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We introduce a method of looking at, analyzing, and comparing
protein structures. The topology of a protein is captured by 30
numbers inspired by Vassiliev knot invariants. To illustrate the sim-
plicity and power of this topological approach, we construct a mea-
sure (scaled Gauss metric, SGM) of similarity of protein shapes. Under
this metric, protein chains naturally separate into fold clusters. We use
SGM to construct an automatic classification procedure for the
CATH2.4 database. The method is very fast because it requires neither
alignment of the chains nor any chain-chain comparison. It also has
only one adjustable parameter. We assign 95.51% of the chains into
the proper C(class), A (architecture), T (topology), and H (homologous
superfamily) fold, find all new folds, and detect no false geometric
positives. Using the SGM, we display a “map” of the space of folds
projected onto two dimensions, show the relative locations of the
major structural classes, and ““zoom into” the space of proteins to
show architecture, topology, and fold clusters. The existence of a
simple measure of a protein fold computed from the chain path will
have a major impact on automatic fold classification.

CATH protein database | scaled Gauss metric | structural genomics
knot theory

Importance of Structural Comparison

ne of the main tasks of biology is to describe and compare

biological structures. The forefathers of evolutionary biology
(1, 2) inferred ancestral links and constructed classifications by
studying structural similarities among species. Today we investigate
biological molecules, which are many orders of magnitude smaller.
The size decrease of subjects has made some tasks easier: for
example, we can trace the evolutionary relationships by examining
the DNA sequence directly. On the other hand, we can no longer
discover function by direct observation, and must instead infer it
through indirect evidence. Structure of biological molecules is a
very important clue to understanding and manipulating biological
function. Consequently, we need robust tools for describing, com-
paring, and classifying the universe of protein shapes.

In the postgenomic era scientists have mounted a major
cooperative effort called structural genomics. It will expand our
knowledge of protein structure by coordinating research world-
wide. The success of the effort is linked to our ability to organize
and understand the wealth of information it will produce. With
the number of known proteins currently >16,000 and growing by
>400 per month, the need for reliable and automatic structural
comparison has never been greater.

In this paper we introduce a set of tools for describing the
shape of proteins. These tools are fundamentally different from
the current distance-based coordinate and distance rms devia-
tion (RMSD, and RMSDy, respectively; ref. 3) methods. We
show that, even in a basic form, our topological measures
successfully sort and display the diversity of protein structures.
We hope that researchers will accept these measures and use
them to construct new structural comparisons and structural
databases.

Motivation for a New Approach to Structural Comparison

Koehl (4) has written an excellent review of the various methods
used to detect structural relationships. He concluded that
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“though significant progress has been made over the past
decade, a fast, reliable and convergent method for protein
structural alignment is not yet available.” The deficiencies of
current methods arise from their reliance on distance-based
[RMSD; see Kabsch (3)] measures of similarity, and also from
their consequent requirement for sequence alignment.

RMSD is an excellent measure of similarity for nearly identical
structures (5), but once the shape of two proteins begins to
diverge, RMSD looses its effectiveness. Two completely unre-
lated proteins may have a large RMSD, but so may two related
chains which consist of identical subunits oriented differently
with respect to each other. RMSD cannot distinguish the first
case from the second.

This drawback is usually addressed by using various sophisticated
sequence alignment techniques that find related subunits (6-11).
While this corrects to some extent the “large RMSD” problem by
finding shorter subunits with smaller RMSDs, it also introduces a
host of complications. First, such alignment methods are compu-
tationally intensive. Second, they introduce many undetermined
parameters: gap and insertion penalties, similarity weights, etc.
Third, and most important, procedures that use sequence alignment
are fundamentally flawed for anything but close relationships
because they must violate the triangle inequality.

To illustrate the last point, let us consider three proteins made
of subunits in the following manner: protein 1 = ABC-LMN,
protein 2 = DEF-LMN, protein 3 = DEF-OPQ. There is
similarity between protein 1 and protein 2 in the LMN subregion,
and between protein 2 and protein 3 in the DEF region; however,
these two similarities cannot be used to infer any similarity
between proteins 1 and 3. (The example is diagrammed in Fig.
1.) In mathematical terms, the structural measures used today do
not satisfy the triangle inequality: d(x, y) + d(y, z) = d(x, z).
When a method violates the triangle inequality, it is fundamen-
tally unable to judge dissimilarity, and this problem worsens with
increasing distance.

Two methods that stand somewhat separate from the rest are
PRIDE (12) and MINAREA (13). PRIDE does not focus on distances,
but on statistical distributions of local distances. Published
results indicate that PRIDE is very effective in detecting close
relationships in the CATH classification (C, class; A, architec-
ture; T, topology; H, homologous superfamily), is fast, and
contains few adjustable parameters. PRIDE may not be effective
in evaluating dissimilarity because of its reliance on local C*-C*
distances. Carugo and Pongor (12) do suggest that PRIDE can be
used as a classifier, and we are looking forward to seeing the
details. MINAREA, like PRIDE, does not require alignment. The
classification possibilities of MINAREA are also unknown.

Knot Theory in Biology

The challenges outlined in the preceding section motivated us to
step away from distance-based methods, and to instead compare
and classify proteins on the basis of their topological properties. The

Abbreviations: RMSD, coordinate rms deviation; RMSDg, distance rms deviation; SGM,
scaled Gauss metric.
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Fig. 1. Failure of current subset-matching structural measures to satisfy the
metric conditions, in particular, the triangle inequality 4. This violation pro-
hibits transitive inference of relationship (A ~ B and B ~ C does not imply A ~
C), and it makes intermediate and distant similarity meaningless. In this figure
conformation A is similar (by subset matching) to conformation B, which is in
turn similar to conformation C. However, there is no relationship between
conformations A and C.

A C

protein backbone is a space curve, and mathematicians have been
analyzing and comparing curves for a long time. One well-known
measure of how two curves interact with one another is the Gauss
integral, which is related to Ampere’s law of electrostatics. The first
biological applications of this measure are found in studies of DNA
structure. In 1969 White (14) derived an elegant expression stating
that the sum of the writhe and the twist of a closed DNA strand is
equal to its linking number (the writhe may be seen as the
self-inductance of a wire):

Lk =Tw + Wr. [1]

One of us (15, 16) has used this result in analyzing properties of
supercoiled DNA. Knot theory has been applied to proteins by
Chen and Dill (17), who investigated symmetries in secondary
structure motifs. Two of the simplest structural measures we
consider, the writhe and the average crossing number, have
previously been applied to analyze protein structures. Levitt (18)
used the writhe to distinguish different chain threadings. Arteca
and Tapia (19) used the average crossing number and the most
probable overcrossing number as protein shape descriptors.

New developments in knot theory (20) have placed Gauss’
original integral as the first of a series of mathematical descrip-
tors of curves and knots. Recently Rggen and Bohr (21) devel-
oped a method to use a family of generalized Gauss integrals as
global measures of protein structure. The generalized Gauss
integrals originate in integral formulas of Vassiliev knot invari-
ants (a good technical introduction to Vassiliev invariants is ref.
22) and give absolute measures of protein geometry. The inte-
grals may be understood as crossing numbers and correlations
(along the backbone) of crossing numbers.

In this paper we use the topological invariants developed by
Rggen (21) to construct a geometric measure, scaled Gauss
metric (SGM), of the conformation of a protein. We then use the
measure to provide a distance between protein shapes. Unlike
the methods mentioned in the previous section, SGM satisfies
the triangle inequality, as well as the other two pseudometric
conditions 4 on the chains of CATH2.4.%

d(x,y) =0ifx =yand [2]

SSGM is not, strictly speaking, a metric but a pseudometric. It is possible for two distinct
conformations to have d = 0. Empirically, however, this never happens for the chains of
CATH2.4. The if in the first condition of Eq. 2 defines a pseudometric. For a metric an iff
would be necessary.
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d(x,y) = d(y, x) (symmetric) and also [31]
d(x,z) =d(x,y) +d(y, z) (the triangle inequality) [4]

The triangle inequality (4) implies that the Gauss metric is able
to identify meaningful intermediate and marginal similarities, and
to distinguish between various degrees of dissimilarity. Conse-
quently, we can examine more distant structural relationships, to
construct a meaningful clustering of protein shapes, and, remark-
ably, to visualize the whole space of protein structures (Fig. 2).

The Gauss metric has another desirable property: it requires
neither sequence nor structural alignment between chains, which
makes pairwise comparison almost instantaneous. A brief math-
ematical description of the method is in Appendix A. More details
can be found in Rggen and Bohr (21).

Results

Representing Proteins in R3°. For our study we selected 20,937
connected domains from CATH2.4. We chose domains that
have no more than three a-carbon atoms missing and that are at
most 1,000 residues long. For each of these, we computed the
topological invariants of the polygonal curve connecting the «
carbon (C®) atoms. Each domain is assigned a 30-dimensional
vector containing its length and the 29 measures, in a manner
described in Appendix A.

The invariants described in Appendix A are simply sums over
the length of the chain and are, consequently, straightforward to
compute. The computation is also fast: a 1-GHz Pentium
processor extracts the 29 measures for all 20,937 CATH2.4
domains in <2 hr. This is equivalent to >400 million
(438,357,969) pairwise alignments which, using current methods,
would occupy a single workstation for several hundred years.
Because the speed of SGM is perfectly satisfactory, we have not,
at this point, explored optimization of the algorithm. Once each
polypeptide is mapped onto a point in R, we use the usual
Euclidean metric to compare chains:

30

> =y [5]

i=1

d(x,y) =

We call this metric SGM, the scaled Gauss metric.

The Structural Protein Universe. SGM is a proper pseudometric on
CATH2.4, which implies that we can visualize the entire space of
protein structures. Because the complete structural universe lives in
R30 and is therefore difficult to represent on a journal page, we have
projected the 30-dimensional object onto the plane along the first
two principal difference components. (In other words, we select the
projection that best preserves the distances between the chains.)
Fig. 2 is a map of the protein structure universe. As the observer
“zooms” into the cloud of points, and the structural diversity of the
subsets decreases, the separation between the different CATH
classes becomes clearer. (Please refer to the legend of Fig. 2 for a
more detailed explanation.)

Automated Classification of CATH2.4 Domains. Extending existing da-
tabases. There are several established projects that maintain
web-accessible hierarchical classifications of Protein Data Bank
entries. Of these the most commonly used are FSSP, CATH, and
SCOP (23-25). These hierarchies are constructed by different
methods: FSSP uses a fully automatic comparison algorithm,
DALI, whereas CATH and to a larger extent SCOP use some
human expert judgment.

We wanted to reproduce these databases with an automatic
classification procedure. Automatic classification is desirable be-
cause it will save considerable time and effort. It will also provide
insight into structural comparison by replacing complex human
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Fig. 2. The map of the CATH hierarchy. For visual clarity we have omitted the CATH chains with 0" name (about half the chains). The full map is similar, but
more cluttered. The figure is a projection from R3° to R2 along the directions of largest variation. The structures shown are representatives of their respective
classes. The rectangle in the Upper Left contains all the chains in CATH, colored according to their class membership: «, B, B, and little secondary structure. Note
that the o3 members are located between a and Bislands, a consequence of the triangle inequality. Next, in the Upper Right, we enlarge CATH class 1, the helical
proteins, and its five constituent architectures. In the Lower Right we display in larger details topologies 1.10.(220-250). Finally, in the Lower Left we show the
H categories of topology 1.10.238. Although it is difficult to reproduce the cluster separation adequately in two dimensions, when one descends to lower levels

of the hierarchy and the topological diversity, the clusters corresponding to different folds become more distinct.

judgment with a simple set of rules. These rules can serve as a
component of any algorithm that needs structural classification for
a subunit, for example, a program for automatic fold recognition.

We decided against using SGM to cluster chains ab initio because
the most natural SGM clustering might not correspond to biolog-
ically interesting classification, and also because the lines between
functionally different proteins may be blurred because of insuffi-
cient representation. We felt it would have been unwise to discard
the effort and expert judgment that makes the existing databases
biologically useful. Therefore we chose to take an existing database
(CATH), to examine it, and to duplicate and extend it with an
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automatic algorithm that uses SGM. We have not replaced expert
human judgment; rather, we have incorporated it by using the
existing classifications as a training set.

We discovered that if we use the length of the proteins and the
Gauss invariants of order 1, 2, and 3 (see Appendix A for details),
then we can capture the geometry of the CATH database with
only one adjustable parameter (see Fig. 3 and legend). The
adjustable parameter is simply the ratio of inter- to intracluster
distance, and is common to all folds. When CATH is examined
with SGM it naturally coagulates into clusters that correspond to
individual C, A, T, and H subcategories.
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Fig. 3. Classification into the first four CATH categories (C, A, T, and H). The plots display D1 vs. D, (defined in step 2 in the text) for all chains in CATH1.7b (Left)
and CATH2.4 (Right). The light blue chains are ones for which D; points to the correct CATH classification; the red points are ones for which D; points to the
incorrect one. The green points are single representatives of their respective CAT and H clusters. The decision boundary described in the text is shown as a broken
line. The subregion with the red and green points is the “unknown’’ region in the classification.

The algorithm. A good classification procedure must (i) classify a
majority of members correctly and (if) make very few mistakes.
Instead of making misclassifications, the procedure should flag
cases as “unsure’ and refer them for further expert examination.

The distribution of proteins embedded in R3* shows a strong
clustering consistent with the CATH classification. Closest-
neighbor pairs belong to the same CAT and H designation 97.8%
of the time. Furthermore, the gaps between clusters are larger
than the distances between chains within each cluster. We used
these observations to design an automatic classification proce-
dure. This is how it works: Given a chain C, we

1. Calculate the point corresponding to C by computing the 30
invariants described in Appendix A.
2. Locate C’s nearest and second-nearest clusters, C; and G, at
corresponding distances D; and D».
3. The decision stage. The CATH assignment is made using the
ratio of D4 to D».
if D, = 1.75 D;. This means that C lies in a populated region
of (. Cjoins C;
else (D, < 1.75 D). In this situation C is either equally close
to two different clusters or is far away from both. We declare
C’s classification to be unknown, with a suggestion to
examine C; and C, as possible candidates.

Our single “adjustable parameter,” 1.75, is actually an obser-
vation about the nature of CATH. Chains that are equidistant to
several clusters are hard to classify. Chains that are far away from
any known clusters are probably new folds. The definition of
“far” for CATH is 1.75. Fig. 3 illustrates this point and the
procedure. The distribution of Dy vs. D, shows two very nice
features. First, the chains that might be misclassified as well as
the chains that are only representatives of their H class cluster
separately from chains with correct classifications. This cluster-
ing allows us to flag a portion of the chains as “unknown” rather
than making a classification error. Second, a large majority
(95.53%) of the chains reside in the “known” region and can
therefore be classified with certainty. The figure shows that
chains which are equidistant to different clusters are hard to
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classify; and also chains which are far away from other clusters
are probably new folds.

Performance. We picked the decision boundary based on classi-
fication performance on CATH1.7b (Fig. 3 Left). We then tested
the performance on the latest release of CATH, CATH2.4.
Using the automatic classification algorithm described above, we
assign 95.51% (19,996,/20,937) of CATH2.4 domains their ap-
propriate C, A, T, and H designation. Furthermore, we correctly
identify as “unknown and/or possibly new” 171 domains that are
solitary members of their H cluster (i.e., all new folds are found).
The total success rate is 96.32%. A total of 3.65% (765/20,937)
of the chains cannot be assigned an H designation. Finally, there
are five mistakes: 1piqA0, 1czqAO0, 1pfiA0, and 1xtcCO are
assigned the correct C, A, and T, but not H; 1favA0 receives the
correct C and A but not T and H.

In all five cases the misclassified chain is a single long a-helix.
The first four are members of T 1.20.5, which contains “single
a-helices involved in coiled-coils or other helix-helix interfaces”
(www.biochem.ucl.ac.uk/bsm/cath_new/), which implies that
the H designation was made by considering the chains’ environ-
ments and cannot be reproduced by geometrical considerations
alone. 1fav is a member of the T family “helix hairpins”; SGM,
however, considers it to be closer to a straight a-helix.

When we wish to assign only the first three CATH descriptors,
C, A, and T, we use the algorithm described above but without
considering the H level. In the decision stage we use the decision
boundary given by Dy = 1.7D, in the case of C, A, and T
classification. This modified algorithm assigns 96.34% (20,171/
20,937) of CATH2.4 domains their appropriate C, A, and T
designation. Ninety-two chains are solitary members of their T
topology and are classified correctly as “new and/or possibly
unknown.” The total success rate is 96.78%. A total of 3.20%
(671/20,937) of the chains cannot be assigned a T designation.
Finally, there are three mistakes that we place closer to the 1.20.5
topology than to their own topology. The case of 1favAO0 is as
before. 1a2xB0 consists of one «a-helix only but is classified
4.10.310 by CATH2.4. Similarly 1tbgEO consists mainly of «-
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helix pieces, making it impossible for our algorithm to place it in
the FSS (few secondary structures) class of CATH2.4.

We assign CATH descriptions C and A in the same way once
again, this time using the decision boundary given by D; =
1.7D,. The success rate drops slightly to 96.64%, primarily
because there is only one member of an A class. Last, when
assigning the C class alone, the success rate is 97.35%. In both
of these cases there are two mistakes; namely the previously
encountered 1tbgEO and 1a2xB0.

For comparison we note that during the construction of
CATH2.4, the C-class assignments are automatic for >90% of
the domains, and the A-architecture and beyond assignments are
largely manual.

We considered nudging the performance of the algorithm even
higher by constructing more complicated decision boundaries. We
also contemplated reducing the number of “unknown” chains by
making the decisions cluster-dependent. We decided, in view of the
excellent performance stated above, to present the simplest possible
scheme. The simplicity of the algorithm shows that our measures
are a natural and powerful way to look at protein structure. We shall
examine more elaborate algorithms in a future work.

Discussion

Future Directions. This work opens up many future directions. One
possible venue is to investigate the topological measures themselves.
While we have a geometric interpretations of the writhe (/;2) and
the average crossing number (/12]), we would like to understand the
meaning of the other generalized Gauss integrals used in this work.

It will also be fruitful to investigate the various ways the
generalized Gauss integrals can be combined. Perhaps some
measures are not as important as others; or there may be better
ways to combine them.

By choosing to classify CATH chains we glossed over the
problem of finding domains. A new structure coming to SGM for
classification will not be broken down into basic biologically and
structurally significant pieces. We would like to establish collabo-
rations to combine SGM with existing domain analysis methods.
We also would like to develop an algorithm that uses SGM to locate
matching (to CATH domains) subsets within a given protein.

Another subject for further work is making the classification
algorithms more elaborate by incorporating cluster-specific infor-
mation. We think that this will be necessary in automatic classifi-
cation of the SCOP (23) hierarchy. One of the most enticing
directions of future work is investigating the correlation and infer-
ence from sequence to structure. The Gauss integrals are a pow-
erful and elegant way of looking at protein structure. Using them
will make the interplay between sequence and structure more well
defined and applicable across more distant relationships.

Conclusion. We have shown that the diversity of protein structures
is captured by 30 structural measures. The protein space has been
visualized through two-dimensional projections, which showed a
clear separation of protein fold classes. We used the intracluster
separation of protein structures to design a simple, robust and
highly reliable algorithm that classifies >96% of the considered
protein domains without making mistakes. The algorithm itself is a
useful tool that will speed up the process of classification and save
expert human judgment for the more interesting cases. The sim-
plicity of the classification rule suggests that (armed with topolog-
ical insight) one is looking at a 30-dimensional periodic table of
protein folds. Remarkably, the Gauss integrals are an absolute
measure of structure, devoid of pairwise comparisons. In the future
we hope to see the development of many very fast and compre-
hensive algorithms using the generalized Gauss integrals.

Appendix A: Gauss Invariants

The first structural measure considered here is the writhe of a
space curve, known from the famous Calugdreanu—White self-
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linking formula. The writhe, Wr, of a closed space curve, vy, may
be calculated by using the Gauss integral

1
Wr(y) = 47_‘_f fw(f1, ty)dt dt,,

¥ X YN\D

where (11, 1) = [v'(t1), ¥(t1) = ¥(t2), ¥ (12)]/I¥(t1) = ¥(2)P,
D is the diagonal of y X v, and [y'(t1), y(t1) — ¥(t2), ¥'(£2)] is
the triple scalar product. As w(t1, t2) = w(t2, t1), the writhe may
be calculated as an integral over a 2-simplex, namely

[A1]

1
I, 2)(y) = Wr(y) = 2’”’[ Jw(tl, ty)dtdt, [A2]

0<n<n<L
For a polygonal curve w the natural definition of writhe is

I, 2(p) = Wr(p) =0; Wiy, is),

<i2<N

[A3]
with
1 i+ 1 [ia+1
Wiy, i) = o wl(ty, tr)dtdt,, [A4]
1=t Yi2=12

where W(iy, i) is the contribution to writhe coming from the i;th
and the i,th line segments, which equals the probability from an
arbitrary direction to see the i;th and the i,th line segment cross,
multiplied by the sign of this crossing. Therefore, geometrically
writhe is still the signed average number of crossings averaged
over the observer’s position located in all space directions. The
unsigned average number of crossings seen from all directions,
known as the average crossing number, is

I|1,2\(H«) = 02, |W(i1, iz)‘- [AS]
<i <”N
A whole family of structural measures containing, e.g.,
1\1,3|(2,4)(M) 0:<Z<| W(il, i3)|W(i2, i) [A6]
<i3 <”i4 <”N
and
1(1,5)(2,4)(3,6)(M0) = E‘W(‘ila is)Wiy, i) Wis, is)  [AT]

<i1<i2<1i3
<i4<is<ic<N

may be constructed by using writhe and average crossing number
as the basic building blocks. These measures are inspired by
integral formulas for the Vassiliev knot invariants (26).

The invariants from Eq. A6 form a natural progression of
descriptors of curves, much as moments of inertia and their
correlations describe solids. We illustrate the usefulness of the
higher order invariants in Fig. 4, which shows plane curves that
have the same writhe and average crossing number, but can,
nonetheless, be distinguished by the higher-order integrals.

Rggen and Bohr (21) give an explicit formula for the writhe
contribution, W(iy, i2), from two line segments. They also show
that the six double sums defining /(1,5y(2,4)(3,6)( ) may be reduced
to give a calculation time proportional to the third power of the
number of line segments.

The first premeasure of protein structures used in this paper is
the number of a carbon atoms, N. The other premeasures of protein
structures are naturally grouped into three groups. The first group
consists of /12)/N and j; 5;/N. We use crossings per length rather
than just crossings to make the two premeasures less sensitive to the
size of the protein, which is already recorded by N. The next group
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Fig. 4. Plane curves A and B possess the same writhe and average crossing
number. The higher-order invariants, A6, however, distinguish the two curves.

contains the premeasures /(12)3.4)/N2 I(1.3)2.4)/N?, and (1, 4y2,3)/N?
together with the nine premeasures obtained by taking absolute
value once or twice. Finally, there are the 15 premeasures given by
L12646.6, 11265160, 11.260@:s) L1.3)e06.6, 113)25).6)

(1.3)2.6)045) 1(1.4)23)5.6)> 1(1.4)(2.5)3.6)» 1(14)(26)3,5) 1(1,5)(2.3)(4.6)s

192436 1152634 11,623)@5) 1(1.6)24)3.5) TeSP. 1(1,6)25)(3.4)
divided by N°. In the last group of premeasures the introduction of
one, two, or three absolute values would give 105 new premeasures,
which is the same as the number of premeasures given by four index
pairs. To have a reasonable number of premeasures we have chosen
to stop with the 1 + 2 + 12 + 15 = 30 above.

We then normalize the premeasures to have the same standard
variance of one on a set H-class representatives of CATH2.4. This
was done to treat the information contents of the 30 premeasures
equally, and to make the measures dimensionless."

Appendix B: Verification with sTRucTAL

We took an opportunity to test our method under “battle condi-
tions,” in the CASP V experiment (http://predictioncenter.llnl.

Titis likely that some measures are more useful in classification than others, and that some
are strongly correlated. We did not attempt to sort out these issues because of the
excellent performance we achieved by using equal weighting of the 30 invariants.
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test. At small SGM almost every relationship produces a bona-fide sTRUCTAL
alignment.

gov). The Levitt team needed to sort out and align domains that
were too new to be included in the latest SCOP 1.59 (ref. 23). They
produced a nonredundant (FASTA E value = 10%) set of new
domains, 1,625 in total (M. Levitt, personal communication). They
also selected, with the same sequence requirement, a set of 3,411
SCOP fold representatives. The total number of comparisons
(5,542,875) was far too great to perform with current structural
alignment methods in the short time available during CASP. We
performed the alignments with SGM (in <10? seconds) and the
team then used STRUCTAL (27) to produce structural alignments on
the pairs that we found to be similar. The two methods display
remarkable agreement. In Fig. 5 we plot the STRUCTAL hits and
misses produced in the verification vs. SGM distance. Despite the
fact that the current method was not designed to bind to fold
representatives, virtually every small SGM distance results in a
bona-fide STRUCTAL structural alignment.
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