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More than 50% of human cancers contain p53 gene mutations and as a result accumulate altered forms of
the full-length p53 protein. Although certain tumor types expressing mutant pS3 protein have a poor prog-
nostic process, the precise role of mutant p53 protein in highly malignant tumor cells is not well defined. Some
p53 mutants, but not wild-type p53, are shown here to interact with Daxx, a Fas-binding protein that activates
stress-inducible kinase pathways. Interaction of Daxx with p53 is highly dependent upon the specific mutation
of p53. Tumorigenic mutants of p53 bind to Daxx and inhibit Daxx-dependent activation of the apoptosis
signal-regulating kinase 1 stress-inducible kinases and Jun NH,-terminal kinase. Mutant p53 forms complexes
with Daxx in cells, and consequently, mutant p53 is able to rescue cells from Daxx-dependent inhibition of
proliferation. Thus, the accumulation of mutant p53 in tumor cells may contribute to tumorigenesis by

inhibiting stress-inducible kinase pathways.

The tumor suppressor gene p53 is one of the most frequently
mutated genes in a wide variety of human cancers (61), indi-
cating that the p53 protein plays a critical role in growth con-
trol and tumorigenesis. Deletion of the gene and loss of wild-
type pS3 function by viral or cellular oncoproteins clearly
contribute to tumorigenesis. The wild-type p53 protein func-
tions as a tetrameric transcription factor, and different forms of
stress activate signal-transduction pathways that culminate in
posttranslational modification to stabilize and activate p53.
This accumulation of pS3 protein activates the transcription of
genes that are involved in various activities, including cell cycle
inhibition and apoptosis—depending on the cellular context,
the extent of damage, and other unknown parameters. The
majority of p53 mutations apparently result in a loss of normal
function, since no mutant p53 so far isolated functions as a
transcription activator, as does wild-type p53. Missense muta-
tions in p53 may also play a role in malignant transformation
by generating a dominant negative form that inhibits the func-
tion of wild-type p53 (17). In such a case, expression of a
dominant negative mutant p53 would result in a phenotype
that is indistinguishable from that seen in p53-null cells. Such
mutations have been identified by genetic analysis, and they
contribute to the tumorigenic phenotype (12, 16, 51).

In principle, missense mutations could also contribute to
tumorigenesis by creating gain-of-function forms. Such a gain-
of-function mutation of p53 can be distinguished from a dom-
inant negative mutation because it results in a novel phenotype
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that is not observed in the p53-null cell. Individuals with Li-
Fraumeni syndrome (LFS), who carry a congenital mutation in
one p53 allele, frequently develop additional mutations neces-
sary for malignant transformation. The cancer rates observed
in LFS families are consistent with the abolition of a rate-
limiting step rather than with one less step in a multistep
carcinogenic process (3, 52). Most human sporadic cancer cells
that carry a missense mutation to one p53 allele show a dele-
tion of the other wild-type p53 allele and continue to produce
only a mutant form of p53 protein. This situation is quite
different from that for most other tumor suppressor genes,
where deletions of both alleles are common. These results
support the notion that a gain-of-function by mutant p53 con-
tributes to the development of human cancer.

The expression of a mutant p53 gene in a p53-null cell
enhances malignant transformation in cultured cells (60) and
affects tumor progression (8, 10, 21, 26, 45, 49). A role for
mutant p53 in generating aneuploidy in human cells has also
been suggested (14), and an accumulation of aneuploid cells
has been found in fibroblasts from LFS patients (3). Moreover,
the expression of mutant p53 proteins in human colon carci-
noma cells results in a tendency for the increase in ploidy
during growth in culture (1) or in response to radiation or
treatment with doxorubicin hydrochloride (Adriamycin; Phar-
macia & Upjohn) (57). Mutant p53 also disrupts the spindle
checkpoint control in fibroblasts from LFS patients (14). Spe-
cific transcriptional activation of certain growth-promoting
genes by mutant p53 has been reported. Mutant p53 does not
activate the same gene promoters as does wild-type p53 but
instead activates transcription of the genes for epidermal
growth factor receptor, multiple-drug resistance 1, proliferat-
ing cell nuclear antigen, and c-myc (13, 32). Recently, the
mouse mutant pS3 172RH, which corresponds to the 175SRH
hot-spot mutation in human tumors, has been shown to convey
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high metastatic potential to tumors in experiments using a
transgenic mouse system (36). Since the mutant p53 protein
may contribute to cell survival under conditions where apopto-
tic programs are reduced by the expression of mutant protein,
we aimed to identify a potential linkage of mutant p53 protein
for the modulation of apoptotic pathways. We found that tu-
morigenic mutant, but not wild-type, p53 proteins interact with
the nuclear protein Daxx and inhibit both Daxx-dependent
apoptosis signal-regulating kinase 1 (ASK1) and Jun NH,-
terminal kinase (JNK) activation. Daxx was originally identi-
fied as a Fas-binding protein that enhances Fas-dependent
apoptosis by activating stress-inducible kinase pathways (65).

Various environmental factors, including UV and v irradia-
tion, chemotherapy drugs, osmotic shock, heat, nitric oxide
(NO), lipopolysaccharide, arsenic oxide, and inflammatory cy-
tokines such as tumor necrosis factor alpha or interleukin 1,
induce the cellular activation of stress-inducible kinase path-
ways. Activated kinases, such as JNK, appear to regulate gene
expression and/or other biochemical functions in cells exposed
to environmental stress. JNKs phosphorylate transcription fac-
tors, such as c-Jun, ATF-2, and Elk-1, and strongly augment
their transcriptional activity (15, 29, 59). Activation of JNK has
been shown to induce apoptosis in some cells. For example,
overexpression of MEKK, a JNK kinase kinase, has a lethal
effect on fibroblasts (27, 31). In JNK2 knockout mice or mice
expressing a dominant negative form of JNK, immature thy-
mocytes are resistant to apoptosis induced by administration of
anti-CD3 antibody (46). Disruption of the JNK3 gene in mice
induces neuronal cells to become resistant to the excitotoxic
glutamate receptor agonist, kainic acid, in the hippocampus
(64). Fibroblasts with simultaneous targeted disruptions of
JNK1 and JNK2 genes are protected against UV-stimulated
apoptosis (55). In addition, the tumor suppressor p53, which is
essential for radiation-induced apoptosis (37), is activated by
JNKI in vivo (40). These data suggest that the JNK cascade
may participate in apoptosis.

Daxx directly interacts with ASK1 (4), a mitogen-activated
protein kinase kinase kinase (24, 53, 63), which in turn acti-
vates the JNK- and p38-dependent cascades. Mutant p53 in-
hibits the Daxx-ASK1 cascade most likely as a result of a novel
gain-of-function phenotype. We hypothesize that mutant p53
supports cell survival by inhibiting the stress-inducible kinase
activation and that it contributes to both cellular transforma-
tion and resistance to cytotoxic agents.

MATERIALS AND METHODS

Identification of Daxx cDNA. A yeast two-hybrid screening was performed as
described previously (56) by using as bait a COOH-terminal region of p53
containing a nuclear localization sequence, an oligomerization domain, and a
regulatory basic amino acid region. The positive clones were identified by two
criteria. The first was growth capability on nutrient-restricted agar plates: five
essential components, leucine, lysine, histidine, tryptophan, and uracil, were
omitted. In this system, histidine is provided only when a protein from the cDNA
library has an affinity for the bait protein. The expression of the HIS3-coding
sequence was driven by a minimal GAL1 promoter fused to multimerized LexA
binding sites. The second criterion was the expression of B-galactosidase. Be-
cause the lacZ gene is driven by the same promoter as HIS3, the yeast clones that
carry a positive cDNA clone should express B-galactosidase. After confirmation
with 5-bromo-4-chloro-3-indolyl-B-p-galactopyranoside (X-Gal) staining for
B-galactosidase activity, we isolated positive plasmids from the yeast colonies and
transferred them to Escherichia coli strain HB101, which carries a mutation of
the LueB gene and can therefore grow on an agar plate without leucine only

NOVEL GAIN-OF-FUNCTION OF MUTANT p53 IN TUMORIGENESIS 323

when it contains a plasmid that carries the Leu2 gene. Isolated plasmid DNAs
were then transferred back to the yeast, which carries bait plasmid, to confirm the
presence of B-galactosidase activities (data not shown).

DNA cloning and protein production in vitro and in bacteria. Full-length
human Daxx cDNA was isolated by reverse transcriptase PCR, and the sequence
was verified. cDNA was cloned into a pcDNA3.1 vector (Invitrogen) and sub-
jected to in vitro transcription-translation by using the TNT T7 coupled reticu-
locyte lysate system (Promega). A different portion of the COOH-terminal
region of p53 was cloned into a pGEX-2T expression vector (Pharmacia); glu-
tathione S-transferase (GST) fusion proteins were produced in BL21(DE3)
pLysS bacteria (Novogen) and purified by a glutathione-Sepharose column as
described previously (20).

Cell culture and cell lines. Saos2, H1299, HT-29, and 293 cells were main-
tained at 5% CO, in Dulbecco’s modified Eagle’s medium (Life Technologies)
supplemented with 10% fetal calf serum (FCS). HeLa cells were maintained at
5% CO, in minimum essential medium supplemented with 10% FCS. The
transfections were performed by using FuGENE 6 (Roche) as recommended by
the manufacturer.

Saos2-derived cell lines expressing 143VA, 175RH, 248RW, 273RH, or
281DG mutant p53 genes were established. In brief, Saos2 cells were transfected
with a mutant p53-expressing plasmid followed by G418 (400 ng/ml) selection.
Two weeks after selection by the drug, colonies were isolated and tested for the
expression of mutant p53. Saos2/175RH cells were then further transfected with
a FLAG-Daxx-expressing plasmid followed by hygromycin selection (100 pg/ml)
for 2 weeks to establish cells in which both the 175SRH mutant p53 and FLAG-
Daxx were expressed.

Anchorage-independent cell growth assay. An anchorage-independent cell
growth assay was performed as described previously (8). In brief, Saos2-derived
cells expressing mutant p53 were resuspended in 0.3% Noble agar in Dulbecco’s
modified Eagle’s medium supplemented with 10% FCS at a density of 2 X 10*
cells per well in six-well plates and were plated onto a medium containing
solidified 0.5% Noble agar in the bottom layer. Cultures were fed weekly, and
colonies containing more than 30 cells were counted after 3 weeks.

GST protein binding assay. GST pull-down experiments were preformed as
described previously (20). In short, in vitro-translated full-length human Daxx
and deletion mutant Daxx A1, A2, A3, and A5, labeled with [**S]methionine were
incubated with GST or a GST-p53 fusion protein on glutathione-Sepharose
beads, and the bound fraction was analyzed by sodium dodecyl sulfate-polyac-
rylamide gel electrophoresis (SDS-PAGE) (10% acrylamide) followed by
autofluorography.

Immunoprecipitation. Saos2 or H1299 cells were transfected with the plasmid
DNA expressing FLAG-Daxx and the mutant p53-expressing plasmid. Trans-
fected cells were harvested 48 h after transfection. Cells were lysed in E1A buffer
(50 mM HEPES [pH 7.4], 1% NP-40, 250 mM NaCl, 1 mM EDTA, 2 mM
dithiothreitol [DTT], 50 mM NaF, 1 mM sodium orthovanadate, 5 mM B-glyc-
erophosphate, 2 mM sodium pyrophosphate, 0.5 pg of aprotinin/ml, 0.5 pg of
leupeptin/ml, 0.7 pg of pepstatin A/ml, and 10% glycerol). Lysates were sub-
jected to immunoprecipitation with the DO-1 anti-p53 antibody or the M2
anti-FLAG antibody, and the precipitated material was analyzed by immuno-
blotting with the M5 anti-FLAG antibody or the DO-1 antibody, respectively.

To identify mutant p53-Daxx complexes in HT-29 cells, cell lysates were
immunoprecipitated with PAb421 antibody, and the precipitated materials were
analyzed by Western blotting using anti-Daxx polyclonal antibody (M-112; Santa
Cruz Biotechnology). Arsenic trioxide (5 M) treatment was performed for 4 h.
For cells constitutively expressing both mutant p53 and FLAG-Daxx, 5 pM
arsenic trioxide treatment was performed for 4 h or stimulation with the CH-11
anti-Fas antibody (300 ng/ml; Upstate Biotechnology) was performed for 40 min.
Cell lysates (160 pg of protein) were subjected to immunoprecipitation with
control immunoglobulin G2a (IgG2a) or with the PAb421 anti-p53 antibody (0.5
ng) followed by immunoblotting with the M5 anti-FLAG antibody. Total Daxx
proteins in cells were detected by immunoblotting with anti-Daxx polyclonal
antibody (M-112; Santa Cruz Biotechnology).

IP-kinase assay. For the immunoprecipitation kinase (IP-kinase) assay,
pCFLAG-JNK (0.5 ng) was cotransfected with pcDaxx (0.75 pg) and a mutant
p53-expressing plasmid DNA (0.75 pg) in the indicated combinations into HeLa
cells. Four hours after transfection, cells were serum starved for 20 h and then
harvested and lysed in lysis buffer (25 mM HEPES [pH 7.5], 300 mM NaCl, 1.5
mM MgCl,, 0.2 mM EDTA, 0.5 mM DTT, 0.1% Triton X-100, 20 mM B-glyc-
erophosphate, 1 mM sodium orthovanadate, 50 mM NaF, 0.5 pg of aprotinin/ml,
0.5 pg of leupeptin/ml, 0.7 pg of pepstatin A/ml, and 10% glycerol). FLAG-
JNKI1 was immunoprecipitated from cleared lysates with the M2 anti-FLAG
antibody and used in in vitro kinase reactions in a buffer containing 25 mM
HEPES (pH 7.4), 25 mM B-glycerophosphate, 25 mM MgCl,, 0.1 mM sodium
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orthovanadate, 0.5 mM DTT, 1 pCi of [y->*P]ATP, 20 uM ATP, and 1 pg of
GST-c-Jun(1-79).

ASKI1 kinase activity was measured in an IP-kinase assay using the 12CAS
antihemagglutinin (anti-HA) antibody. 293 cells were cotransfected with
pcDNA3-ASK1-HA (0.5 pg), pCFLAG-Daxx (0.75 pg), and p53 (wild-type,
143VA, 175RH, 273RH) expression plasmids (0.75 ng). Kinase assays were
performed by sequential phosphorylation of GST-MKK6 and GST-SAPK/p38y
to amplify the activities as described before (24). In brief, 24 h after transfection,
cells were lysed in the lysis buffer (20 mM Tris-HCI [pH 7.5], 150 mM NaCl, 5
mM EGTA, 3 mM DTT, 1% Triton X-100, 12 mM B-glycerophosphate, 1 mM
sodium orthovanadate, 10 mM NaF, 0.5 pg of aprotinin/ml, 0.5 pg of leupeptin/
ml, 0.7 pg of pepstatin A/ml, and 10% glycerol) and subjected to immunopre-
cipitation with an anti-HA antibody for 2 h at 4°C. The beads were washed twice
with the lysis buffer and once with the kinase reaction buffer (20 mM Tris-HCI
[pH 7.5], 10 mM MgCl,, 25 mM B-glycerophosphate, 0.1 mM sodium orthovana-
date) and then incubated with 0.2 ug of GST-MKKG6 for 10 min at 30°C in a final
volume of 25 ul of the kinase reaction buffer supplemented with 100 uM ATP.
Next, the activated complex was incubated with 0.3 p.Ci of [y->P]JATP and 1 ug
of GST-SAPK/p38y in the same reaction (final volume, 35 wl) for 10 min at room
temperature. The reactions were terminated by addition of 10 pl of 5X SDS
sample buffer. Samples were heated at 95°C for 3 min and analyzed by SDS-
PAGE. The phosphorylated GST-SAPK/p38y was measured by PhosphorImager
(Bio-Rad) after resolution by SDS-PAGE. The expression levels of ASK1-HA,
FLAG-Daxx, and mutant p53 were identified by immunoblotting.

Cell survival assay. Fas-dependent apoptosis enhanced by Daxx was measured
by cotransfecting pCMVB (0.25 pg), pcDNA-Fas (0.25 pg), and mutant p53
(0.375 ng) into HelLa cells together with Daxx or Daxx deletion mutant expres-
sion plasmids (0.375 pg). Twenty-four hours after transfection, transfected cells
were identified by X-Gal staining. The percentage of apoptotic cells was deter-
mined by dividing the number of blue cells with apoptotic morphology by the
total number of blue cells. The specific apoptosis was determined as the per-
centage of blue cells with apoptotic morphology minus the percentage of blue
cells with apoptotic morphology in pcDNA3-transfected cells. At least 200 cells
from 10 random fields were counted in each experiment. Statistical analyses
between two groups were performed with an unpaired Student ¢ test, and prob-
ability (P) values were calculated.

Clonogenic cell survivals were measured as follows. Saos2 cells (2 X 10° cells)
carrying an empty vector (pcDNA3.1/Neo) or a mutant p53 expression plasmid
(mutants 143VA, 175RH, or 273RH) were transfected with a Daxx expression
plasmid (pcDaxx/Hyg), an empty vector (pcDNA/Hyg) as a positive control, or a
negative control vector (pCMVR) that does not carry a hygromycin resistance
gene. Drug-resistant cells were selected with hygromycin (800 pg/ml) for 2
weeks, colonies were stained with 0.05% crystal violet in a 20% ethanol-0.37%
formaldehyde solution, and surviving colonies containing more than 50 cells were
counted.

RESULTS

Identification of a p53 binding protein as a potential signal
mediator. To identify potential partners of mutant p53 in the
cell signaling pathways, we employed the yeast two-hybrid
screening (56) using the COOH-terminal region of wild-type
p53 as bait. This region, shared between wild-type and a variety
of common mutant p53s, contains a nuclear localization se-
quence, an oligomerization domain, and a regulatory basic
amino acid region (see Fig. 2). Sequence analysis of the posi-
tive clones revealed that one of the clones carries part of the
human Daxx cDNA (see Fig. 2). Thus, it is likely that the
COOH-terminal region of p53 and the COOH-terminal half of
Daxx form complexes in yeast cells. Daxx was initially identi-
fied as a Fas-binding protein; however, the majority of the
protein has been found in the nucleus (5, 65).

Identification of the regions responsible for the Daxx-p53
interaction. To characterize the domain within the COOH-
terminal region of p53 responsible for its binding with Daxx,
we performed an in vitro binding assay using GST-p53 (9, 20)
and Daxx translated in vitro (see Fig. 2). In vitro-translated
full-length human Daxx protein labeled with [**S]methionine
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FIG. 1. Schematic diagram of p53 and Daxx mutants. Amino acid
numbers of the domain boundaries and descriptions of domains are
indicated. p53C2 is the portion used as a bait in the yeast two-hybrid
screen. The cDNA fragment encoding amino acids 281 through 740 of
human Daxx (positive clone) is the original fragment obtained in the
yeast two-hybrid screen. The COOH terminus of p53 (C4, regulatory
domain) is the Daxx-binding domain. The acidic domain (amino acids
433 to 493) and the COOH terminus AS (amino acids 625 to 740) of
Daxx are p53-binding domains.

was incubated with a series of truncated forms of p53 fused to
GST protein on glutathione-Sepharose beads, and the bound
fraction was analyzed by SDS-PAGE followed by autofluorog-
raphy (20). Figure 2A shows the proteins used in this assay
visualized with Coomassie brilliant blue stain. Human Daxx
was found to bind specifically to the COOH-terminal region of
p53 (C2), identical to that used in the yeast two-hybrid screen
as bait (see Fig. 2B, lane 3). These results confirm the result in
the two-hybrid screening (Fig. 1). Within the C2 portion, hu-
man Daxx protein was found to bind to the COOH-terminal
end of p53, which contains a regulatory domain for the binding
of p53 to specific DNA sequences (Fig. 2B, lane 5). We next
identified the Daxx domain responsible for its interaction with
p53. We created Daxx deletion mutant constructs, as shown in
Fig. 1, and proteins were produced by in vitro transcription-
translation in the presence of [*>S|methionine. The retention
of these Daxx deletion mutants on the glutathione beads with
the COOH-terminal end of p53 (GSTP53C4) were then mea-
sured. The deletion mutant A1, which contains the amino acids
up to position 433, lost the ability to bind to GSTP53C4 (Fig.
2C, lanes 7 and 8), but A2, which contains the amino acids up
to position 493, was retained on the beads (Fig. 2C, lanes 9 and
10). These results indicate that the p53-binding domain of
Daxx is located between amino acids 434 and 493, the acidic
region of Daxx. It is noteworthy that the COOH-terminal end
of Daxx that was reportedly responsible for the interaction with
Fas or the promyelocytic leukemia protein (PML) (54, 65)
bound specifically to GSTP53C4 (Fig. 2D, lanes 2 and 3).
These results show that the region containing amino acids 434
to 493 and possibly the COOH-terminal region of the Daxx
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FIG. 2. Interaction of p53 and Daxx in vitro. (A) Coomassie brilliant blue staining of purified GST-p53 fusion proteins. GST (lane 1),
GST-p53C2 (lane 2), GST-p53C3 (lane 3), and GST-p53C4 (lane 4) were produced in bacteria and purified as described previously. (B) Daxx binds
to the COOH terminus of p53. In vitro-translated full-length human Daxx labeled with [**S]methionine (lane 1) was incubated with GST (lane 2)
or GST-p53 fusion proteins (lanes 3 to 5) on glutathione-Sepharose beads as indicated, and the bound fraction was analyzed by SDS-10% PAGE
followed by autofluorography. (C) The acidic domain of Daxx binds to the COOH terminus of p53. Full-length Daxx and deletion mutants Daxx
A1, A2, and A3 were translated in vitro in the presence of [*S]methionine (lanes 1 to 4) and incubated with GST (lanes 5, 7, 9, and 11) or the
GST-p53C4 fusion protein (lanes 6, 8, 10, and 12) on glutathione-Sepharose beads. Bound fractions were analyzed as described for panel B (lanes
5 to 12). Arrowheads indicate the positions of Daxx proteins. (D) The COOH terminus of Daxx binds to p53. A deletion mutant, Daxx A5 (codons
625 to 740), was translated in vitro (Daxx AS, lane 1) with [**S]methionine and incubated with GST (lane 2) or the GST-p53C4 fusion protein (lane
3) on glutathione-Sepharose beads, and the bound fraction was analyzed as described for panel B.

protein are involved in its interaction with the COOH-terminal
region of p53.

Daxx interacts with tumorigenic mutant p53 but not with
wild-type p53. We next examined the interaction of p53 with
Daxx in the cell by coimmunoprecipitations. Wild-type p53
expression plasmid or 175RH mutant p53 expression plasmid
was cotransfected with FLAG-Daxx expression plasmids into
human osteosarcoma Saos2 cells (p53~/7), and then 48 h later
the cells were lysed in E1A buffer (250 mM NaCl). Cell lysates
were subjected to immunoprecipitation with DO-1 anti-p53
monoclonal antibody. Immunoprecipitated materials were sep-
arated by SDS-PAGE and analyzed by Western blotting (IP-
Western blotting) with M5 anti-FLAG monoclonal antibody.
Daxx did not immunoprecipitate with wild-type p53 but pre-
cipitated with mutant p53 (Fig. 3A). We then tested the abil-
ities of various mutant p53s to bind to Daxx by IP-Western
blotting using DO-1 antibody, which reacts equally well with all
mutant p53s used. We tested five mutants, 175RH, 248RW,
273RH, 281DG, and 143VA (a temperature-sensitive mutant
used at a nonpermissive temperature), and found that there
were significant differences in the ability of different mutant
proteins to coprecipitate Daxx (Fig. 3B, IP: p53 and WB:
FLAG-Daxx). The 175RH and 273RH mutants precipitated
the highest amount of Daxx (Fig. 3B, lanes 3 and 5), while

248RW and 281DG precipitated moderate amounts (Fig. 3B,
lanes 4 and 6). The 143VA mutant precipitates the lowest
amount of Daxx (Fig. 3, lane 2). The amounts of FLAG-Daxx
and mutant p53 proteins were almost equal in each transfec-
tion, suggesting that these differences in affinities were due to
an inherent difference between the mutant p53 proteins. The
difference of the abilities for mutant p53 to interact with Daxx
was also observed by reciprocal immunoprecipitation with M2
anti-FLAG antibody followed by Western blotting with DO-1
(Fig. 3B, IP:FLAG-Daxx and WB:p53).

It has been demonstrated that p53 mutants increase malig-
nant transformation of the Saos2 cell to various degrees de-
pending on the type of p53 mutant (8). We determined the
ability of each mutant p53 to induce anchorage-independent
growth of Saos2 cells in soft agar. Saos2 cell lines that stably
express each of the aforementioned five mutant p53s were
established, and the plating efficiencies in agar were deter-
mined by counting colonies (>30 cells). Interestingly, we ob-
served gain-of-function activities of mutant p53s similar to
those previously described for Saos2 cells, which induced an-
chorage-independent growth (8). Our results for vector,
143VA, 175RH, 248RW, 273RH, and 281DG were —, —, ++,
—, ++, and +, respectively, and Dittmer et al. reported re-
spective results of —, —, ++, +, ++, and +, where the sym-
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FIG. 3. Daxx interacts with tumorigenic mutant p53 but not with
wild-type p53. (A) Mutant p53 but not wild-type p53 interacts with
Daxx. Saos2 cells were transfected with empty vector (lane 1), wild-
type p53 (lane 2), or 175RH mutant p53 (lane 3) expression plasmid
together with FLAG-Daxx expression plasmid. Two days posttransfec-
tion, cells were lysed in the E1A buffer and the expression level of
FLAG-Daxx and wild-type or mutant p53 was analyzed by Western
blotting (WB) using M5 anti-FLAG antibody or DO-1 anti-p53 (both
wild-type and mutant forms) antibody, respectively. Immunoprecipita-
tions (IP) were performed by using DO-1 anti-p53 antibody, and pre-
cipitated materials were analyzed by Western blotting using M5 anti-
FLAG antibody (WB). (B) Daxx binds to various p53 mutants. H1299
cells (p537/7) were transfected with the plasmids expressing FLAG-
Daxx and mutant p53 (143VA, 175RH, 248RW, 273RH, and 281DG).
Cell lysates were subjected to immunoprecipitation with DO-1 or M2
anti-FLAG antibody, and the precipitated material was analyzed by
Western blotting with the M5 anti-FLAG antibody or DO-1, respec-
tively. The summary of transformation activities of mutant p53 to
induce anchorage-independent growth of cells is shown (top). The
expressions of FLAG-Daxx and mutant p53 (143VA [lane 2], 175RH
[lane 3], 248RW [lane 4], 273RH [lane 5], and 281DG [lane 6]) in
cotransfected cells are shown.

bols for transformation activities are the following:—, 0%; +,
=0.05%; ++, =0.1%. The potential of mutant p53s to induce
anchorage-independent growth of Saos2 cells was found to
correlate with Daxx binding ability. These results suggest that
the interaction of mutant p53 with Daxx would play a role in
the malignant transformation process.

Daxx interacts with mutant p53 under physiological condi-
tions. We next examined the interaction between endogenous
273RH mutant p53 and endogenous Daxx in HT-29 cells by
IP-Western blotting. Cell lysates were immunoprecipitated
with PAb421 anti-p53 monoclonal antibody, and the precipi-

MoL. CELL. BIOL.

tated material was analyzed by Western blotting with anti-Daxx
polyclonal antibody. As shown in Fig. 4A, endogenous Daxx
was specifically coimmunoprecipitated with 273RH mutant
p53 when cells were treated with arsenic trioxide (As,O5),
which enhances Daxx function in apoptosis (Fig. 4A, lanes 2
and 3), whereas the specific interaction was not detected with-
out the treatment (Fig. 4A, lanes 4 and 5). Approximately 10%
of the total cellular Daxx was coprecipitated with 273RH mu-
tant p53 under the experimental conditions described in Ma-
terials and Methods. The interaction between mutant p53 and
Daxx was further studied using a Saos2-derived cell line ec-
topically expressing both FLAG-Daxx and the 175SRH mutant
pS3. The expression levels of FLAG-Daxx and endogenous
Daxx were determined by Western blotting. Although FLAG-
Daxx protein is expressed in this cell line, the total level of
Daxx expression is almost identical to that of HeLa or parental
Saos2 cells, indicating that the expression of FLAG-Daxx in
these cells is at the physiological level (Fig. 4B, lanes 2 to 4).
The expression level of 175SRH mutant p53 in this cell line was
determined by Western blotting and compared with the level
of endogenous mutant p53 (273RH) expressed in HT-29. The
expression level of mutant p53 in the Saos2-derived cells was
much lower than that of HT-29, indicating that the expression
level of 17SRH mutant p53 is within the physiological range
(Fig. 4C). Cell lysates of Saos2-derived cells were immunopre-
cipitated with PAb421 anti-p53 monoclonal antibody, and the
precipitated material was analyzed by Western blotting with
MS5 anti-FLAG antibody. The FLAG-Daxx protein was specif-
ically coimmunoprecipitated with the 175RH mutant p53 from
the cell lysate (Fig. 4E, lanes 1 and 2). Furthermore, the in-
teraction between mutant p53 and Daxx was significantly in-
duced by treating cells with anti-Fas monoclonal antibody,
which activates the Fas-dependent apoptosis pathway, or
As,O; (Fig. 4E, compare lane 2 with lanes 3 and 4). Since the
amount of FLAG-Daxx and mutant p53 proteins expressed in
cells are constant throughout the treatment (Fig. 4D), the
treatment of cells with anti-Fas monoclonal antibody or As,O5
drastically enhances the affinity between 175RH mutant p53
and Daxx in cells. These results indicate that mutant p53 in-
teracts with Daxx under physiological conditions, that the in-
teraction is not a cell line-dependent phenomenon, and that
the induction of complex formation by stresses, such as expo-
sure to As,Os, is not a cell type-specific phenomenon. These
results suggest that the expression of mutant p53 may modify
Daxx-dependent stress-signaling pathways under physiological
conditions.

Tumorigenic mutant pS53 inhibits the Daxx-dependent
stress-inducible kinase pathway. To determine the effect of
mutant p53 on the Daxx signaling pathway, we measured ASK1
activities induced by Daxx overexpression. ASK1 is a mitogen-
activated protein kinase kinase kinase that interacts with Daxx
and activates the JNK and p38 pathways (4, 24). Thus, we
examined the effect of mutant p53 on Daxx-dependent activa-
tion of ASKI1. 293 cells were transfected with FLAG-JNK,
ASK1, and p53 expression plasmids in the combinations indi-
cated (Fig. 5). The ASK1 activity measured by a sequential IP
kinase assay using GST-MKK6 and GST-p38y as substrates
was induced by overexpression of Daxx as expected (Fig. 5,
lane 2). The strong Daxx-interacting 175RH and 273RH mu-
tants strongly inhibited the activation of ASKI induced by
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FIG. 4. Daxx interacts with mutant p53 under physiological conditions. (A) Mutant p53 interacts with Daxx in tumor cells exposed to arsenic
trioxide. Cell lysates prepared from HT-29 cells originally expressing 273RH mutant p53 were subjected to immunoprecipitation with normal
mouse IgG2a (lanes 2 and 4) or Pab421 anti-p53 antibody (lanes 3 and 5), and precipitated materials were analyzed by Western blotting with
anti-Daxx antibody. HT-29 cells were treated with (lanes 2 and 3) or without (lanes 4 and 5) 5 wM arsenic trioxide for 4 h. Lanes 4 and 5 were
exposed three times longer. Lane 1 shows the amount of Daxx in cell lysate (10 pg). (B) Expression of FLAG-Daxx in a Saos2-derived cell line.
A cell line expressing both the 175RH mutant of p53 and FLAG-Daxx was established. Total Daxx expression was determined by anti-Daxx
polyclonal antibody, and FLAG-Daxx expression was determined by M5 anti-FLAG antibody. Lane 1, Saos2 cells transfected with Daxx expression
plasmid (10 pg of protein; positive control); lane 2, HeLa cells (30 wg of protein); lane 3, parental Saos2 cells (30 wg of protein); lane 4, established
Saos2-derived cell line. (C) Expression of mutant p53 in established cell lines. Cell lysates (30 pg) were analyzed for the expression level of mutant
p53 by Western blotting. Lane 1, HT-29 cells (expressing endogenous 273RH mutant p53; positive control); lane 2, Saos2 (p53-null, parental cells);
lane 3, Saos2-derived established cells (expressing 175RH mutant p53). (D) Expression of mutant p53 and FLAG-Daxx in Saos2-derived cells
during Fas cross-linking and arsenic trioxide treatment. Arsenic trioxide treatment (5 uM) was performed for 4 h, and stimulation of Fas with
CH-11 anti-Fas antibody (300 ng/ml) was performed for 40 min. Lane 1, no treatment (NT); lane 2, arsenic trioxide treatment (AS); lane 3,
Fas-cross-linking (aFas). (E) Fas-cross-linking and arsenic trioxide treatment induced the formation of complexes between Daxx and mutant p53
in cells. Cell lysate (160 wg) was subjected to immunoprecipitation with control IgG2a or the PAb421 anti-p53 antibody (0.5 pg) followed by
Western blotting with the M5 anti-FLAG antibody. Lane 1, immunoprecipitation with control IgG; lane 2, no treatment (NT); lane 3, arsenic
trioxide treatment (As); lane 4, Fas cross-linking («Fas).
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FIG. 5. Mutant p53 but not wild-type p53 inhibits Daxx-dependent
ASK1 activation. 293 cells were cotransfected with pcDNA3-
ASK1-HA (0.5 pg), pPCFLAG-Daxx (0.75 pg), and a p53 (wild-type,
143VA, 175RH, or 273RH) expression plasmid (0.75 pg) in the indi-
cated combinations. ASK1 kinase activity was measured in an IP ki-
nase assay as described in Materials and Methods. The expression
levels of ASK1-HA, FLAG-Daxx, and p53 were identified by Western
blotting.

Daxx (Fig. 5, lanes 5 and 6). In contrast, the wild-type and the
weak Daxx-interacting mutant p53, 143VA, showed weak in-
hibition of ASK1 activity (Fig. 5, lanes 3 and 4). The results of
these experiments demonstrated that the strong Daxx-binding
mutant p53 inhibits the Daxx ability to activate ASK1.

It has been shown that overexpression of Daxx activates
ASK1 and the JNK pathway to enhance Fas-dependent apo-
ptosis (65). Therefore, we next determined the effect of mutant
p53 on the Daxx-dependent JNK activation. HeLa cells were
transfected with a Daxx expression plasmid followed by an IP
kinase assay using GST-c-Jun(1-79) as a substrate. The cleared
lysates were also subjected to Western blotting to measure the
expression levels of FLAG-JNK, Daxx, and mutant p53. Daxx-
induced JNK activity was strongly inhibited by the expression
of 175RH or 273RH mutant p53 (Fig. 6, lanes 4 and 6) and was
weakly inhibited by 143V A or 248RW mutant p53 (Fig. 6, lanes
3 and 5). The magnitude of inhibition of JNK activity corre-
lated with the strength of the interaction of mutant p53 with
Daxx (Fig. 3B), suggesting that the complex formed between
Daxx and mutant p53 caused the inhibition of the Daxx-de-
pendent activation of JNK.

The effect of mutant p53 on the ASK1-dependent activation
of JNK. We next examined the effect of mutant p53 on ASK1-
dependent activation of JNK. HeLa cells were transfected with
FLAG-JNK, ASK1, and mutant p53 expression plasmids in the
combinations as indicated (Fig. 7). FLAG-JNK was immuno-
precipitated from cell lysates, and in vitro kinase assays were
performed as described in Materials and Methods. JNK activ-
ity was induced by the expression of ASK1 as expected (Fig. 7,
lane 2). In contrast to the Daxx-dependent activation of JNK,
both the weak Daxx-binding 143V A and the strong Daxx-bind-
ing 175RH mutant p53 weakly inhibited the activation of INK
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FIG. 6. Mutant p53 inhibits Daxx-induced JNK activation.
pCFLAG-JNK (0.5 pg) was cotransfected with pcDaxx (0.75 pg) and
a mutant p53-expressing plasmid (0.75 pg) in the indicated combina-
tions into HeLa cells. Four hours after transfection, cells were serum
starved for 20 h and then harvested and lysed in the lysis buffer. IP
kinase assays were performed as described in Materials and Methods.
The cleared lysates were subjected to Western blotting to measure the
expression levels of FLAG-JNK, FLAG-Daxx, and mutant p53 pro-
teins.

induced by ASK1 (Fig. 7, lanes 3 and 4). Another strong
Daxx-binding 273RH mutant p53 did not show an inhibitory
effect (Fig. 7, lane 5). These results indicate that mutant p53s
could have a weak inhibitory effect on the ASKI-dependent
activation of the JNK pathway. However, the ability of each
mutant p53 to inhibit the ASK1-dependent activation of JNK
does not correlate with the strength of the interaction with

JNK activity

WB: JNK

FLAG-JNK + + + + +
ASK1 - + + + +
p53 - 143VA 175RH 273RH

FIG. 7. The effect of mutant p53 on the ASKI-dependent JNK
activation. FLAG-JNK expression plasmid (0.5 pg) was cotransfected
with ASK1 expression plasmid (0.75 wg) and mutant p53-expressing
plasmid (0.75 pg) in the indicated combinations into HeLa cells. Four
hours after transfection, cells were serum starved for 20 h, and then
they were harvested and lysed in the lysis buffer. The activity of JNK
was determined by IP kinase assay as described in the legend for Fig.
6. The cell lysates were subjected to Western blotting to determine the
expression of FLAG-JNK protein.
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FIG. 8. Mutant p53 reduces the amount of Daxx in cells. Expression plasmids for Daxx (0.75 ng) and ASK1-HA (0.5 pg) were transfected into
HelLa cells together with an increasing amount of mutant p53 expression plasmid (0.25, 0.5, and 0.75 pg). Lanes 3 to 5, 143VA; lanes 6 to 8, 175RH;
lanes 9 to 11, 273RH. Cells were harvested 2 days posttransfection, and the expression levels of Daxx, ASK1-HA, and mutant p53 were determined
by Western blotting using anti-Daxx, anti-HA, and anti-p53 antibodies, respectively.

Daxx. Therefore, mutant p53 likely inhibits the Daxx-depen-
dent JNK activation pathway by inhibiting mainly the Daxx-
dependent activation of ASK1.

Mutant p53 reduces the amount of Daxx in the cell. The
expression of p53 mutants slightly reduced the amount of
FLAG-Daxx as shown in Fig. 5, although p53 mutants do not
squelch transcription factors from promoters as does wild-type
p53 (20, 47). To understand how mutant p53 inhibits Daxx-
dependent activation of ASK1, we examined the effect of mu-
tant p53 on the expression of Daxx in the cell. The levels of
Daxx and ASK1-HA in HeLa cells were measured by Western
blotting after cotransfection of Daxx and ASK1-HA expression
plasmids with an increasing amount of mutant p53 expression
plasmid (Fig. 8). The expression level of Daxx was decreased
by the expression of all three mutant p53s tested in dose-
dependent manners, whereas the level of ASK1-HA was min-
imally affected. Furthermore, the expressions of the strong
Daxx-interacting mutant p53s (175RH, 273RH) showed a
stronger effect on the expression of Daxx (Fig. 8, lanes 6 to 8
and 9 to 11) than a weak Daxx-interacting mutant p53 (143VA;
Fig. 8, lanes 3 to 5). These results suggest that mutant p53s
inhibit the Daxx-dependent activation of ASK1 by reducing the
level of Daxx in cells through their interaction.

Mutant p53 inhibits the function of Daxx to enhance Fas-
dependent apoptosis. Daxx enhances Fas-dependent apoptosis
of HeLa cells by activating the JNK pathway (65). Therefore,
we examined whether the interaction of mutant p53 with Daxx
inhibits this effect. Fas-dependent apoptosis of HeLa cells was
enhanced by the cotransfection of Daxx expression plasmid as
expected (Fig. 9, lane 3). The Daxx deletion construct A3 (Fig.
1), which contains A4, a domain activating ASK1 constitutively
(Fig. 9, lane 7), also enhanced Fas-dependent apoptosis (Fig. 9,
lane 5). The effect of Daxx or Daxx deletion mutant A3 on
enhancing Fas-dependent apoptosis was inhibited by the ex-
pression of strong Daxx-binding 175RH mutant p53 (Fig. 9,
compare lanes 3 and 4 and lanes 5 and 6 [P = 0.025 and 0.038,
respectively]). By contrast, 17SRH mutant p53 failed to inhibit
enhanced apoptosis by Daxx deletion mutant A4, which lacks
the acidic domain responsible for the interaction with mutant
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FIG. 9. Mutant p53 inhibits the function of Daxx to enhance apo-
ptosis induced by Fas. Fas-dependent apoptosis enhanced by Daxx was
measured by cotransfecting pCMV (0.25 pg) and pcDNA-Fas (0.25
ng) into HeLa cells together with Daxx or Daxx deletion mutant (A3
or A4) expression plasmids (0.375 wg). The inhibitory effect of 175RH
mutant p53 on the function of Daxx in apoptosis was determined by
cotransfection with mutant p53 expression plasmid (0.375 pg) as indi-
cated (lanes 4, 6, and 8). Twenty-four hours after transfection, trans-
fected cells were identified by X-Gal staining and apoptotic cells were
counted. Specific apoptosis was calculated as the percentage of en-
hanced apoptosis over the expression of vector-transfected cells as
described in Materials and Methods. Probability values (P) are as
follows: *, P = 0.025; **, P = 0.038; ***, P = 0.273.



330 OHIRO ET AL.

MoL. CELL. BIOL.

2 2
A n I B
) 2 S
2 Z &
) 3 3
(o} o Q.
.
== 80
SEe J | - Saos2/pcDNA -'|_ :[
S SEREE S 55052/143VA [
- -'-‘. . - . ’ E —|-
— i p— =] | |
- ® 40 F
—— . - el = O““‘?‘
e T - e Oy
| .~ Sa0s2/175RH
. / N ; % » P 20 1 |
— I N
. . Sao0s2/273RH

pcDNA 143VA 175RH 273RH

FIG. 10. Mutant p53 rescued cells from growth inhibition caused by Daxx. (A) Mutant p53 increased cell survival from Daxx-dependent growth
inhibition. Three stable Saos2 cell lines expressing 143VA, 175RH, or 273RH mutant p53 and one control cell line (Saos2/pcDNA) were tested
for the Daxx-dependent growth inhibition by clonogenic survival assay. Cells were transfected with Daxx expression plasmid (pcDaxx/Hyg), an
empty vector (pcDNA/Hyg), or a negative control plasmid (pCMVR) that does not carry a hygromycin resistance gene. Drug-resistant cells were
selected with hygromycin (800 wg/ml) for 2 weeks, and colonies were stained with 0.05% crystal violet in a 20% ethanol-0.37% formaldehyde
solution. (B) Quantitative analysis of surviving colonies. Stained colonies (>50 cells) were counted, and the survival ratio was calculated by dividing
the number of stained colonies by the numbers of colonies from pcDNA/Hyg-transfected cells. The averages of survival ratios are shown with

standard deviations from three independent experiments.

pS3 (Fig. 9, compare lanes 7 and 8 [P = 0.273]). Thus, mutant
pS3 appears to inhibit the function of Daxx to enhance Fas-
dependent apoptosis through a direct interaction with Daxx.
Tumorigenic mutant p53 relieves cells from Daxx-depen-
dent growth inhibition. To further establish the biological sig-
nificance of the interaction of mutant pS3 and Daxx, we exam-
ined the effect of mutant p53 on the Daxx-dependent inhibition
of cell growth. The ability of mutant p53 to rescue cells from
such growth inhibition was assayed by measuring clonogenic
survival in mutant p53-expressing cell lines (Fig. 10). Four cell
lines were established by transfecting Saos2 cells with an empty
vector (pcDNA3.1/Neo) or a mutant pS3 expression plasmid
(143VA, 175RH, or 273RH) followed by selection with G418.
The expression of mutant p53 in each cell line was confirmed
by Western blotting. The cells were then transfected with an
empty vector (pcDNA3.1/Hyg) or with a Daxx expression plas-
mid (pcDaxx/Hyg). Drug-resistant cells were selected by hy-
gromycin treatment for 2 weeks, and surviving colonies were
stained for counting (Fig. 10A). In each cell line, the survival
was normalized to cells receiving pcDNA3.1/Hyg. Transfec-
tions with pCMV, which does not carry a hygromycin-resis-
tant gene, were included to demonstrate that the four Saos2
cell lines were sensitive to hygromycin selection (zero survival).
We found that the transfection of a Daxx expression plasmid

into control cells (Saos2/pcDNA) reduced colony formation to
30% of pcDNA/Hyg-transfected cells. The constitutive expres-
sion of strong Daxx-binding p53 mutants 175RH and 273RH
significantly increased the survival of cells, while the weak
Daxx-binding mutant p53, 143VA, had little effect (Fig. 10B).
Thus, mutant p53 inhibits the function of Daxx and therefore
increases cell survival.

DISCUSSION

More than 50% of all human cancer cells carry a mutation in
the p53 tumor suppressor gene that produces a point mutant of
the p53 protein. Since mutant p53s are generally inert in the
activation of the MDM2 gene, which encodes a ubiquitin ligase
for p53 to induce its degradation, mutant p53 often accumu-
lates in tumor cells (11, 19). Accumulated mutant p5S3 may be
beneficial for deregulated cell growth, and it may acquire an
unidentified growth-promoting function, termed gain-of-func-
tion. Indeed, some mutant p53s have been shown to be tumor-
igenic (8, 10, 21, 26, 45, 49); however, the molecular mecha-
nisms of this function are still largely unknown.

We report here that the mutant p53 protein interacts with
Daxx, suggesting a possible physiological role for the mutant
pS3 in altering the cellular signaling process when cells are
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exposed to stresses. Daxx was first identified as a Fas Death-
domain binding protein. Fas is a cell surface receptor that
induces apoptosis upon oligomerization (42). Fas can activate
two independent signaling pathways. One such well-character-
ized pathway involves the adapter protein FADD, which re-
cruits procaspase-8 and activates a protease cascade leading to
apoptosis (2, 41, 42). The second pathway is mediated by Daxx,
which can enhance Fas-induced apoptosis by activating the
JNK cascade, culminating in the phosphorylation and activa-
tion of transcription factors, such as c-Jun (30, 38, 65). We
found that tumorigenic mutant p53s bound to Daxx whereas
wild-type p53 did not. Interestingly, the binding ability of each
mutant pS3 to Daxx did not correlate with a conformational
status of its DNA-binding domain. Two p53 mutants, 143VA
and 175RH, undergo a conformational change to a mutant
form in their DNA-binding domain, evident from their inter-
actions with the heat shock cognate 70 (HSC70) or PAb240, a
monoclonal antibody specific to mutant forms of p53 (33).
However, 143V A’s activity in inducing malignant transforma-
tion in Saos2 cells is weaker than that of 175RH (Fig. 3B) (8).
Daxx distinguishes these two p53 mutants and interacts pref-
erentially with 175RH. The p53 mutants 248RW and 273RH
have lost an amino acid that is involved in the direct contact
with DNA (6) and do not have a detectable conformational
change in their DNA-binding domain as judged by their in-
ability to bind HSC70 or PAb240. Again, Daxx distinguishes
these two p53 mutants from the wild-type p53 and preferen-
tially binds to these mutant p53s. Because both 143VA and
175RH mutant p53s localize in the nucleus, the potential dif-
ference of localization of mutant p53 is not the reason for the
weak interaction between 143VA mutant p53 and Daxx. The
molecular mechanism by which Daxx recognizes and distin-
guishes these p53 mutants from wild-type p53 although they
share the identical COOH-terminal domain remains to be
solved. One amino acid mutation within the central DNA
binding domain may induce conformation change, and since
the regulatory COOH terminus is expected to interact with the
central DNA binding domain (23), the conformation change
within the central domain could affect the availability of the
COOH-terminal domain to interact with Daxx.

Arsenic trioxide is clinically used on patients with refractory
acute promyelocytic leukemia and is known to accentuate the
localization of PML protein to the PML oncogenic domain.
The antileukemic effects of arsenic trioxide may be directly
mediated by its ability to induce the relocalization and degra-
dation of PML, as well as the degradation of PML-RAR«
fusion protein (48, 66), the specific product of the t(15;17) of
acute PML (7, 28). PML plays a critical role in apoptosis
induced by Fas, tumor necrosis factor alpha, or interferons
(58), suggesting that apoptotic signals initiated at the mem-
brane receptors are transferred to the nucleus. Recently, ar-
senic trioxide was also shown to enhance Daxx function to
promote Fas-dependent apoptosis (54) although the phosphor-
ylation of JNK was not observed in this experimental system,
suggesting that arsenic trioxide has an effect on enhancing
Daxx-dependent stress responses. Stress-inducible complex
formation between mutant p53 and Daxx has been demon-
strated in the tumor cell line expressing endogenous mutant
p53 and ectopically expressing mutant p53 (Fig. 4), which
strongly suggests that certain stresses are able to enhance com-
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plex formation in cells in which wild-type p53 has been abol-
ished. These results also suggest that the interaction as well as
the induction of complex formation by stresses is not a cell
type-specific event. Arsenic treatment induces posttransla-
tional modification of PML with SUMO-1, a ubiquitin-like
protein, to recruit Daxx into the PML oncogenic domain (25).
Thus, posttranslational modifications and/or recruitment of
additional protein(s) to the mutant p53 and/or Daxx could
mediate the induction of the Daxx-mutant p53 complex for-
mation by arsenic trioxide (Fig. 4A and E). Immunoprecipi-
tated Daxx from cells treated with arsenic trioxide was ana-
lyzed by Western blotting with anti-SUMO-1 antibody, and
this showed that Daxx underwent SUMO-1 modification under
our experimental conditions (data not shown). Daxx has been
shown to translocate from the nucleus to the cytoplasm upon
Fas activation in the presence of z-VAD-fmk (5). The molec-
ular mechanism by which Fas signal or arsenic treatment stim-
ulates formation of mutant p53-Daxx complexes remains to be
addressed.

Several proteins have been reported to interact with Daxx,
including Fas, ASK1, DNA methyltransferase I, PML, Etsl,
Pax3 and Pax5, histone deacetylase, HSP27, and possibly with
a centromere-associated protein, CENP-C (18, 34, 35, 39, 44),
suggesting that Daxx has multiple functions. Targeted disrup-
tion of the Daxx gene in the mouse results in an early embry-
onic lethal phenotype with increased apoptosis directly or in-
directly, indicating an important developmental function of
this protein (39). Little is known about the embryonic expres-
sion pattern of the characterized death-signaling complexes,
and the function of Daxx during embryogenesis is unknown;
thus, further studies are needed to clarify the molecular mech-
anism of inducing apoptosis of cells that lack the wild-type
function of Daxx.

Daxx-dependent ASKI1 activation was effectively inhibited
by the strong Daxx-binding mutant p53 (Fig. 5). One possible
explanation for this effect is that mutant p53 reduces the cel-
lular level of Daxx (Fig. 8). Since the magnitude of the effect of
pS3 mutants to decrease Daxx seems to correlate with their
abilities to interact with Daxx, the effect is likely through the
direct interaction of mutant p53 and Daxx. The mechanism of
reducing the amount of Daxx by mutant p53 is still unclear.
However, since the ectopically expressed Daxx was driven by
the cytomegalovirus (CMV) promoter, which is the same as
the other promoters in the system, it is unlikely that the effect
of mutant p53 reducing Daxx is on a transcriptional level.
Moreover, it seems that it is not due to the masking effect of
the epitope for the antibody by posttranslational modifications
of Daxx induced by mutant p53, because ectopically expressed
FLAG-tagged Daxx was also reduced by mutant p53 detected
by anti-FLAG monoclonal antibody (Fig. 5 and data not
shown). Therefore, it is likely that mutant p53 destabilizes
Daxx, possibly inducing its degradation. Mutant p53 seems to
inhibit the activation of Daxx-dependent stress response by two
ways. Mutant p53 may reduce the amount of Daxx if the stress
also activates ASK1; however, if the stress does not activate
ASK1 and therefore the reduction of the amount of Daxx by
mutant p53 is not significant, mutant p53 binds to Daxx and
inhibits ASK1-dependent JNK activation as shown in Fig. 6.

Activation of the Daxx-dependent signaling pathway showed
a moderate level of enhancement (about 10%) of Fas-depen-
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FIG. 11. Mutant p53 supports unregulated cell growth by inhibiting
Daxx-dependent stress-response. Tumorigenic mutant p53 binds to
Daxx and inhibits ASK1-mediated stress-inducible kinase pathways.
This inhibition may relieve tumor cells from growth inhibition or
apoptosis induced by the activation of stress-inducible kinases.

dent apoptosis (Fig. 9) as previously reported (65). It is not
clear whether both the acidic domain and the Fas interaction
domain of Daxx are necessary for the interaction with mutant
p53. Fas-dependent apoptosis promoted by A3 Daxx, which
lacks the Fas-binding domain but contains the acidic domain,
was inhibited by 175RH mutant p53 (Fig. 9), whereas the
apoptosis promoted by A4 Daxx, which does not have either
the Fas-binding domain or the acidic domain, was not inhibited
by 175RH mutant p53. Therefore, it is likely that mutant p53
does not bind to A4 Daxx and thus does not inhibit Daxx-
dependent promotion of apoptosis. These results suggest that
the interaction of mutant p53 through the acidic domain of
Daxx is critical, as shown by in vitro experiments (Fig. 2), but
the Fas-binding domain is dispensable to bind to 175SRH mu-
tant p53 under our experimental conditions. It is possible that
the Fas interaction domain plays a role in determining the
strength of the interaction of mutant p53 and Daxx.

The growth-inhibiting effect of Daxx was clearly observed by
the clonogenic survival assay (Fig. 10), suggesting that activa-
tion of the Daxx-dependent signaling pathway has indeed a
negative effect on cell growth and may induce nonapoptotic
cell death, such as necrosis. Some mutants of p53 (175RH and
273RH) that have high Daxx-binding ability neutralize the
growth repression function of Daxx, whereas a mutant p53 with
a weak Daxx-binding activity (143VA) failed to rescue cells
from Daxx-dependent growth repression. These results are
consistent with the observations that tumorigenic mutant p53
interacts with Daxx and strong Daxx-interacting mutants of p53
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interfere with Daxx-mediated stress-inducible kinase activa-
tions.

The biological significance of Daxx-dependent activation of
the JNK pathway in Fas-dependent apoptosis may vary among
cell lines. Daxx is also involved in mediating JNK activation by
tumor growth factor B (TGF-B), and therefore it is directly
associated with the TGF-B apoptotic signaling pathway (43).
The activation of stress response kinases during apoptosis is
well documented (22, 24, 27, 50, 62). The effect of JNK acti-
vation on the regulation of the apoptotic pathway appears to
be cell type dependent as well as affected by other conditions
to which cells are exposed. Recently, phosphorylated HSP27
dimer was shown to inhibit Daxx-mediated JNK activation and
Fas-induced FADD-independent apoptosis (5). HSP27 pre-
vents JNK activation by inhibiting Daxx from the interaction
with ASK1, which is in clear contrast to the mechanism of the
inhibition by mutant p53, where the expression of Daxx protein
is reduced.

We have thus identified a novel gain-of-function of tumor-
igenic mutant p53 that inhibits stress-inducible kinase path-
ways and, consequently, relieves cells from the growth inhibi-
tion caused by Daxx. As mutant p53 frequently accumulates in
large amounts in human tumor cells, our results suggest that
the accumulation of mutant p53 in cells may establish acquired
resistance during its malignant transformation to microenvi-
ronmental stresses, at least in part by inhibiting Daxx function
to activate stress-inducible kinase pathways (Fig. 11). More-
over, ionizing radiation and chemotherapy drugs also activate
stress-inducible kinase pathways. Therefore, these data may
identify the Daxx-mutant p53 protein interaction as a potential
drug target that can sensitize highly malignant tumor cells to
selected cancer treatments.
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