smal digested), 5’ (HindII) or 3’ (PstI) cohesive ends.
Strikingly, the rejoining efficiency was high even for ends with
opposite overhangs (HindIII Pstl double digest), reduced only
about 2-fold compared to the efficiency for cohesive ends. To
analyze how the 3’ protruding single strand (3’ PSS) and 5’ PSS
were joined we rescued the plasmid from 13 independent
transformants and sequenced the joint. All events recovered
had deletions of the 3’PSS and several of the 5'PSS or
both (Figure 1C). In all events except one that had a 17 bp
deletion, at least one base from the 3’ PSS was present in the
repair product.

In S.cerevisiae, transcription of NEJI is regulated by the
al/o2 repressor, leading to an absence of Nejl in MATa/
MATo. diploids (25-28). Diploid cells are therefore inefficient
at NHEJ. This regulation is likely to be conserved among
closely related yeasts, since a multiple sequence alignment of
the promoter sequences of the NEJI genes from S.cerevisiae,
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Saccharomyces  paradoxus,  Saccharomyces  mikitae,
Saccharomyces bayanus and Saccharomyces kudriavzevii
revealed the presence of the al/a2 operator (data not
shown). We previously showed that K.lactis contains a regu-
lator similar to the al/o2 repressor (56), but an al/a2 operator
site could not be identified in the KINEJI promoter region.
This could be due to either that KINEJI was not regulated by
cell-type or that the al/02 operator site was different
compared to S.cerevisiae and thus not found using our search
criteria. To distinguish between these possibilities, we
performed an RNA-blot analysis on total RNA from the
appropriate K.lactis strains. We could detect the NEJI
transcript in all cell-types investigated (Figure 1D), both in
the presence (MATa sir2) and in the absence (MATa, MATa
hmloAp and MATa sir2 hmloAp) of the al/o2 repressor.
Hence, NEJI transcription was not regulated by cell-type in
K.lactis, consistent with the observation that both haploid and
diploid cells performed NHEJ with similar efficiency
(Figure 1A). We concluded that NHEJ was very versatile
in K.lactis, capable of handling a wide variety of ends and
insensitive to cell-type.

IR and NHEJ had identical genetic requirements

IR is defined as the joining of two DNA molecules not sharing
extensive homology to each other. To test the genetic require-
ments for IR wild-type strain CK213-4C and mutant strains
compromised for NHEJ (nejl, ku80, nejl ku80, lig4, mrell
and rad50) or HR (rad51 and rad52) were transformed with
linearized plasmid pRS406. Plasmid pRS406 has no homology
to the K.lactis genome and is unable to replicate as an epi-
some. Thus, Ura™ stable transformants only arise as a result of
integrative IR in the genome. IR occurred with a frequency of
~1 x 10? transformants/ug of plasmid DNA, which can be
compared to 1-5 x 10° in S.cerevisiae using a plasmid of
similar size (57). Integrative transformation by IR thus
occurred ~1000-fold more frequently in K.lactis than in
S.cerevisiae. No transformants were obtained with NHEJ
mutant strains, but mutations in the HR pathway did not affect
the IR frequency (Table 2). In addition, all strains investigated
had approximately the same transformation efficiencies using
a circular centromeric plasmid. The results clearly showed

Table 2. IR was completely dependent on the NHEJ pathway

Strains Number of Ura* colonies/ug
pRS406 pCXJ18

Wild-type 12x10° 8.7 x 10*
nejl 0 7.4 % 10*
ykuS0 0 6.6 x 10*
nejl yku80 0 5.8 x 10*
ligd 0 43 % 10*
mrell 0 7.8 x 10*
radso 0 5.5x 10*
rads1 1.1x10° 7.1 % 10*
rads2 1.1x10° 8.1 x 10*
nejl radsl 0 4.6 % 10*
nejl rads2 0 52 % 10*

One pg of plasmid pRS406 was linearized with Sacll and transformed into the
indicated strains. The number of Ura® colonies was determined by growth on
SC-Ura plates representing IR events. Parallel transformations of supercoiled
pCXJ18 (1 pg) into the strains revealed no significant differences in transfor-
mation efficiency.

that IR was completely dependent on the NHEJ pathway
and independent of the HR pathway.

Target sites of IR

Since the NHEJ pathway repairs DSBs and IR in K.lactis
completely depended on NHEJ, we reasoned that the mech-
anism of IR in K.lactis involved DSB repair events during
which the plasmid becomes captured in-between two DNA
ends. Consistent with this model, K.lactis strains transformed
with circular pFA6a-KANMX resulted in very low transfor-
mation efficiency (0-2 transformants/ig of plasmid DNA),
indicating that free DNA ends were necessary for efficient
integration. If this model was correct, then mapping the
locations of the IR-events should reveal the loci where mitotic
DSBs repaired by NHEJ occur. The linearized pFA6a-KANMX
was transformed into a wild-type strain. To explore the target
sites, we carried out plasmid rescue from several independent
integrants and sequenced the flanking genomic regions (see
Materials and Methods). For 38 out of 164 successful plasmid
rescue events, we could not determine an exact chromosomal
location. Twenty-three were insertions in the rDNA loci on
chromosome IV, three were in pKD1, an endogenous episomal
plasmid, and four insertions were in repetitive DNA other
than rDNA (subtelomeric repeats or transposons). For eight
of the plasmids we did not find homology to K./actis chromo-
somal DNA, but two of these showed significant homology to
K.lactis mitochondrial DNA. By crossing the strains contain-
ing these insertions, followed by tetrad analysis, we determ-
ined that the insertions segregated as nuclear single copy
genes. Our interpretation of these events was that fragmented
mitochondrial DNA was captured between the ends of the
plasmid and the genomic target locus during IR, thus leading
to transfer of mitochondrial DNA into the nucleus. Regarding
the remaining six events, we speculate that salmon sperm
DNA introduced during the transformation procedure
was inserted at the junctions, as observed previously in
Schizosaccharomyces pombe (58). For 126 insertions we
could determine an exact location in the genome using the
newly released K./actis genome sequence, and these insertions
are schematically shown in Figure 2 (exact locations are avail-
able on request).

The target sites were largely randomly distributed with
similar insertion intensities on all chromosomes (Table 3).
The distances between the insertions ranged from 180 bp to
343 kb, with a mean distance of 84.4 kb and a median distance
of 62 kb. A statistical calculation showed that the smallest
distance of 180 bp was not unexpected (P = 0.25) assuming
uniformly distributed insertions. Only 31% of the insertions
(39) were in ORFs, an unexpectedly low number given that
71.6% of the K.lactis genome is occupied by protein encoding
genes (48). The difference in insertion intensity (Insertions/
Mbp) between ORFs and intergenic regions (IGRs) was highly
significant (P << 0.001). In addition, the number of insertions
observed in the rDNA locus on chromosome IV was higher
than would be expected by chance (y°-test, P = 0.0014). We
noted that the insertion intensity in IGRs and rDNA was sim-
ilar (Table 4), suggesting that they may arise from a similar
mechanism. In summary, IR-target sites were overrepresented
in IGRs and in the rDNA loci, but did not have a preference
for a particular chromosome.



IR was associated with insertions and deletions, but
not with microhomology and topoisomerase
I cleavage sites

Next we investigated if sequence alterations could be found
close to the sites of integration. We performed plasmid rescues
of 31 independent insertions using restriction enzymes that did
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Figure 2. Global distribution of 126 independent target sites of IR. K.lactis
contains six chromosomes ranging in size from 1 to 2.6 Mb. Black lines
represent insertions and circles represent centromeres. The rDNA cluster on
chromosome IV with 23 insertions was omitted.

Table 3. Insertion distribution on K.lactis chromosomes

Chromosomes ~ Length Wild-type rad52/rad52
(Mbp)  Insertions Insertions/ Insertions Insertions/

Mbp Mbp

I 1.06 16 15.1 2 1.9

I 1.32 18 13.6 8 6.0

1 1.75 22 12.5 5 2.9

v 2.52 42 16.7 9 3.6

\% 2.23 25 11.2 10 4.5

VI 2.6 26 10.0 12 4.6

Total 11.49 149 13.0 46 4.0
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not cleave pFA6a-KANMX, thus rescuing genomic DNA from
both sides of the insertions. The flanking sequences were
then compared to the undisrupted wild-type sequence in the
Genolevures database. Several different mutagenic events
occurred close to the breakpoints and 10 representative
examples are shown in Figure 3. Small deletions or insertions
(less than 5 bp) or a combination of both were the most com-
mon sequence alterations representing 15 out of 31 samples. In
four cases, we observed a target site duplication of 2 bp, an
event resulting in a 2 bp insertion. In five cases the alterations
were large deletions or insertions (more than 100 bp). Seven of
the samples revealed no sequence alteration on either side of
the insertion.

In S.cerevisiae, the most common IR events involve base
pairing between the target sequence and the terminal few base
pairs of the transforming DNA (57). This microhomology
mediated IR requires at least two contiguous bases of
homology between the target and the plasmid end. In addition,
IR in S.cerevisiae often occurs close to consensus cleavage
sites for topoisomerase I (Topl). Top1 has a degenerate recog-
nition motif (C/G T/A T) shared by all eukaryotes investigated
(38) and thus probably also shared by K./actis. For one of the
integration events (3%) we found microhomology between
both ends of the integrating plasmid and the target site. In
two cases (6%), we found microhomology between one of
the ends of the integrating plasmid and the target site. In 28
cases (90%), no microhomology between either ends was
found, suggesting that base pairing between the integrating
plasmid and the genomic target site was of little relevance
during K.lactis IR. Furthermore, only five (16%) of the integ-
ration events analyzed had an adjacent Topl site, a number
close to what would be expected on a random basis. Thus, IR
was highly mutagenic, but did not correlate with microhomo-
logy or Topl sites.

IR-target sites were linked with transcriptional
regulatory regions

To further explore the intergenic insertions we investigated
the transcriptional orientation of the ORFs flanking the inser-
tion points. There were three possibilities, (type I) IGRs
representing the 5’ ends of the flanking genes, (type II)
IGRs representing one 5’ end and one 3’ end of the flanking
genes and (type III) IGRs representing the 3’ ends of the
flanking genes. To determine the genome wide size of
each type of IGR, we analyzed the total length of type I, II
and III on six randomly selected 100 kb segments of the gen-
ome (one on each chromosome). Out of 298 analyzed IGRs,
type I represented 38.5%, type II 45.4% and type III 16.0%

Table 4. Insertion distribution in rDNA versus non-rDNA and in ORFs versus IGRs

Sequence analyzed Length (Mbp) Wild-type

rad52/rad52

Insertions Insertions/Mbp Insertions Insertions/Mbp Wtlrad52/rad52
insertions/Mbp*
Chr IV non rDNA 1.72 19 11.1 6 3.5 Not determined
Chr IV rDNA 0.8" 23 28.8 3 3.75 Not determined
ORFs 7.65 39 5.1 12 1.6 4.05/3.7
IGRs 3.04 87 28.7 31 10.2 22.8/23.7

“The values were normalized to a total of 100 insertions.

PEstimated size of the rDNA locus in K.lactis made by the Genolevures consortium.
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5' GG-KANMX-CCGC 3~/
3/CGCC-KANMX-GG 57

ACTGGC

GG-KANMX-CCGC

AGGA

101 i
ATGA CGCC-KANMX-GG CGTCCT mlcrohomology

14 GAACCttt GG-KANMX-CC GGAT deletion
CTTGGaaa CC-KANMX-GG CCTA

59 TCTAAatcg CGG-KANMX-C TCCCTCGG deletion + insertion
AGATTtagc GCC-KANMX-G AGGGAGCC

11 CTGTG CGG-KANMX-CC CGTGT insertion
GACAC GCC-KANMX-GG GCACA

22 CATAGagct CGG-KANMX- GTTT deletion
GTATCtcga GCC-KANMX- CAAA

73 TCCGATA CGG-KANMX-CC TATGGG target site duplication
AGGCTAT GCC-KANMX-GG ATACCC

85 AAGGAAG CGG-KANMX-CCG AGGAAA target site duplication
TTCCTTC GCC-KANMX-GGC TCCTTT

94-1 AAAATag GCGG-KANMX-CC TAGCA deletion + insertion
TTTTAtc CGCC-KANMX-GG ATCGT

112 GGGTC CGG-KANMX-CCG CCCC  pno change
CCCAG GCC-KANMX-GGC GGGG

81 TTACC  GCGG-KANMX-CC  TGRAG |arge deletion
AATGG CGCC-KANMX-GG ACTTC
18SrRNA 26SrRNA

Figure 3. Sequence analyses of genomic IR target sites. Plasmid pFA6a-
KANMX was linearized with Sacll resulting in 3’ overhangs (top). The type
of alteration of the target site is indicated on the right. Insertions and dele-
tions at the genomic target site or at the Sacll restriction end are indicated with
boldface and small letters, respectively. Integration by microhomology was
only found in integrant 101. A deletion of more than 100 bp was observed for
integrant 81, where the flanking sequences were homologous to 18S rDNA and
26S rDNA, respectively. The most common sequence alterations were small
deletions or insertions as seen in integrant 14, 59, 11, 22, 73, 85 and 94-1. The
numbers for each insertion are given according to their order of preparation
during the plasmid rescue experiment.

(Figure 4A, white bars). The average length of type I was
significantly longer than type III (770 and 324 bp, respect-
ively). Analyzing the IGRs in which IR had occurred
(Figure 4A, black bars) revealed an obvious preference for
insertions into the upstream regions of genes. Remarkably, not
a single insertion in an IGR representing the 3’ ends of
two flanking genes was observed.

The high frequency of IR-events in the promoter regions
prompted us to examine whether they correlated with tran-
scription levels. We therefore determined the CAI of the genes
targeted by IR. The CAI is a single value measurement
that summarizes the codon usage of a gene relative to the
codon usage of a reference set of genes. This value ranges
from O to 1. A high CAI value suggests that the gene of interest
has similar codon usage compared to the reference genes.
Previously, this value was suggested as a useful predictor
of gene expression level when highly expressed genes were
used as reference genes (59). We computed the CAI values of
all protein coding genes in the K.lactis genome (N = 5330)
using ribosomal protein genes, assumed to be highly
expressed, as the reference set. The CAI values were plotted
against the GC content at the third codon position (GC3)
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Figure 4. The genomic target site distribution of IR events is similar in the
wild-type and rad52/rad52 strains and occurred preferentially in promoter
regions independently of transcriptional activity. (A) IGRs are located either
between the 5" ends of two genes, between the 5’ and the 3" ends of two similar
oriented genes or between the 3’ ends of two opposite oriented genes (type I,
type II and type III, respectively). The K.lactis genome wide size of type I, II
and IIT IGRs was calculated by analyzing a random 100 kb DNA segment
from each chromosome. The sum of the length of each type of IGR was
divided by the total length of all IGR types (298 IGRs analyzed). These values
(white bars) thus represent the theoretical fraction each type of IGR occupies in
the genome. The Sacll-linearized pFA6a-KANMX was transformed into the
wild-type CK213-4c strain (black bars) and in the homozygous rad52/rad52
mutant PMY?2 strain (grey bars). The genomic target sites of IR were deter-
mined as described in Materials and Methods. The percent of type I, IT and IIT
IGR insertions with respect to the total number of IGR insertions in each
strain was compared to the theoretical expected genome wide value. (B)
The CAI values of the genes in which pFA6a-KANMX had integrated in
CK213-4c strain within the ORF (blue) and in their 5'-promoter region (red)
are shown together with CAI values of all K.lactis protein coding genes (grey)
and ribosomal protein genes (green). CAI, codon adaptation index; GC3, the
third codon position GC content.

(Figure 4B). Indeed, most of the ribosomal protein coding
genes exhibit high CAI values and cluster on top of the
plot, consistent with the assumption that they are highly
expressed. Moreover, a lack of correlation between the gen-
ome CAI values and GC3 suggested that CAI values were not
dependent upon the GC composition due to mutational bias
(60), further confirming that CAI values were valid predictors
of gene expression levels in K.lactis.

To explore whether the target sites of IR correlated
with highly expressed genes, the CAI values of the genes in



which the insertion of pFA6a-KANMX occurred either within
the ORF or in their 5'-promoter region were determined and
compared with the genome global CAI value distribution.
When the insertion target site corresponded to two different
promoter regions, both ORFs were included in the calcula-
tions. The mean CAI values of the ORFs with intragenic
insertions (0.204, 0.156 SD) and ORFs with insertions in
the promoter region (0.256, 0.179 SD) were close to the
global genome mean (0.206, 0.13 SD) and significantly
lower than the mean value of the ribosomal protein genes
(0.798, 0.156 SD). Hence, IR target sites did not correlate
with highly expressed genes.

Ploidy or a rad52 mutation did not change the target site
preference for IGRs

The IR-target site preference in IGRs and rDNA could be an
artifact due to the use of a haploid strain in these experiments.
Insertions within ORFs could result in lethality more often
than insertions into IGRs or rDNA. Furthermore, it was pos-
sible that spontaneous DSBs occurred with equal frequency
throughout the genome, but that DSBs in ORFs were pre-
ferentially repaired by the less error prone HR pathway.
To test these possibilities we examined IR target sites in a
rad52/rad52 diploid strain, a strain defective for HR and
insensitive to recessive lethal insertions. If either of the
above hypotheses were valid, then we would expect an altered
target site distribution in the rad52/rad52 diploid strain.
Forty-six targets sites were investigated using an inverse
PCR approach. The insertion intensity varied somewhat
between chromosomes, probably due to the smaller sample
size (Table 3). Significantly, 31 insertions were in IGRs and
only 12 were in ORFs (Table 4). The insertion intensity into
IGRs was 5.6-fold (28.7/5.1) higher than into ORFs in the
wild-type haploid strain and 6.4-fold (10.2/1.6) in the
rad52/rad52 diploid strain. In addition, the rad52/rad52
diploid strain maintained the target site preference for tran-
scriptional regulatory regions (Figure 4B). For insertions
into rtDNA, however, the rad52/rad52 diploid strain no longer
showed a preference for this region. The insertion intensity
into the rDNA loci was similar to the insertion intensity into
the non rDNA portion of chromosome IV (Table 4).

IR at ectopic DSBs

It is well known that chromatin is a dynamic structure and
that histone modification patterns differ across the genome.
The observed preference of IR target sites within IGRs cor-
responding to promoter regions prompted us to examine
whether the NHEJ machinery was more efficient at repairing
DSBs in these regions compared to coding regions. Alternat-
ively, more spontaneous DSBs may arise in promoters
than in ORFs. To address whether IR could be directed to
DSBs and whether the NHEJ efficiency was dependent on
the genomic location (ORF versus promoter region) we intro-
duced ectopic I-Scel recognition sites either within or
upstream of ORF E00462g, generating strains SAY648 and
PMY34, respectively (Figure 5SA). Based on sequence conser-
vation with S.cerevisiae we named this ORF VMRI. VMRI
encodes a predicted multiple drug resistance pump. Insertion
of a strong promoter upstream of VMRI results in strains
resistant to high levels of G*18 (E. Barsoum and S. U. ;\strijm,
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unpublished data), suggesting that Vmrl may rid cells of this
compound. The strains were transformed with either pCXJ18
or pCXJ18 containing the /-SCEI gene controlled by the
galactose-inducible GALI promoter. The effect of the expres-
sion of the endonuclease was examined on DNA-blots and on
glucose and galactose containing plates (Figure 5B and C).
The I-Scel endonuclease cut the two sites with similar effici-
ency in vivo; ~11% efficiency was observed after 3 h in
galactose containing medium in both PMY34 and SAY684
(Figure 5B). Both strains containing an ectopic I-Scel site and
expressing the I-Scel endonuclease grew slowly on galactose
compared to glucose (Figure 5C). However, plating efficiency
was not severely affected probably because the DSBs were
efficiently repaired. Endonuclease expression in a strain lack-
ing the I-Scel site did not affect growth. In addition, SAY648
and PMY34 containing pCXJ 18 alone had no growth defect on
galactose. Both HR and NHEJ could repair the I-Scel induced
break, since strains lacking either Rad52 (SAY686) or Nejl
(SAY685) and containing the I-Scel site in the VMRI pro-
moter, were sensitive to increased endonuclease expression.
This sensitivity was seen as lowered plating efficiency on
galactose plates. It should be noted that the GALI promoter
was leaky in K.lactis (data not shown). This explained the
reduced plating efficiency of the rad52 strain on glucose
plates.

To explore if IR in the VMRI ORF and in the VMRI
promoter region was equally efficient, a linearized LEU2 plas-
mid (pPMB18) with the break close to the ADHI and TEF2
promoters and the plasmid expressing the endonuclease
were co-introduced into SAY648 and PMY34 (Figure 5A).
The resulting integration events were analyzed by PCR using
the primers indicated in Figure 5A. The results showed that
there was efficient targeting of pPMB 18 to both ectopic DSBs.
No significant difference in targeting efficiency between the
strains was observed (Figure 5D). In addition, there was a
perfect correlation between G*'® resistance and isolates that
the PCR analysis showed had an insertion of pPPMB18 into the
VMRI promoter. Targeted integration required both the I-Scel
site and the endonuclease, since none of the Leu® transform-
ants from a strain (CK213-4c) lacking the I-Scel site was G*'®
resistant. No I-Scel site targeted events were observed when
pCXJ18 was co-introduced with pPMB18 into both SAY648
and PMY34. Targeted integration was also dependent on the
NHEJ pathway since an isogenic nejl/ mutant strain did not
render any integrative transformants (data not shown). These
results demonstrated that IR could be efficiently targeted
to a specific locus by introducing a DSB. Moreover, when
ectopic DSBs were generated using an endonuclease, a pro-
moter region and an ORF were equally good targets for IR.

DISCUSSION

In this study we showed that IR depended entirely on the NHEJ
pathway and present very strong evidence that IR occurred
at spontaneous mitotic DSB in milk yeast. In contrast to
S.cerevisiae, K lactis performed IR very efficiently and there-
fore constituted an excellent model organism to analyze the
molecular mechanisms underlying NHEJ. Indeed, IR in
K.lactis was 1000-fold more efficient than in S.cerevisiae
(Table 2). The molecular requirements for NHEJ were
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Figure 5. Genomic DSBs constituted the target sites for IR events. (A) Schematic illustration of the VMR chromosomal locus. The I-Scel recognition site was
introduced either in the VMR coding region (at nucleotide +3871, strain PMY34) or in its promoter region (at nucleotide —183, strain SAY684). In the experiment
described in (D), cells were simultaneously transformed with an episomic plasmid containing the /-SCEI endonuclease under the GAL! promoter (p164) and the
BamHI-linearized pPMB 18 that contains the ADH/ and TEF2 promoters, which directs transcription in opposite directions (indicated by arrows). The position of
oligonucleotides (A, B, C, D and E) used for PCR analysis of the location of IR integration events and relevant restriction sites (BHI, BamHI; EV, EcoRV) are
indicated. (B) The I-Scel endonuclease cleaves in the VMR coding sequence and in its promoter region with similar efficiency. Exponentially growing PMY34 and
SAY684 cells containing either pCXJ18 or p164 in SC-Ura-glucose were washed, resuspended in SC-Ura-galactose and incubated for 3 h. Genomic DNA from
PMY34 and SAY684 cells digested with BamHI or EcoRV, respectively, was separated, blotted and the membrane was hybridized with a 273 bp [0**P]-labeled PCR
fragment corresponding to VMR! gene as shown in (A). The fragment sizes are indicated on both sides of the blot and the I-Scel cutting efficiency is indicated below
the blot with a standard deviation from two independent experiments. (C) Genomic DNA cleavage at the ectopic I-Scel sites results in a slow growth phenotype and
is highly deleterious in combination with nej/ and rad52 mutations. Ten-fold serial dilutions of the indicated strains containing either pCXJ18 or p164 were spotted
on SC-Ura containing either glucose or galactose as a carbon source and incubated at 30°C for 48 h. The relevant genotypes are: CK213-4c (WT), PMY34 (VMR/
+38711-Scel), SAY684 (pVMR1 —1891-Scel), SAY686 (pVMR1 —1891-Scel rad52) and SAY685 (pVMR1 —189 I-Scel nejl). (D) Strains CK213-4c, SAY684 and
PMY34 were co-transformed either with pCXJ18 or p164 and BamHI-linearized pPMB 18. Transformants were selected on SC-Ura-Leu containing galactose as the
carbon source. IR insertion events of pPMB18 at both I-Scel sites were analyzed by PCR using the oligonucleotides indicated in (A). An additional phenotypic
selection was carried out in those strains having the I-Scel site in the VMR promoter since insertion of a strong promoter in front of the VMRI gene results in G*'®
resistance. The results are expressed as the percent of I-Scel site targeted events with respect to the total number of Ura” Leu" transformants and correspond to the
average of three independent experiments. For control experiments 8 to 12 transformants were PCR analyzed. The sample size analyzed by PCR corresponding to the
co-transformation of pPMBI18 and p164 into PMY34 and SAY684 was 77 and 39, respectively. Phenotypic analysis for G*'® resistance was performed with
approximately 150 transformants in each case.

identical in both organisms. K.lactis mutant strains lacking
Nejl, Ku80, Lig4, Mrell and Rad50 were unable to rejoin
a linearized episomic plasmid or integrate a non-homologous
DNA molecule into the genome (Figure 1A and Table 2).
In similarity with mammalian cells, the K.lactis NHEJ
pathway was capable of repairing linearized plasmids

containing complementary, blunt and non-complementary
ends (Figure 1B). Importantly, it was highly efficient at rejoin-
ing a plasmid linearized with restriction endonucleases
generating a 5’ and a 3’ overhang. This observation may partly
explain the efficient IR observed in K.lactis. The capability
of efficient ligation of blunt and noncohesive ends is also a



feature of S.pombe and mammalian NHEJ (17,20,61,62).
However, in S.cerevisiae efficient NHEJ only takes place
with complementary overhangs (54). K.lactis must be able
to form a stable NHEJ-complex capable of aligning the two
ends without the additional energy provided by base pairing
between the severed ends. By analyzing the repair events
from Pstl-HindIII double digested plasmids, we found that
the 3’ PSS was not completely removed in most repair events
(Figure 1C). Provided that DNA polymerases only synthesize
DNA in the 5-3’ direction, two alternative models for the
molecular mechanism underlying the repair of 3’ PSS-5'
PSS can be envisaged. First, a single stranded DNA ligation
event takes place followed by fill-in DNA synthesis. Second,
an alignment event stabilizing the interaction between the
ends takes place, followed by fill-DNA synthesis and
dsDNA ligation. In both cases DNA synthesis is primed by
the recessed strand of the 5’ PSS end. Among eukaryotic DNA
ligases only a viral ligase has been reported to possess sSDNA
ligase activity (63) and there is no evidence of such an
activity for DNA ligase IV. Therefore, we favor the latter
model, in which milk yeast NHEJ can efficiently align the
non-complementary DNA ends. The same model has been
proposed for NHEJ of mismatched non-complementary
ends in human lymphoblasts (61).

Another interesting difference between both yeasts was
that NHEJ was not regulated by cell-type in K.lactis and
that NEJI transcription was not repressed by the al/o2 het-
erodimer (Figure 1D). In contrast to S.cerevisiae, K.lactis
vegetative growth is mostly restricted to the haplophase,
since diploids are rather unstable and spontaneously enter
meiosis. The unstable nature of the diplophase may have
prevented the evolution of cell-type regulation of NHEJ in
K.lactis, given that milk yeast cells seldom linger in the diploid
state. The NEJI gene was nevertheless essential for NHEJ in
K.lactis, indicating that Nejl did not evolve in S.cerevisiae
as a function to impart cell-type regulation of NHEJ. We
suggest that NHEJ required the NEJI gene in a common
ancestor, and that Saccharomyces sensu stricto species later
acquired a specific regulation of this gene. We cannot exclude,
however, that the NEJI gene was regulated by cell-type in the
common ancestor and that K.lactis lost this regulation.

In nature, IR must repair DNA lesions in the context
of highly condensed chromatin fibers. Although plasmid
rejoining assays have provided useful information regarding
NHEJ mechanisms, it is important to note that the substrate for
NHEI in this assay is unlikely to be chromatin. The fact that
K.lactis very efficiently integrates a non-homologous linear
DNA fragment in the genome allowed us to further study the
IR events taking place genome-wide and in chromatin. We
showed that IR entirely depended upon the NHEJ pathway
(Table 2). This observation stands in contrast to the situation
in mouse ES-cells where NHEJ proteins are not required for
many illegitimate integration events (32). In mammalian cells,
there is a poorly characterized second pathway for NHEJ
that is independent of the previously characterized NHEJ pro-
teins (64). We could not observe IR events in strains com-
promised for NHEJ. Therefore, if there is such an alternative
pathway in K.lactis, it must be extremely inefficient.
The construction of K.lactis mutant strains is tedious due to
the high IR efficiency. We found that K./actis strains lacking
Nejl, Yku80 or Lig4 were useful tools for improving gene
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targeting. Using strains compromised for NHEJ led to the
recovery of integrants that were invariably targeted to the
homologous locus (data not shown). The use of yku80 mutant
strains for gene targeting purposes has also been proposed by
others (65). Given that yku80 mutations in S.cerevisiae show
pleiotrophic phenotypes, including strain-dependent temper-
ature sensitivity and telomere shortening (66), we suggest that
nejl or lig4 mutations may be a better choice for large-scale
gene targeting projects. We have evidence that yku80 mutant
K lactis strains are partly compromised for telomere capping
(S. D. Carter and S. U. Astrom, unpublished data).

Exploring the genomic target sites for IR revealed a globally
random distribution (Figure 2) and an absence of both micro-
homology and consensus Topl sites (Figure 3). Interestingly,
an obvious over-representation of IGRs and the rDNA locus
compared to ORFs was observed (Table 4). The analysis of
the IGR events showed a striking preference for 5’ promoter
regions compared to 3’ non-coding regions (Figure 4A).
However, no correlation with transcriptional activity could
be made (Figure 4B). The insertions into the rDNA did not
show a hot spot for a particular region of the rDNA repeats
(data not shown), which would be expected if a particular
feature of rDNA such as a replication fork block sequence
would facilitate the increased level of IR. Loci with two diver-
gently directed promoters and rDNA are expected to experi-
ence negative super-coiling that is relieved by topoisomerase
activities. In S.cerevisiae, there are no reports that IR occurs
preferentially in IGRs, but a preference for the rDNA locus
is observed after human Topl over expression (67). Similar
studies in Candida glabrata also revealed a preference for
IGRs, absence of Topl sites and limited presence of micro-
homology (68). However, in this study a smaller number of
IR-events were analyzed, and the transformants were partly
selected for their inability to adhere to human epithelial cells.
This selection may have biased the genome wide IR target site
distribution.

The IR target site distribution in a diploid rad52/rad52
strain was similar to the distribution in the wild-type haploid
strain with respect to the preference for IGRs and excess of
5" promoter regions (Table 4 and Figure 4a). These results
ruled out the possibility that recessive lethal insertions signi-
ficantly biased the observed distribution in haploid wild-type
cells. In addition, we analyzed 32 independent wild-type dip-
loid strains with random insertions of the pFA6a-KANMX
plasmid using tetrad analysis. We found only two strains
(6%) in which the insertions co-segregated with lethality.
Furthermore, a compromised HR pathway did not change
the target site preference for IGRs, showing that DSBs arising
in ORFs were not preferentially repaired by HR. However, in
the rad52/rad52 diploid strain, the IR target site preference for
rDNA was lost, suggesting that HR somehow facilitated high
levels of IR in the rDNA loci. To firmly establish this notion, a
larger number of IR target sites from the rad52/rad52 diploid
strain should be analyzed.

The observation that IR could be targeted very efficiently to
an ectopically induced DSB demonstrated that spontaneous
genomic DSBs likely constituted the target sites for illegitim-
ate integration events. A model for the observed target site
preference for IGRs and rDNA was that DSBs arise more
frequently in IGRs and rDNA compared to ORFs. Alternat-
ively, the NHEJ-proteins could be more efficiently recruited to
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these loci as a result of specific protein—protein interactions or
a generally more accessible chromatin structure. Our results
showed that I-Scel induced breaks in a promoter region or in
an ORF were equally efficient targets for IR, strongly support-
ing the first model. In bacteria, it has also been proposed an IR
pathway mediated by DSBs followed by end-joining (69).

Studies of the location of meiotic DSBs in S.cerevisiae
demonstrate that most hotspots are intergenic rather than intra-
genic (70,71). In addition, among 20 intergenic DSBs repres-
enting meiotic hotspots, 13 were between the 5" ends of two
genes and only two were between the 3’ ends of two genes
(72). Our tentative mapping of mitotic DSBs thus showed
similarities with the location of meiotic DSBs in S.cerevisiae,
suggesting that chromosomal sites prone to experience DSBs
are similar during both vegetative growth and meiosis.

In summary, our data strongly suggest that mitotic DSBs
arise in IGRs ~6-fold more frequently than in ORFs. To our
knowledge, this report is the first comprehensive attempt to
study the locations of mitotic DSBs in a eukaryote. We pro-
pose that spontaneous mitotic DSBs can be mapped by ana-
lyzing sites of IR integration events, providing a molecular
tool for understanding how these DSBs arise. Since mitotic
DSBs contribute to genomic instability in all organisms, these
findings should be of significant interest.

ACKNOWLEDGEMENTS

The authors thank Jan-Olov Persson for help with statistical
calculations and Monique Bolotin for generously supplying
K.lactis DNA sequences prior to the release of the genome.
The authors acknowledge Wu Gang and Stephen Freeland for
CAI calculations and for fruitful discussions and Thomas
Wilson for the gift of the plasmid expressing I-Scel. This
work was supported by grants from the Swedish Cancer
Society (4592-B03-03XAB) and the Swedish Research
Council (621-2004-1942) to S.U.A. Funding to pay the
Open Access publication charges for this article was provided
by the Swedish Research Council.

Contflict of interest statement. None declared.

REFERENCES

1. Symington,L.S. (2002) Role of RADS52 epistasis group genes in
homologous recombination and double-strand break repair. Microbiol.
Mol. Biol. Rev., 66, 630-670.

2. Paques,F. and Haber,J.E. (1999) Multiple pathways of recombination
induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiol. Mol. Biol. Rev., 63, 349-404.

3. Van Dyck,E., Stasiak,A.Z., Stasiak,A. and West,S.C. (2001)
Visualization of recombination intermediates produced by
RADS2-mediated single-strand annealing. EMBO Rep., 2, 905-909.

4. New,J.H., Sugiyama,T., Zaitseva,E. and Kowalczykowski,S.C. (1998)
Rad52 protein stimulates DNA strand exchange by Rad51 and
replication protein A. Nature, 391, 407-410.

5. Shinohara,A. and Ogawa,T. (1998) Stimulation by Rad52 of yeast
Rad51-mediated recombination. Nature, 391, 404-407.

6. Nishinaka,T., Shinohara,A., Ito,Y., Yokoyama,S. and Shibata,T. (1998)
Base pair switching by interconversion of sugar puckers in DNA
extended by proteins of RecA-family: a model for homology search in
homologous genetic recombination. Proc. Natl Acad. Sci. USA, 95,
11071-11076.

oo

Ne=)

10.

1

—_

12.

13.

14.

15.

16.

17.

18.

19.

20.

2

—_

22.

23.

24.

25.

26.

27.

28.

. Milne,G.T., Jin,S., Shannon,K.B. and Weaver,D.T. (1996) Mutations

in two Ku homologs define a DNA end-joining repair pathway in
Saccharomyces cerevisiae. Mol. Cell Biol., 16, 4189—4198.

. Feldmann,E., Schmiemann,V., Goedecke,W., Reichenberger,S. and

Pfeiffer,P. (2000) DNA double-strand break repair in cell-free extracts
from Ku80-deficient cells: implications for Ku serving as an alignment
factor in non-homologous DNA end joining. Nucleic Acids Res.,

28, 2585-2596.

. Nick McElhinny,S.A., Snowden,C.M., McCarville,J. and Ramsden,D.A.

(2000) Ku recruits the XRCC4-ligase IV complex to DNA ends.
Mol. Cell Biol., 20, 2996-3003.

Teo,S.H. and Jackson,S.P. (1997) Identification of Saccharomyces
cerevisiae DNA ligase IV: involvement in DNA double-strand break
repair. EMBO J., 16, 4788-4795.

. Wilson,T.E., Grawunder,U. and Lieber,M.R. (1997) Yeast DNA ligase IV

mediates non-homologous DNA end joining. Nature, 388, 495-498.
Schir,P., Herrmann,G., Daly,G. and Lindahl,T. (1997) A newly
identified DNA ligase of Saccharomyces cerevisiae involved in
RADS2-independent repair of DNA double-strand breaks.

Genes Dev., 11, 1912-1924.

Herrmann,G., Lindahl,T. and Schér,P. (1998) Saccharomyces
cerevisiae LIFI: a function involved in DNA double-strand break
repair related to mammalian XRCC4. EMBO J., 17, 4188-4198.
Teo,S.H. and Jackson,S.P. (2000) Lif1p targets the DNA ligase Lig4p to
sites of DNA double-strand breaks. Curr. Biol., 10, 165-168.
Moore,J.K. and Haber,J.E. (1996) Cell cycle and genetic requirements
of two pathways of nonhomologous end-joining repair of double-strand
breaks in Saccharomyces cerevisiae. Mol. Cell Biol., 16, 2164-2173.
Boulton,S.J. and Jackson,S.P. (1998) Components of the Ku-dependent
non-homologous end-joining pathway are involved in telomeric length
maintenance and telomeric silencing. EMBO J., 17, 1819-1828.
Wilson,S., Warr,N., Taylor,D.L. and Watts,F.Z. (1999) The role of
Schizosaccharoniyces pombe Rad32, the Mrell homologue, and other
DNA damage response proteins in non-homologous end joining and
telomere length maintenance. Nucleic Acids Res., 27, 2655-2661.
Yamaguchi-Iwai, Y., Sonoda,E., Sasaki,M.S., Morrison,C., Haraguchi,T.,
Hiraoka,Y., Yamashita,Y.M., Yagi,T., Takata,M., Price,C. et al. (1999)
Mrell is essential for the maintenance of chromosomal DNA in
vertebrate cells. EMBO J., 18, 6619-6629.

Harfst,E., Cooper,S., Neubauer,S., Distel,L. and Grawunder,U. (2000)
Normal V(D)J recombination in cells from patients with Nijmegen
breakage syndrome. Mol. Immunol., 37, 915-929.

Manolis,K.G., Nimmo,E.R., Hartsuiker,E., Carr,A.M., Jeggo,P.A. and
Allshire,R.C. (2001) Novel functional requirements for non-homologous
DNA endjoining in Schizosaccharomyces pombe. EMBO J.,20,210-221.

. Lewis,L.K., Storici,F., Van Komen,S., Calero,S., Sung,P. and

Resnick,M.A. (2004) Role of the nuclease activity of Saccharomyces
cerevisiae Mrel1 in repair of DNA double-strand breaks in mitotic cells.
Genetics, 166, 1701-1713.

Chen,L., Trujillo,K., Ramos,W., Sung,P. and Tomkinson,A.E. (2001)
Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mrel 1/
Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell, 8, 1105-1115.

Lee,S.E., Paques,F., Sylvan,J. and Haber,J.E. (1999) Role of yeast SIR
genes and mating type in directing DNA double-strand breaks to
homologous and non-homologous repair paths. Curr. Biol.,

9. 767-770.

Astrom,S.U., Okamura,S.M. and Rine,J. (1999) Yeast cell-type regulation
of DNA repair. Nature, 397, 310.

Frank-Vaillant,M. and Marcand,S. (2001) NHEJ regulation by mating
type is exercised through a novel protein, Lif2p, essential to the ligase IV
pathway. Genes Dev., 15, 3000573012.

Kegel,A., Sjostrand,J.O. and Astrém,S.U. (2001) Nejlp, a cell
type-specific regulator of nonhomologous end joining in yeast.

Curr. Biol., 11, 1611-1617.

00i,S.L., Shoemaker,D.D. and Boeke,J.D. (2001) A DNA
microarray-based genetic screen for nonhomologous end-joining
mutants in Saccharomyces cerevisiae. Science, 294, 2552-2556.
Valencia,M., Bentele,M., Vaze,M.B., Herrmann,G., Kraus,E., Lee,S.E.,
Schir,P. and Haber,J.E. (2001) NEJI controls non-homologous end
joining in Saccharomyces cerevisiae. Nature, 414, 666—669.

29. Frank,K.M., Sharpless,N.E., Gao,Y., Sekiguchi,J.M., Ferguson,D.O.,

Zhu,C., Manis,J.P., Horner,J., DePinho,R.A. and Alt,F.W. (2000) DNA
ligase IV deficiency in mice leads to defective neurogenesis and
embryonic lethality via the p53 pathway. Mol. Cell, 5, 993—-1002.



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Barnes,D.E., Stamp,G., Rosewell,I., Denzel,A. and LindahL,T. (1998)
Targeted disruption of the gene encoding DNA ligase IV leads to
lethality in embryonic mice. Curr. Biol., 8, 1395-1398.

Moshous,D., Callebaut,l., de Chasseval,R., Corneo,B.,
Cavazzana-Calvo,M., Le Deist,F., Tezcan,l., Sanal,O., Bertrand,Y .,
Philippe,N. et al. (2001) Artemis, a novel DNA double-strand break
repair/V(D)J recombination protein, is mutated in human severe
combined immune deficiency. Cell, 105, 177-186.

Pierce,A.J., Hu,P., Han,M., Ellis,N. and Jasin,M. (2001) Ku DNA
end-binding protein modulates homologous repair of double-strand
breaks in mammalian cells. Genes Dev., 15, 3237-3242.
Karathanasis,E. and Wilson, T.E. (2002) Enhancement of Saccharomyces
cerevisiae end-joining efficiency by cell growth stage but not by
impairment of recombination. Genetics, 161, 1015-1027.
Clikeman,J.A., Khalsa,G.J., Barton,S.L. and Nickoloff,J.A. (2001)
Homologous recombinational repair of double-strand breaks in yeast
is enhanced by MAT heterozygosity through yKU-dependent and -
independent mechanisms. Genetics, 157, 579-589.

Frank-Vaillant,M. and Marcand,S. (2002) Transient stability of DNA
ends allows nonhomologous end joining to precede homologous
recombination. Mol. Cell, 10, 1189—-1199.

Tsukamoto,Y., Kato,J. and Ikeda,H. (1997) Budding yeast Rad50,
Mrell, Xrs2 and Hdf1, but not Rad52, are involved in the formation of
deletions on a dicentric plasmid. Mol. Gen. Genet., 255, 543-547.
Schiestl,R.H., Zhu,J. and Petes,T.D. (1994) Effect of mutations in
genes affecting homologous recombination on restriction
enzyme-mediated and illegitimate recombination in Saccharomyces
cerevisiae. Mol. Cell Biol., 14, 4493-4500.

Zhu,J. and Schiestl,R.H. (1996) Topoisomerase I involvement in
illegitimate recombination in Saccharomyces cerevisiae.

Mol. Cell Biol., 16, 1805-1812.

Christianson, T.W., Sikorski,R.S., Dante,M., Shero,J.H. and Hieter,P.
(1992) Multifunctional yeast high-copy-number shuttle vectors.

Gene, 110, 119-122.

Chen,X.J. (1996) Low- and high-copy-number shuttle vectors for
replication in the budding yeast Kluyveromyces lactis. Gene, 172,
131-136.

Rothstein,R.J. (1983) One-step gene disruption in yeast.

Meth. Enzymol., 101, 202-211.

Scherer,S. and Davis,R.W. (1979) Replacement of chromosome
segments with altered DNA sequences constructed in vitro.

Proc. Natl Acad. Sci. USA, 76, 4951-4955.

Schiest],R.H. and Gietz,R.D. (1989) High efficiency transformation of
intact yeast cells using single stranded nucleic acids as a carrier.

Curr. Genet., 16, 339-346.

Ausubel,F.M. (1999) Short Protocols in Molecular Biology:A
Compendium of Methods From Current Protocols in Molecular
Biology, 4th edn. Wiley, NY.

Sambrook,J. and Russell,D.W. (2001) Molecular Cloning:A Laboratory
Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor, NY.

Winzeler,E.A., Shoemaker,D.D., Astromoff,A., Liang,H., Anderson,K.,
Andre,B., Bangham,R., Benito,R., Boeke,J.D., Bussey,H. et al. (1999)
Functional characterization of the S. cerevisiae genome by gene deletion
and parallel analysis. Science, 285, 901-906.

Wach,A., Brachat,A., Pohlmann,R. and Philippsen,P. (1994) New
heterologous modules for classical or PCR-based gene disruptions in
Saccharomyces cerevisiae. Yeast, 10, 1793—-1808.

Dujon,B., Sherman,D., Fischer,G., Durrens,P., Casaregola,S.,
Lafontaine,l., De Montigny,J., Marck,C., Neuveglise,C., Talla,E. et al.
(2004) Genome evolution in yeasts. Nature, 430, 35-44.

Glaz,J., Naus,J.I. and Wallenstein,S. (2001) Scan Statistics. Springer-
Verlag Inc., NY.

Parzen,E. (1960) Modern probability theory and its applications. John
Wiley & Sons Inc., NY.

Sherman,D., Durrens,P., Beyne,E., Nikolski,M. and Souciet,J.L. (2004)
Genolevures: comparative genomics and molecular evolution of
hemiascomycetous yeasts. Nucleic Acids Res., 32, D315-D318.
Milne,G.T. and Weaver,D.T. (1993) Dominant negative alleles of
RADS?2 reveal a DNA repair/recombination complex including Rad51
and Rad52. Genes Dev., 7, 1755-1765.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Nucleic Acids Research, 2006, Vol. 34, No. 5 1645

Donovan,].W., Milne,G.T. and Weaver,D.T. (1994) Homotypic and
heterotypic protein associations control Rad51 function in double-strand
break repair. Genes Dev., 8, 2552-2562.

Boulton,S.J. and Jackson,S.P. (1996) Saccharomyces cerevisiae Ku70
potentiates illegitimate DNA double-strand break repair and serves as a
barrier to error-prone DNA repair pathways. EMBO J., 15,

5093-5103.

Wilson,T.E. and Lieber,M.R. (1999) Efficient processing of DNA ends
during yeast nonhomologous end joining. Evidence for a DNA
polymerase beta (Pol4)-dependent pathway. J. Biol. Chem., 274,
23599-23609.

Astrom,S.U., Kegel,A., Sjostrand,J.O. and Rine,J. (2000) Kluyveromyces
lactis Sir2p regulates cation sensitivity and maintains a specialized
chromatin structure at the cryptic alpha-locus. Genetics, 156, 81-91.
Schiestl,R.H., Dominska,M. and Petes,T.D. (1993) Transformation of
Saccharomyces cerevisiae with nonhomologous DNA: illegitimate
integration of transforming DNA into yeast chromosomes and in vivo
ligation of transforming DNA to mitochondrial DNA sequences.

Mol. Cell Biol., 13, 2697-2705.

Decottignies,A. (2005) Capture of extranuclear DNA at fission yeast
double-strand breaks. Genetics, 171, 1535-1548.

Sharp,P.M. and Li,W.H. (1987) The codon Adaptation Index—a measure
of directional synonymous codon usage bias, and its potential
applications. Nucleic Acids Res., 15, 1281-1295.

Knight,R.D., Freeland,S.J. and Landweber,L.F. (2001) A simple model
based on mutation and selection explains trends in codon and
amino-acid usage and GC composition within and across genomes.
Genome Biol., 2, RESEARCH 0010.1-0010.13.

Smith,J., Baldeyron,C., De Oliveira,l., Sala-Trepat,M. and
Papadopoulo,D. (2001) The influence of DNA double-strand break
structure on end-joining in human cells. Nucleic Acids Res.,

29, 4783-4792.

Roth,D.B. and Wilson,J.H. (1985) Relative rates of homologous and
nonhomologous recombination in transfected DNA. Proc. Natl

Acad. Sci. USA, 82, 3355-3359.

Odell,M., Kerr,S.M. and Smith,G.L. (1996) Ligation of double-stranded
and single-stranded [oligo(dT)] DNA by vaccinia virus DNA ligase.
Virology, 221, 120-129.

Wang,H., Perrault,A.R., Takeda,Y., Qin,W. and Iliakis,G. (2003)
Biochemical evidence for Ku-independent backup pathways of NHEJ.
Nucleic Acids Res., 31, 5377-5388.

Kooistra,R., Hooykaas,P.J. and Steensma,H.Y. (2004) Efficient gene
targeting in Kluyveromyces lactis. Yeast, 21, 781-792.

Boulton,S.J. and Jackson,S.P. (1996) Identification of a Saccharomyces
cerevisiae Ku80 homologue: roles in DNA double strand break rejoining
and in telomeric maintenance. Nucleic Acids Res., 24, 4639-46438.
Zhu,J. and Schiestl,R.H. (2004) Human topoisomerase I mediates
illegitimate recombination leading to DNA insertion into the ribosomal
DNA locus in Saccharomyces cerevisiae. Mol. Genet. Genomics, 271,
347-358.

Cormack,B.P. and Falkow,S. (1999) Efficient homologous and
illegitimate recombination in the opportunistic yeast pathogen

Candida glabrata. Genetics, 151, 979-987.

Ikeda,H., Shiraishi,K. and Ogata,Y. (2004) Illegitimate recombination
mediated by double-strand break and end-joining in Escherichia coli.
Adv. Biophys., 38, 3-20.

Baudat,F. and Nicolas,A. (1997) Clustering of meiotic double-strand
breaks on yeast chromosome III. Proc. Natl Acad. Sci. USA, 94,
5213-5218.

Wu,T.C. and Lichten,M. (1994) Meiosis-induced double-strand break
sites determined by yeast chromatin structure. Science, 263, 515-518.
Gerton,J.L., DeRisi,J., Shroff,R., Lichten,M., Brown,P.O. and Petes,T.D.
(2000) Global mapping of meiotic recombination hotspots and
coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci.
USA, 97, 11383-11390.

Chen,X.J. and Clark-Walker,G.D. (1994) sir2 mutants of Kluyveromyces
lactis are hypersensitive to DNA-targeting drugs. Mol. Cell Biol.,

14, 4501-4508.

Astrom,S.U. and Rine,J. (1998) Theme and variation among silencing
proteins in Saccharomyces cerevisiae and Kluyveromyces lactis.
Genetics, 148, 1021-1029.



