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The large number of protein kinases makes it impractical to
determine their specificities and substrates experimentally. Using
the available crystal structures, molecular modeling, and sequence
analyses of kinases and substrates, we developed a set of rules
governing the binding of a heptapeptide substrate motif (sur-
rounding the phosphorylation site) to the kinase and implemented
these rules in a web-interfaced program for automated prediction
of optimal substrate peptides, taking only the amino acid sequence
of a protein kinase as input. We show the utility of the method by
analyzing yeast cell cycle control and DNA damage checkpoint
pathways. Our method is the only available predictive method
generally applicable for identifying possible substrate proteins for
protein serine�threonine kinases and helps in silico construction of
signaling pathways. The accuracy of prediction is comparable to
the accuracy of data from systematic large-scale experimental
approaches.

Posttranslational modification of proteins by phosphorylation
is the most abundant type of cellular regulation. It affects

essentially every cellular process, including metabolism, growth,
differentiation, motility, membrane transport, learning, and
memory. Defects in protein kinase function result in a variety of
diseases, and kinases are a major target for drug design. To
ensure signaling fidelity, kinases must be sufficiently specific and
act only on a defined subset of cellular targets. Understanding
the basis for this substrate specificity is essential for understand-
ing the role of an individual protein kinase in a particular cellular
process.

Experimental approaches for determining specificity, such as
the use of oriented peptide libraries (1), are expensive and
laborious. Identification of in vivo substrates is even more
difficult (2). Although identification of novel putative protein
kinases via sequence analysis (3, 4) is straightforward, their
biological role cannot be generally predicted, and functional
genomics approaches are not yet adequate (5, 6). Substrate
identification remains one of the rate-limiting steps in under-
standing the biological roles of novel protein kinases.

The three-dimensional structures of several protein kinases,
some with bound substrates and nucleotides, have been deter-
mined (7). All protein kinases show a common fold, consisting
of two lobes hinged through a short linker region. The active site,
where the phosphoryl group is transferred from ATP to the
target residue of the substrate, is located in the cleft between the
lobes. Active forms of all protein kinase structures have a similar
‘‘closed’’ conformation, and we reasoned that the available
structural information could be exploited to develop computa-
tional methods that predict substrate specificities of uncharac-
terized kinases.

On the basis of an analysis of the crystal structures of peptide
complexes of protein Ser�Thr kinases (7–11), we identified 20
enzyme residues (‘‘determinants’’) that contact the side chains of
the residues surrounding the phosphorylation site [only substrate
positions (�3), (�2), (�1), (�1), (�2), and (�3) were consid-
ered]. Using molecular modeling and sequence analysis of
kinases and substrates, we extracted a set of rules that guide the
specificity of binding to these positions. We implemented these
rules in the web-interfaced program PREDIKIN, which performs

an automated prediction of optimal substrate peptides by using
only the amino acid sequence of the protein kinase as input. To
explore the utility of the method, we used PREDIKIN to analyze
the signaling pathways in two cellular processes in yeast, cell
cycle control and DNA damage checkpoints, and predicted new
connections in these pathways. Our method should be generally
applicable to identifying possible substrate proteins for protein
serine�threonine kinases and should aid in unraveling signaling
pathways in which these proteins may be involved.

Materials and Methods
Identification of Binding Sites and Sequence Motifs. The three-
dimensional structures of cAMP-dependent protein kinase [pro-
tein kinase A (PKA); Protein Data Bank (PDB) ID code 1JBP
(9)], phosphorylase kinase [PHK; PDB ID code 2PHK (10)], and
cyclin-dependent kinase (CDK) 2 [PDB ID code 1QMZ (11)]
with bound substrate peptides were studied to find significant
contacts between the catalytic domain and the side chains of the
peptide (INSIGHTII, Accelrys, San Diego). The locations of key
binding residues (determinants) were defined in relation to
structural features and conserved sequence motifs (12).

Protein Kinase Models. As a part of the analysis of substrate
specificity determinants, comparative models (INSIGHTII) of the
kinase catalytic domains with bound substrate peptides were
constructed for several kinases [e.g., protein kinase C (PKC)�,
PKC�, PKC�, calmodulin-dependent kinase (CaMK) 2
(CaMKII), and NIMA]. The choice of template kinase depended
on the protein kinase group [AGC (protein kinase A, G, C),
CaMK, cyclin-dependent kinase, mitogen-activated protein
kinase (MAPK), glycogen synthase kinase 3, CK2 (CMGC), etc.
(12)], local similarity, and specific structural features.

The coordinates of ATP or ATP analogues were transferred
from the template to the model by superposition. The complexes
were energy-minimized using steepest descents and conjugate
gradients (DISCOVER) to rms deviation of bond lengths of 0.0001
Å, with the coordinates of the backbone atoms of the structurally
conserved regions kept constrained. The minimized complexes
were examined for likely interactions (�3.5 Å) and steric
and electrostatic clashes. The complementarity of an amino
acid side chain with a subsite was estimated from the size and
charge complementarity and the ability to form favorable inter-
actions (reasonable hydrogen bonds, ionic and van der Waals
interactions).

Computer Program. The program PREDIKIN was written with
JavaScript. It accepts a protein kinase sequence and outputs
predictions of possible heptapeptide substrate sequences. First,
it locates (H�Y)RDLKPEN as the characteristic conserved
kinase motif and extracts the kinase catalytic domain from the
protein sequence provided. Next, it locates other (semi)con-
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served kinase motifs and, based on the proximity to these motifs,
locates the determinant residues. It then applies the specificity
rules and predicts an optimal heptapeptide sequence.

To run the program, the user inputs the kinase type and
sequence into a form in the browser window. Output consists
of the locations of key kinase motifs, the type of kinase, a list
of the determinant residues, a list of possible substrate hepta-
peptide sequences, and commentary text. Substrate data are
passed to another window (automatically opened via a link) that
contains substrate sequence data formatted for protein database
searching.

Searching Protein Databases for Putative Substrates. Putative sub-
strates were identified using PROSITE (13), short peptide BLAST
(3), or SCANSITE (14). The searches were usually limited to the
same species as the protein kinase. PROSITE finds all of the
sequences containing the permutations of the residues provided.
BLAST will introduce some substitutions and rank the hits
according to similarity to the original motif; however, several
searches are required to cover all of the sequence choices in a
motif. SCANSITE will also introduce substitutions and rank the
hits, but only one search is necessary; the simplified user motif
method (‘‘Quick Matrix’’) was used, where residues making
multiple contacts with a subsite pocket were considered ‘‘pri-
mary’’ residues and other acceptable residues making fewer
contacts were considered ‘‘secondary’’ residues. SCANSITE
searches were generally limited to no more than 200 hits, or to
scores less than 0.12 (usually, �20% of known substrates exactly
match the primary residues, and �40% exactly match the
primary and secondary residues). We found SCANSITE to be
the most useful method. The comparison of predictions with the
known phosphorylation sites in PhosphoBase was performed
using the simplified user motif method in SCANSITE, selecting the
substrate protein (according to PhosphoBase) by using the
species name and the name of the protein.

Results and Discussion
Development of the Procedure for Specificity Prediction. The infor-
mation we used to develop our procedure included the amino
acid sequences of protein kinases, the available crystal structures
of protein kinases [particularly enzyme-substrate complexes of
PKA (9), phosphorylase kinase (10), and CDK2 (11)], and the
substrate specificities determined by oriented peptide library
experiments (1, 15–17).

The rules were developed in several stages: (i) analysis of
residues in contact with the side chains of the substrate in
relevant crystal structures; such determinant residues were
numbered 1–20 starting at the N terminus (Fig. 1, Table 1, and
Table 3, which is published as supporting information on the
PNAS web site, www.pnas.org); (ii) locations of determinants
were defined in protein kinase sequences relative to conserved
sequence motifs (12); (iii) correlations between substrate spec-
ificity information (oriented peptide library data), and the
determinant residues were sought, taking into account comple-
mentarity with the substrate in terms of size, polarity, charge,
and hydrogen-bonding potential.

The prediction methodology relies on several postulates sup-
ported by our analyses and available data: (i) all protein Ser�Thr
kinases adopt a similar fold with little scope for conformational
differences in the binding cleft, and bind substrates in a similar
extended conformation with few bridging water molecules in-
volved (supported by the available crystal structures and the
proximity of the substrate binding residues to conserved se-
quence motifs and structural elements); (ii) residues at the
analogous position in a subsite pocket bind the same substrate
residue(s) (supported by the available crystal structures);
(iii) determinant residues can be identified in any kinase se-

quence by locating the conserved structural motifs (supported by
sequence analyses).

Not all determinants affect specificity, or are involved in
substrate binding in all kinases (9–11). The correlations between
the determinant residues and substrate specificity were extrap-
olated to cover other possible sequence variations (Table 4,
which is published as supporting information on the PNAS web
site). The use of structural data (experimental and comparative
models of kinases) implies that that the developed rules are only
partially empirical.

General Descriptions of Individual Subsites. (�3) subsite (determinants
6–8, 10, and 20). The specificity at (�3) primarily depends on
determinant 6. For kinases in the AGC and CaMK groups, Glu
or Asp in this position results in a preference for Arg or Lys at
(�3). Determinant 7, when hydrophobic, generates the speci-
ficity for Pro or Met at (�3). CMGC kinases have residues other
than Glu or Asp at 6 and are less specific; determinant 10
consequently has a bigger influence on specificity [e.g., 10 His
indicates a (�3) preference for Glu in CK2 (11)].
(�2) subsite (determinants 10, 14–17, and 19). Binding in the (�2)
pocket of AGC and CaMK kinases primarily involves determi-
nant 17 [Phe, effecting hydrophobic specificity; or Tyr, with the
phenolic and phenyl groups both possible ligands (for Gln�Arg�
Lys and Met�Phe, respectively)]. This specificity is modified in
a predictable manner by the nature of 16 [ranging from Glu in
PKA (Arg specificity) to Gly in CaMKII (broad specificity)].
Determinant 17 is Trp in CMGC kinases and occludes much of
the (�2) pocket, so that binding is restricted to Val, Pro, or Gly;
the exception is CK2, where 15 Arg causes a preference for Glu
at (�2).
(�1) subsite (determinants 1 and 2). The (�1) residue makes few
contacts with the enzyme. A small residue such as Ala, Gly, or
Pro is often found at (�1), although its side chain makes no
contacts with the kinase.
(�1) subsite (determinants 11, 13, 15, and 18). AGC and CaMK
kinases frequently prefer large hydrophobic residues, e.g., Phe,
when 11, 13, and 18 are large hydrophobic residues, and 15 is Pro
(they all contact the phenyl ring). Variations altering specificity
include hydrophilic residues at 11, smaller residues at 13 and 18,

Fig. 1. Substrate-binding site in the crystal structure of PKA (9). The main
chain of the protein is shown in worm representation, and the determinant
residues (magenta), substrate peptide [green, individual substrate residues
are labeled (�3) to (�3)], and ADP (blue) are shown in stick representation.
The protein kinase surface is shown in transparent representation, determi-
nant residues are marked 1–20, and individual protein kinase subsites are
marked with yellow circles. The figure was produced with GRASP (43).
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and Leu or Ala at 15. Tyr at 18 (titin) or at 13 (NIMA) indicate
a preference for (�1) Arg. In CDKs and mitogen-activated
protein kinases (MAPKs), 15 Leu is diagnostic of the obligatory
Pro specificity at (�1).
(�2) subsite (determinants 2, 3, 4, 5, and 11). In some cases, the
binding involves charge–charge interactions, and the specificity
is well defined [e.g., PKC� (for Arg�Lys), CK2 (for Glu�Asp)].
Other combinations can result in broad specificity (e.g., PKA,
phosphorylase kinase). Determinants 4 and 5 do not bind
substrates in CDKs, because this region is involved in cyclin
binding (11).
(�3) subsite (determinants 12 and 13). The subsite is rarely very
specific; exceptions include PKC� and CK2 (18). Determinant
12 is often phosphorylated and can result in a preference for
Arg�Lys. Determinant 13 (if large enough) is shared with the
(�1) site.

No reliable structural information is currently available for
subsites N-terminal to (�3) and C-terminal to (�3), although
specificity occasionally extends outside this region. It is common
that more than one amino acid can successfully bind in a subsite;
for example, a typical (�1) subsite can accommodate residues
such as Phe, Leu, Met, Ile, and Val to a similar extent. Sometimes
even side chains with different properties (e.g., hydrophobic and
hydrophilic groups) can bind with similar probabilities. Because
the specificity at one subsite can depend on other subsites [links
are observed between the (�3) and (�1), (�1), and (�2), (�2)
and (�1), and (�1) and (�3) subsites], conditional rules are
necessary. Determinants shared by two subsites can contribute
to either subsite, and in some cases, both.

Our methodology does not currently cover Tyr kinases; ex-
amination of Tyr kinase structures shows that the (�1) residue
in the bound peptide bypasses the (�1) and (�2) pockets and
binds to what normally is the (�3) pocket, therefore different

rules apply to these enzymes. Our rules can be used for protein
kinases other than AGC, CaMK, and CMGC groups (e.g., dual
specificity kinases, CK1, prokaryote protein kinases); however,
the results are less reliable, because little structural information
is available.

Computer Program. We incorporated the rules described above
into the web-based computer program PREDIKIN, which
uses only sequences of protein kinases as input (available
on www.biosci.uq.edu.au�kinsub�home.htm; functional within
INTERNET EXPLORER 5). The user inputs the amino acid sequence
of a protein, and PREDIKIN extracts the sequence of the protein
kinase catalytic domain (if present), locates the sequence motifs,
identifies the determinant residues, and writes a prediction for
subsites (�3) to (�3) with relevant comments. A search for
possible target proteins by using the predicted optimal hep-
tapeptide sequence can be carried out with PROSITE (13), BLAST
(3), or SCANSITE (14).

Accuracy of Predictions. The substrate sequences predicted by
PREDIKIN are optimal and analogous to those generated by an
oriented peptide library experiment. The predictions agree well
with the peptide library results (Table 1).

Peptide library data previously suggested that a complete
complement of possible interactions is unnecessary for produc-
tive substrate binding; this observation has ramifications for
using an optimal motif for substrate searches in protein data-
bases (1, 14–17, 19). In the example of PKA [hydrophobic
residues are predicted for (�1), (�2), and (�3)], the optimal
motif is likely to be unsuitable as a protein kinase substrate,
because it would be too hydrophobic to be found on the surface
of the protein. Small residues, such as Gly, Ala, Ser, and Pro, are
frequently found in PKA substrates at positions (�1), (�1),

Table 1. Comparison of predicted and known substrate specificities for selected protein kinases

Protein kinase
Predicted optimal heptapeptide

substrate sequence*

Optimal sequence based
on oriented peptide
library experiments Consensus of known substrates

Protein kinases used to develop the rules
PKA (RK)(RKS)X(ST)(FLMI)(AVI)(ILMARK) (RH)(RKH)(RV)S(IFM)(IVF)(FIM) (1) (RK)(RK)(SLRGAP)(ST)(LSVR)(STPV)(SAVGE) (20)
PKC� (RKQH)(RKM)X(ST)(FLY)(RKHQ)(AVFLRK) (RK)(KQR)GS(FMIV)(KRF)(KFR) (16) (RKS)(RKAG)(LSAR)(ST)(FLVRK)(RKAS)(RKS) (20)
PKC� (RF)(RKM)X(ST)(FLV)(RKHQ)(AVFLRK) R(QKY)(GKM)S(FM)(FMA)(YK) (16) RQGSFFA (16)
CaMKII (RK)(QMRFST)X(ST)(FLY)(EDS)(LIM) (RQ)(QM)(QMK)S(FIML)(DEI)(LIMK) (15) (RKG)(QARKLS)(AQLG)(ST)(VLIF)(SADG)(SEMD) (20)
PKC� (RK)(QMTAS)X(ST)(VILMF)(AVI)(ALIMPFRK) R(QKEM)(MLK)S(VML)(AV)(FY) (16) RTASVAF (16)
PHK (RK)(QRMS)X(ST)(VILMF)(QNRKH)(ALIMPFRKHQ) (RK)(MRQF)(MFL)S(FIM)(LI)(FLI) (15) R(AQSTL)(ILR)(ST)(VITA)(RHY)(RKFS) (20)
NIMA (RF)(RV)X(ST)R(EDS)(AVFLRK) (FLM)(RK)(RK)S(RIVM)(RIMV)(MIFV) (15) FRSSIRR (15)
CK2 (RKQHDSE)(EDS)X(ST)E(DE)(EDS) (DE)(ED)(ED)S(EDA)(EA)(EA) (15) (DSE)(ESD)(EGS)(ST)(DE)(ED)E (20)
CDK2 (NGSL)(PVALS)X(ST)P(KRMI)(RKQSL) H(PH)RSPRK (1) (TL)(PVLSH)(LATS)(ST)P(PR)(KRL) (20)

Protein kinases with peptide library information, used to test predictions
PKC� (RKQH)(RKM)X(ST)(FLY)(RKHQ)(AVFLRK) R(KRQ)(GK)S(FKM)(KR)(RK) (16) —
PKC� (RF)(RKM)X(ST)(FLV)(RKHQ)(AVFLRK) R(KRQ)(GA)S(FMV)(FKM)Y (16) MRQSVAV (16)
AKT (RK)(RKS)X(ST)(FLV)(STNGAP)(AVFLRK) RT(YFGM)S(FM)(GTS) (17) R(RTSL)(SPRT)(ST)(YSF)(PGAST)(EAND) (19)
Slk1 (Bck1) (QNRKH)(VSAR)X(ST)(AVILMY)(SQN)(AVLIFRK) (RK)(FR)(GR)S(LIFM)(RIMF)(RFM) (1) (LA)(AV)X(ST)(FL)(TA)(TG) (1)
Chk1 (RK)(SALF)X(ST)(VA)(AVI)(MFLIRK) R(YMP)(RF)S(FINM)(SA)(IFL) (19) RSPSMPE (19)
Chk2 (RK)(ILMA)X(ST)(FLMID)(QNRKH)(ILMARK) R(YKA)(YE)S(FI)(FIR)(YRF) (19) R(STI)(FHKP)(ST)(DFM)(LVPS)(WLKE) (19)
CK1� (QNRKH)(SED)X(ST)(VAILMY)(SQN)(ILMARK) E(TAG)GSI(IYF)(FY) (15) (SDET)(SEAV)(SLDE)(ST)(ELSVI)(ESTD)(ESGD) (20)
CK1� (QNRKH)(SED)X(ST)(VAILMY)(QNRKH)(AVLIMPFTSQN) E(TAG)GSI(IFY)(IGY) (15) (SDET)(SEAV)(SLDE)(ST)(ELSVI)(ESTD)(ESGD) (20)
ERK1 (RKF)(PVALS)X(ST)P(PFLI)(RKQSL) (GPE)(PLI)(LMP)SP(GPF)(PFG) (15) (PAVTL)(PV)(LT)(ST)P(PSR)(PARKFG) (15)
CDK5 (NGSL)(PVALS)X(ST)P(KRMI)(RKQSL) H(HP(KG)SP(KR)(HRK) (15) (EG)(TVH)(KA)(ST)P(VPE)K (15)

Protein kinases without peptide library information, used to test predictions
PKG (RK)(RKS)X(ST)(AVIP)(AVI)(AVFLRK) — R(RK)(RLI)(ST)(RASIK)(SALK)(EPT) (20)
�ARK (RKQHE)(QMRFSTY)X(ST)(EQT)(DE)(QNRKHVLIMF) — (NTK)(NVT)(DS)(ST)(ENDQ)(EDNG)(RQEDN) (18)
S6K(1) (RK)(RKS)X(ST)(VAIL)(VLIMFC)(AVFLRK) — R(RAS)(LS)(ST)(SVL)(SRL)(SRAG) (20)
S6K(2) (RKQH)(RKS)X(ST)(AVILMY)(EDS)(AVFLRK) — R(LTA)(SL)(ST)(LVH)(SR)(SA) (18)
CaMKI (RK)(QMRFST)X(ST)(VA)(STNDH)(RK) — RRLSDSN (18)
AMPK (RK)(RQMS)X(ST)(VA)(AGVLIMPFTC)(QNRKH) — R(SNT)(MEQN)(ST)(FIGK)(LAI)(HFLA) (18)

‘‘�’’, not reported.
*X, any amino acid.
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(�2), and (�3), even though in most cases they would make few
contacts with the enzyme; they appear beneficial by reducing
hydrophobicity and increasing the likelihood of location in a
flexible loop. PKA consequently displays a broad specificity, and
the substrates are difficult to predict based on searches with the
optimal motif.

Substrate searches based on peptide library data (14) showed
up to 70% of published sites [PhosphoBase (20)] predicted at the
top 5% level. We performed an analogous test based on
PREDIKIN predictions (see Materials and Methods) and found
comparable statistics on sensitivity and specificity for protein
kinases as diverse as PKC�, CaMKII, CK1, and CK2. The
substrates not found by either method appear suboptimal, poorly
matching the motifs, and many may not be functional in vivo. The
accuracy is comparable to secondary structure predictions, as
well as systematic large-scale experimental methods (21–24). In
individual cases, we observe that the PREDIKIN predictions can
resemble real substrates better than the peptide library results do
(e.g., Slk1, Chk2, and CK1; Table 1), and SCANSITE searches
using our predicted motif can produce better results than the
equivalent searches using experimental peptide library matrices
(14) [e.g., in the first 100 hits, our predicted motif finds 3 and 10
known substrates, and peptide library-based motif only 2 and 1
known substrates for PKC� (16) and CK2 (18), respectively].
Analyses show different predictive powers for individual subsites
of the AGC and CaMK class kinases; 70% for (�3) and (�2),
55% for (�1), and 40% for (�2) and (�3) [these numbers are
based on direct comparisons of predicted residues to the ones
found in real substrates of Ser�Thr kinases (18); no predictions
were generally made for the (�1) site]. The predictive power also
depends on the specificity; (�3) and (�2) predictions of Arg
specificity appear particularly reliable, likely due to the larger
number of interactions the Arg residue makes with the protein
kinase at these subsites.

PREDIKIN can locate phosphorylation sites in a single protein
sequence with high reliability. However, the key utility of
PREDIKIN is to be able to predict novel putative substrates
through searching protein databases. The number of hits can
range from 1 to 600 for different kinases (using PROSITE and a
single organism; it is most commonly between 100 and 200). The
user has the flexibility to restrict the degeneracy of the profile
if too many hits are obtained, but the probability of finding
known positives increases with the number of hits considered.
Only �20% of hits appear unlikely as substrates due to incorrect

cellular localization or other considerations. These results indi-
cate that PREDIKIN can be used even for genome-wide analyses,
especially if some additional filtering tools are applied (14).
However, any searches have to be performed prudently, and the
following caveats need to be considered: (i) some protein kinases
are inherently not very specific for reasons outlined earlier; in
the cell, apparently weak kinase specificity may be boosted by
anchoring, adaptor and scaffold proteins, e.g., the A kinase
anchor proteins for PKA (25); (ii) the specificity of some kinases
depends on subsites outside the (�3) to (�3) range; (iii) deter-
minant residues can be phosphorylated, affecting specificity
(e.g., determinant 12 is a phospho-threonine in many protein
kinases); (iv) substrates can be prephosphorylated in adjacent
sites [e.g., many phosphorylation sites in CK1 substrates are
surrounded by phospho-serines (18)]; (v) small residues such as
Gly, Ala, Ser, and Pro are often present in substrate sequences
even though they make few, if any, contacts with the enzyme;
residues binding in other sites appear to be able to provide
adequate interactions for the substrate to bind successfully;
(vi) occasionally, residues inconsistent with our predictions
(or peptide library results) are found at (�3), together with
small bend-forming residues at (�2) [e.g., protein kinase G
(PKG) and CaMKII]; because the amino acids present at (�3)
appear to follow the predictions for (�2) instead, the (�3)
residues may in these cases in fact bind to the (�2) pocket; and
(vii) the substrate sequence must be accessible to the kinase and
capable of adopting an extended conformation.

To test the utility of PREDIKIN in finding novel putative
substrates and constructing signal transduction pathways, we
analyzed the protein kinases involved in the cell cycle control and
DNA damage checkpoint pathways in yeast. We identified
phosphorylation sites for substrates with unmapped sites
and many plausible phosphorylation events within the pathways
and between proteins known to interact (Table 2; Figs. 2 and 3;
Tables 5 and 6, which are published as supporting information
on the PNAS web site).

Yeast Cell Cycle Control Pathways. Under normal circumstances,
yeast cells passage through G1, S, G2, and M (mitosis) phases of
the cell cycle. Many of these processes are controlled by a single
‘‘master switch’’ protein kinase CDC28, a CDK that uses dif-
ferent cyclins at different stages of the cell cycle (26). For
example, the transition from G2 to M and the simultaneous
septin ring formation requires the complex of CDC28 with cyclin

Table 2. Examples of substrates predicted for selected protein kinases in the cell cycle control and DNA damage checkpoint pathways
in S. cerevisiae

Protein
kinase

Predicted
substrate

Predicted
phosphorylation

site
SCANSITE

score (14) Substrate function Evidence for kinase–substrate association

Hsl1 Kss1 RPV83SIDK 0.084 Mitogen-activated protein kinase,
filamentous growth

Pathway downstream of CDC28 (26, 27)

Swe1 QFS457TVYQ 0.184 CDC28 inhibitor Known substrate (28)
Kel1 QEL1001TISK — Cell morphology Physical association (with Hsl1, Hsl7, Swe1) (44)
Hsl7 HLD771SINK — Swe1 inhibition Physical association (with Hsl1 and Swe1) (28)

Dun1 Mre11 KMK308SISL 0.083 Maintaining telomere length, DNA repair Physical association (with Rad50, Xrs2) (23)
Rad9 RML1203TIDL 0.063 Cell cycle arrest Linked pathway (23)
Rad24 QME165SFSE 0.063 Cell cycle arrest Linked pathway (23)
Rad50 RQS336SLQS 0.083 DNA repair Physical association (with Mre11, Xrs2) (23)
Xrs2 KLT78SLNK 0.190 Maintaining telomere length, DNA repair Known substrate, physical association

(with Rad50, Mre11) (23)
Rfx1 KSK242TIEE 0.147 Repressor of DNA-inducible genes Known substrate (40)
Rfx1 KVL259SMDS 0.210 Repressor of DNA-inducible genes Known substrate (40)
Adr1 KSQ731TIEL 0.083 Regulatory protein Known substrate (40)
Adr1 RRA230SFSA 0.083 Regulatory protein Known site (40)
Rir1 (Sml1) KQT91TKQF 0.064 DNA-inducible ribonucleoside reductase Known substrate (35)
Dun1 QQS488SVSL 0.123 Checkpoint kinase Autophosphorylation
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B (27). A group of septin-localized protein kinases controls
CDC28 activity; the dual specificity kinase Swe1 is a negative
regulator (antimitotic; phosphorylates and inhibits CDC28),
whereas KCC4, Gin4, Hsl1, Cla4, and Elm1 are positive regu-
lators (by inhibiting Swe1 activity). The cell cycle is shut down
in situations such as pheromone-induced cell cycle arrest (lead-
ing to mating), high osmolarity, and starvation (leading to
filamentous growth); signaling in each of these situations in-
volves a central MAPK cascade with a shared MAPKKKK
(Ste20) and MAPKKK (Ste11), before branching to a specific
MAPK (e.g., Kss1 in filamentous growth, Fus3 in mating) (26).
The known pathway connections are depicted with solid lines in
Fig. 2. The results of predictions for selected cell cycle control
kinases are listed below.
CDC28. CDC28 is predicted to have a broad specificity, consistent
with its many known substrates and diverse roles (not all known
substrates have functions related to cell budding). Our analysis
predicts phosphorylation sites in several proteins known to
be substrates (with hitherto unknown sites), and several new
substrates are predicted, suggesting regulatory connections
to various related pathways such as pheromone-induced cell
cycle arrest and mitotic exit network (e.g., CDC7, Elm1, and
Cla4; Fig. 2).
Swe1. Our analysis confirms CDC28 as Swe1 substrate (27) and
predicts new substrates, including CDC7 and Rck2 in related
pathways, and CDKs Ctk1 and Kin28. Phosphorylation of Rck2,
a Hog1 substrate in the antimitotic high osmolarity pathway (26),
would, for example, be predicted to activate the kinase.
KCC4, Gin4, and Hsl1. These closely related kinases are predicted to
have a similar specificity, except that Hsl1 differs at (�2). We
predict that KCC4, Gin4, and Hsl1 phosphorylate Swe1 at a site
that would interfere with ATP and substrate binding. The
predicted site in CDC28, on the other hand, is close to the
cyclin-binding site. An analogous site is present in Sgv1, involved
in recovery from pheromone-induced cell arrest (28). We iden-
tified two other potential KCC4�Gin4 substrates that would link
the various cell cycle control pathways, CDC15 (29) and Ste7
(18). Hsl1 is known to bind and phosphorylate Hsl7, the complex
then phosphorylating Swe1; we can predict the likely sites in
these proteins. Other predicted Hsl1 substrates could contribute
to promoting mitosis and suppressing the MAPK pathways.
Cla4 and Ste20. These two enzymes are predicted to have the same
specificity; the opposing functions (Cla4 inhibits Swe1 and Ste20

activates Ste11) must therefore result from different cellular
localization and regulation. The major predicted site in Swe1 is
shared with KCC4�Gin4�Hsl1. Predictions confirm Ste11 as
Ste20 substrate, leading into a MAPK cascade.
Elm1. The best site in the known substrate Swe1 (30) is shared
with KCC4�Gin4�Hsl1 and Cla4�Ste20. New predicted sub-
strates include Fus3, Gcn2 (18), and Dbf2 (26), which could
regulate the connected pathways.

Yeast DNA Damage Checkpoint Pathways. Damage to double-
stranded DNA triggers a number of cellular events including
cessation of cell cycle and mitosis, apoptosis, and DNA repair.
Protein kinases play a central role, both as sensors of damage
(lipid kinase-like kinases Mec1 and Tel1 in yeast, ATM, and
ATR in humans) and downstream signal transducers (CaMK
group kinases Chk1, Rad53, and Dun1 in yeast; Chk1 and Chk2
in humans) (31). Although many components have been iden-
tified in checkpoint and DNA repair pathways, only a few kinase
substrates have been established. The known pathway connec-
tions are depicted with solid lines in Fig. 3. The results of
predictions for selected checkpoint kinases are listed below.
Chk1. Yeast Chk1 is predicted to have similar specificity as its human
namesake (19). Several phosphorylation sites are predicted in the
known substrate Pds1 [phosphorylation of Pds1 leads to its ubiq-
uitination and destruction by the anaphase promoting complex
(APC) (32)]. Other predicted substrates with related functions (33)
include the sensor protein kinase Tel1, the checkpoint protein Mec3
(32), and DNA repair protein Rad54 (34).
Rad53. The predicted specificity of Rad53 is similar but not
identical to Chk1. No phosphorylation sites are predicted in its
known binding partner Rad9. New predicted substrates include
Xrs2 (35) and Rad50 [involved in double-strand DNA break
repair and telomeric function through association with Mre11
(36)]; several proteins associated with radiation damage (34);
DNA polymerase Rev1 (37); checkpoint kinase Bub1 (38);
Rad53-associated protein Smc3 [involved in chromatin adhesion
and DNA recombination (39)]; and Dun1 [previously proposed
to act downstream of Rad53 (40)].

Fig. 2. Schematic diagram of signaling connections linked to cell cycle
control in S. cerevisiae. Yellow boxes, protein kinases; solid and dashed green
arrowed connections, known and predicted activatory phosphorylations, re-
spectively; solid and dashed red blocked connections, known and predicted
inhibitory phosphorylations, respectively; circles, predicted sites in known
substrates; open black arrows, general connections between processes. The
joined boxes represent complexes. For the protein kinases analyzed (bold and
underlined), all known interactions shown were also successfully predicted
with PREDIKIN.

Fig. 3. Schematic diagram of signaling connections linked to DNA damage
checkpoints in S. cerevisiae, drawn as in Fig. 2. For the protein kinases analyzed
(bold and underlined), all known interactions shown were also successfully
predicted with PREDIKIN.
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Dun1. Several proteins known to associate with Dun1 (23) are
predicted to be its substrates; Mre11 and Rad50 [members of the
Mre11-Rad50-Xrs2 complex (36)], and Rad9 and Rad24 (in-
volved in nucleotide excision repair and S-phase regulation).
Sites are predicted in the known substrates Rfx1 (Crt1) (41) and
Adr1 (40). The site in the known substrate Rir1 is successfully
predicted, although the (�1) residue is suboptimal (35).

Conclusion
Using the available three-dimensional structural information, we
developed a set of rules that govern substrate specificity of
classical protein Ser�Thr kinases, CMGC, and dual specificity
kinases, and incorporated these rules in a web-interfaced com-
puter program PREDIKIN for specificity prediction. Our analyses
show that families of kinases with overall sequence similarities or
similar regulatory mechanisms do not necessarily have similar
substrate specificities, therefore one should be careful inferring
functions based on sequence comparisons. Our results suggest
that it is possible to make rational predictions of the optimal
substrates based on protein kinase sequence alone. We show in
an example involving yeast signal transduction pathways that
such methodology aids in identifying the substrates of known and
novel protein kinases deduced from genome sequences, the
components of signaling networks, and therefore has the poten-
tial of identifying new therapeutic targets.

The important distinctive feature of our method is that it
can make predictions of specificity. Methods exist to suggest sites
in proteins that may be phosphorylated by characterized kinases,

based on analyses of known substrates (42) or peptide library
results (14). Our tests show that our method shows similar
accuracy of identifying such sites, but additionally it can predict
sites phosphorylated by uncharacterized protein kinases
for which no information other than amino acid sequence is
available.

Flawless substrate prediction using our methodology is not
achievable. Substrate recognition in the cell depends not only on
the internal molecular specificity of a protein kinase for a certain
peptide sequence, but on other cellular mechanisms, particularly
specific localization. To increase the probability of correct
identification of substrates, specificity information should be
integrated with other available information such as cellular
localization, functional information and structural information
for substrate proteins, and used with filtering tools such as dual
motif searches (14). The significance of the method is its utility.
The method works extremely well predicting a phosphorylation
site in a protein known to be phosphorylated. The more general
utility is the identification of new substrates; even by partially
narrowing the list of candidates to be tested experimentally,
substantial savings can be made on cost and duration of exper-
imental research.

Our results also show the potential that similar methodology is
extended to other proteins which recognize short amino acid motifs,
such as modular signal transduction domains (SH2, FHA).

Early work on this project was supported by the Australian Research
Council (B.K.). B.K. is a Wellcome Senior Research Fellow in Medical
Science in Australia.
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