
Statistical Validation Based on Parametric Receiver Operating
Characteristic Analysis of Continuous Classification Data1

Kelly H. Zou, PhD, Simon K. Warfield, PhD, Julia R. Fielding, MD, Clare M.C. Tempany, MD,
William M. Wells III, PhD, Michael R. Kaus, PhD, Ferenc A. Jolesz, MD, and Ron Kikinis, MD

Abstract
Rationale and Objectives—The accuracy of diagnostic test and imaging segmentation is
important in clinical practice because it has a direct impact on therapeutic planning. Statistical
validations of classification accuracy was conducted based on parametric receiver operating
characteristic analysis, illustrated on three radiologic examples.

Materials and Methods—Two parametric models were developed for diagnostic or imaging data.
Example 1: A semiautomated fractional segmentation algorithm was applied to magnetic resonance
imaging of nine cases of brain tumors. The tumor and background pixel data were assumed to have
bi-beta distributions. Fractional segmentation was validated against an estimated composite pixel-
wise gold standard based on multi-reader manual segmentations. Example 2: The predictive value
of 100 cases of spiral computed tomography of ureteral stone sizes, distributed as bi-normal after a
nonlinear transformation, under two treatment options received. Example 3: One hundred eighty
cases had prostate-specific antigen levels measured in a prospective clinical trial. Radical
prostatectomy was performed in all to provide a binary gold standard of local and advanced cancer
stages. Prostate-specific antigen level was transformed and modeled by bi-normal distributions. In
all examples, areas under the receiver operating characteristic curves were computed.

Results—The areas under the receiver operating characteristic curves were: Example 1: Fractional
segmentation of magnetic resonance imaging of brain tumors: meningiomas (0.924–0.984);
astrocytomas (0.786–0.986); and other low-grade gliomas (0.896–0.983). Example 3: Ureteral stone
size for treatment planning (0.813). Example 2: Prostate-specific antigen for staging prostate cancer
(0.768).

Conclusion—All clinical examples yielded fair to excellent accuracy. The validation metric area
under the receiver operating characteristic curves may be generalized to evaluating the performances
of several continuous classifiers related to imaging.
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The accuracy of diagnostic test and imaging segmentation is important in clinical practice
because it has a direct impact on therapeutic planning. Recently, continuous classification tools
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are more frequently used in practice, each of which yields continuous rather than ordinal rating
data, and methods for evaluation have been developed (1–4). For example, with the availability
of three-dimensional (3D) imaging acquisitions and reconstructions, volumetric data are
increasingly available. Another example is the use of cancer markers such as CA125, which
is important for cancer detection and staging.

In contrast, traditional diagnostic tests were often based on an ordinal rating scale. For example,
a five-point scale might be adopted for observer performance evaluations, where 1 = definitely
normal, 2 = probably normal, 3 = probably abnormal, 4 = probably abnormal, and 5 = definitely
abnormal. A discrete subjective rating method was used in a multi-modal (magnetic resonance
[MR], computed tomography [CT], and ultrasound) comparative ovarian cancer technology
assessment study (5,6), in one of a series of prospective multicenter Radiologic Diagnostic
Oncology Group clinical trials sponsored by the funded by the National Institutes of Health in
the 1990s. The advantages of the continuous diagnostic over ordinal scale are that detailed
information is preserved, they are more natural with the advancements in measurement tools
and computing methods, and enable more objective interpretations. Ordinal rating data will
not be the focus of this article. Instead, we will evaluate the performances of continuous
classifiers only.

To conduct a validation analysis based on continuous classifiers, the most important component
in the validation framework is a binary gold standard, which is the classification truth for each
observation in terms of two mutually exclusive classes, eg, tumor versus non-tumor, diseased
versus non-diseased. For simplicity, we assume a two-class truth by labeling the control class
as C0 and disease class as C1. A popular method for assessing the overall classification accuracy
is a receiver operating characteristic (ROC) curve (7,8). It is a function of sensitivity versus
(1-specificity) at all possible decision threshold. We have previously developed several
methods, including nonparametric, semi-parametric, and parametric, for estimating and
comparing ROC curves derived from continuous data (1–4).

In this article, we evaluate and validate the accuracy of several continuous diagnostic classifiers
including semiautomated brain MRI segmentation (9), spiral CT of ureteral stone size (10),
and prostate-specific antigen (PSA) for cancer staging (11). We conduct secondary analyses
to validate their classification accuracy, illustrated on these examples. The connection between
these three clinical examples is that the diagnostic and classification systems all generate
continuous, rather than categorical, data. In addition, we develop statistical methods to estimate
the unknown gold standard and to apply an appropriate transformation of non-normality data
that are frequently observed.

MATERIALS AND METHODS
Example 1: Magnetic Resonance Imaging of Brain Tumors

Imaging protocol—A total of nine patients were selected from a neurosurgical database of
260 brain tumor patients, of which three had meningiomas (M), three astrocytomas (A), and
three other low-grade gliomas (G) (9). The imaging protocol consisted of the following
parameters: patient heads were imaged in the sagittal planes with a 1.5T MRI system (Signa,
GE Medical Systems, Milwaukee, WI), with a postcontrast 3D sagittal spoiled gradient recalled
acquisition with contiguous slices (flip angle, 45°); repetition time, 35 ms; echo time, 7 ms;
field of view, 240 mm; slice-thickness,1.5 mm; 256 × 256 × 124 matrix).

Fractional segmentation—Instead of applying binary manual segmentation, Warfield et
al (12) have proposed an automated segmentation algorithm that yields voxel-wise continuous
probabilistic measures indicative of the tumor class. The automated fractional segmentation
was applied only to a single, randomly selected two-dimensional MR image containing the
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tumor. The relative signal intensity was modeled as a normal mixture of the two classes based
on an initial semi-automated binary segmentation.

Binary gold standard—Using the same randomly selected slice, an interactive
segmentation tool (MRX, GE Medical Systems, Schenectady, NY) was used and executed on
an Ultra 10 Workstation (Sun Microsystems, Mountain View, CA). The structures were
contoured by three independent imaging readers, blinded to the semiautomated fractional
segmentation results. An anatomic object was defined by a closed contour, and the computer
program labeled every voxel of the enclosed volume. Of the gold standard, the background
and brain tumor pixels defined the C0 and C1 classes, respectively.

Example 2. Spiral Computed Tomography of Uretral Stones
Imaging protocol—A total of 100 unenhanced spiral CT scans were obtained to evaluate
flank pain in patients with obstructing ureteral stones documented by means of chart review
(10). A standard protocol was used (280 mA; 12 kVp; pitch, 1.0–1.6). The imaging thickness
was 5 mm, with images reconstructed at 5-mm increments.

Ureteral stone size—Two radiologists initially reviewed the CT scans independently and
blindly to derive several imaging features, one of which was the size of the ureteral stone
measured in millimeter, using a caliper on CT images. This size variable was treated as the
classifier to predict treatment options.

Binary gold standard—The actual treatment received by each subject was considered as
the gold standard, either spontaneous passage (class C0) or surgical intervention (class C1).

Example 3. Prostate Specific Antigen for Prostate Cancer Staging
Prostate cancer biopsy and PSA—In a subset of patients enrolled in a multicenter
prospective Radiologic Diagnostic Oncology Prostate Cancer Staging Clinical Trial (11),
magnetic resonance imaging was performed in 213 patients with prostate cancer after excluding
the missing data in the baseline biopsy, 180 cases were included here. Results of the PSA were
treated as the main diagnostic variable.

Binary gold standard—Radical prostatectomy was performed in all patients to provide the
gold standard, which was based on histopathology to separate patients further into local
(periprostatic invasion of tumor and spread of diseased to the seminal vesicles and lymph
nodes) versus advanced (stages A and B) disease. Of the gold standard, the local and advanced
stages were regarded as classes C0 and C1, respectively.

Statistical Methods
Mixture modeling of distributions—Depending on the types of data, different types of
mixture distributions for the two populations were chosen, we now focus on two parametric
models, named the bi-beta and bi-normal models. In Example 1 on brain tumor segmentations,
because the semi-automated fractional segmentation yielded pixel-wise probability of the
tumor class, the range of the data is restricted to [0, 1]. A convenient model for such
probabilistic data is a mixture of two beta distributions, here called the bi-beta model.
Characteristics of the beta distribution are found in classical literature on statistical distribution
theory (13). Specifically, the distribution of the fractional segmentation in class C0 was
assumed to be F(x) ~ Beta(α0,β0), while the distribution of the fractional segmentation
probabilities in class C1 was assumed to be G(y) ~ Beta(α1, β1). The ROC parameters were the
four shape parameters in these beta distributions. For simplicity, we assumed pixel-wise
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independence, and more complicated models that incorporate spatial homogeneity will be
developed for validation in the future.

In Examples 2 and 3, the diagnostic classifiers were PSA and ureteral stone size (in mm),
respectively, thus both outcome variables take on positive values rather than probabilistic
values as in Example 1. We applied a nonlinear normality Box-Cox transformation algorithm
(see Appendix A.1) (2–4,14). After such a parametric transformation, a mixture of two normal
distributions can be assumed, known as the bi-normal model in the literature (1,15,16). We
assume here that the measurements in class C0 have a standard normal distribution, while the
measurements C1 of the diseased class have a normal distributions. The bi-normal model in
the literature is a slight variation in terms of parametrization of these two ROC parameters.

Composite gold standard estimate from multiple manual segmentations—In
Example 1, for the purpose of validation, it is necessary to derive a composite binary gold
standard by combining multiple manual segmentations by three independent image readers.
We have applied our recently developed, Simultaneous Truth and Performance Level
Estimation (STAPLE) program (outlined in Appendix A.2.) (17–19), an automated
expectation-maximization (EM) algorithm (20) for estimating the composite gold standard.
For each pixel, a maximum likelihood estimate of the composite gold standard of tumor or
background class was optimally determined over all image readers’ results. This algorithm has
a major advantage over ad hoc combination methods such as a pixel-wise or voxel-wise voting
scheme across all readers. Instead, it considers a higher weight for readers with estimated better
quality in segmentation (17,18).

Normality transformation—As mentioned in both Examples 2 and 3, the classification data
may not be suitable for the bi-normal model without any transformation. We applied a nonlinear
Box-Cox (14) normality transformation to the continuous and positively valued classification
data (see Appendix A.1.).

Receiver operating characteristic analysis—Statistical validations were carried out
using ROC analysis. In the radiology literature, Metz et al (1) have provided a maximum-
likelihood solution for estimating ROC parameters, with algorithms implemented with
software available from the Kurt Rossmann Laboratories for Radiologic Image Research,
Department of Radiology, at the University of Chicago (Chicago, IL). Conventionally, and as
in these popular programs, a bi-normal model is often used, with two ROC parameters, a
standardized difference in the means, and the ratio of the standard deviations of the distributions
of the diseased and control classes. These are simple functions of the two sets of (mean, standard
deviation) parameters of these classes. As an extension, we specified the four shape parameters
in the bi-beta model as the ROC parameters.

Once these parameters are estimated by maximizing the likelihood function, at a pre-specified
cutoff threshold value, the true positive fraction (or sensitivity) and the true negative fraction
(or specificity) = 1 − (false positive fraction) are estimated.

An ROC curve consists of all (1-specificity, sensitivity)-pair by varying all possible threshold
values (see notations and assumptions for ROC analysis given in Appendix A.3). In Example
1, stratified ROC analyses were performed in each tumor case and type against the estimated
composite voxel-wise gold standard using the STAPLE program (17–19) based on an EM
algorithm (20). Over all thresholds γ (γ ⊆ [0,1]), the four bi-beta ROC parameters were
estimated via matching moments (see details in Appendix A.4).
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In Examples 2 and 3, after estimated Box-Cox transformations, the bi-normal ROC parameters
were estimated by maximizing the likelihood function over all possible thresholds γ ⊆ ℜ (see
details in Appendix A.5).

An invariance property of the ROC curve states that with any monotone transformation such
as the nonlinear Box-Cox transformation considered here, the underlying ROC curve, as well
as the resulting area under the curve (AUC), remain the same (3). However, the parametric
assumptions may not be appropriate and the estimated AUC biased if, for example, skewed
data are fitted with a bi-normal model, therefore leading to unsatisfactory goodness-of-fit
(16).

Numerical Simulation of the Receiver Operating Characteristic Parameters and the Resulting
Area Under the Curve

Bi-beta model—We assessed the relationship between possible underlying parameters and
the resulting ROC curves via either numerical integration or exact computations. We
considered hypothetical scenarios of the mixture distributions having equal variances or
unequal variances in the resulting samples in the two classes. As the mean of a two-parameter
Beta(α,β) distribution is α/(α + β) and the variance is αβ/{(α + β)2(α + β+1)}, we set one of the
two shape parameters of the distribution as 1 for simplicity. By varying the value of the other
parameter, we achieved different underlying mixtures. The ROC parameters considered were
as follows:

(α0, β0,α1, β1) = {(1,1,1,1);(1,1.5,1.5,1);(1,2,2,1); (1,2.5,2.5,1);(1,3,3,1); (1,9,9,1)} with equal
variances, and = {(1,2,1.5,1); (1,1.5,3,1); (1,9,3,1); (1,2,9,1)} with unequal variances. In this
model, the population means had various combinations from 10%–90% in fractions. Similarly,
the population variances were flexibly varied.

Bi-normal model—In this model, the distribution under class C0 is standard normal, while
the population means of class C1 was expressed as α. By considering small population standard
deviations close to 1, the location-shift in these the distribution of C1 ranged from 0.25–2.5.
Similar simulation studies for the bi-normal model have been carried out previously (3). The
parameters considered were (α,β) = {(0.25,1); (0.5,1); (0.75,1); (1,1); (1.25,1); (1.5,1); (1.75,1);
(2,1); (2.25,1); (2.5,1)} with equal variances, and = {(0.25,1.5); (0.5,1.5); (0.75,1.5); (1,1.5);
(1.25,1.5); (1.5,1.5); (1.75,1.5); (2,1.5); (2.25,1.5); (2.5,1.5)} with unequal variances.

RESULTS
Example 1: Magnetic Resonance Imaging of Brain Tumors

Estimated Binary Gold Standard—In Figure 1, we present the manual segmentation
results of a meningioma case according to an index summary of all three imaging readers’
performances (Fig 1, left panel). The estimated composite gold standard is also provided (Fig
1, right panel).

Receiver operating characteristic analysis—Table 1 presents the estimated bi-beta
ROC parameters for all cases, with the corresponding resulting AUCs for these cases. High
accuracy values were achieved using the semi-automated segmentation algorithm for all cases.
The AUCs for the meningiomas were 0.924, 0.968, and 0.984 for meningiomas, 0.786, 0.926,
and 0.986 for astrocytomas, and 0.896, 0.916, and 0.983 for other mixed low-grade gliomas.
The ROC curves in Figure 2 showed case-to-case variations of segmentation accuracies, which
were the smallest for meningiomas but were the largest for astrocytomas.
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Example 2. Spiral Computed Tomography of Ureteral Stones
Box-Cox transformation—The estimated Box-Cox transformation coefficient was

. The test of normality showed that the P values were .05 and <.001 before this
transformation, in comparison to .92 and .94 after the transformation, for the distributions of
the ureteral stone sizes in the spontaneous passage and the interventional samples, respectively.

Receiver operating characteristic analysis—The estimated ROC parameters were

, with a resulting AUC of 0.813, which was fairly high. See Figure 3 for
both the unsmooth nonparametric empirical and the smooth parametric bi-normal ROC curves.
The parametric curve followed closely to the empirical curve.

Example 3. Prostate Specific Antigen for Prostate Cancer Staging

Box-Cox transformation—The estimated Box-Cox transformation coefficient .
The test of normality showed that the P values were .003 and <.001 before this transformation,
in comparison to .06 and .10 after the transformation, for the PSA values in the local and the
advanced prostate cancer stage samples, respectively.

Receiver operating characteristic analysis—The estimated ROC parameters were

, with an AUC of 0.768, suggesting fair to moderate accuracy. See Figure
4 for the ROC curve.

Numerical Simulation of the Receiver Operating Characteristic Parameters and the Resulting
Area Under the Curve

Bi-beta model—Table 2 presents the corresponding AUC for the specified bi-beta model
parameters.

Bi-normal model—Table 3 presents the corresponding AUC for the specified bi-beta model
parameters.

DISCUSSION
In this article, we have presented both parametric bi-beta and bi-normal models for validating
continuous diagnostic or imaging classification results. In the first example, we focus on the
performance of a semi-automated fractional segmentation, which gave probabilistic
interpretation of the presence of tumor in all pixels in an MR image. The hidden pixel-wise
gold standard was estimated using our recently developed EM-algorithm, STAPLE. In the next
two examples, we examined cancer marker PSA and CT of ureteral stone size data derived
from individual patients. A nonlinear transformation model was applied to these data, enabling
a bi-normal parametric model.

To interpret the AUC values, an area of 1 represents a perfect classifier, and 0.5 represents a
classifier that has the same accuracy as flipping an unbiased coin. Subjectively, a rough guide
is that fair-to-excellent accuracy is achieved when AUC ≥0.7. In a classical article on AUC by
Hanley and McNeil (34), the authors gave the sample size necessary in a table for testing various
differences between the two correlated AUCs, when one is minimally 0.7.

In all of these clinical examples, we observed satisfactory accuracy, as evidenced by fairly to
high AUC values. In Example 1, the estimated AUCs were between 0.786 and 0.986, although
the ROC curves in Figure 2 were variable. Thus, the semi-automated segmentation algorithm
was moderately to highly accurate, as compared with the composite gold standard derived from
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three manual segmentations using STAPLE. However, the accuracy was rather case-
dependent. The AUCs were reasonably high, at 0.813 and 0.768, for ureteral stone size and for
PSA, respectively.

There are several advantages of our proposed ROC validation methodology. The unknown
gold standard can be estimated via the STAPLE algorithm. The bi-beta and bi-normal
parametric modeling are quite flexible for modeling the distributions of fractional data and
positive-valued diagnostic data, respectively. The means and variances of the underlying
mixture distributions may be characterized by simple functions of the parameters in these
models. In particular, under the bi-normal model, a goodness-of-fit test of normality to assess
modeling fitting was conducted using the z-test, with P values reported. These methods are
natural extensions of existing methods, such as the bi-logistic or bi-gamma models, found in
the literature (21,22).

As a limitation, in the first clinical example, only three radiologist segmentations were used in
the brain tumor example. We have previously conducted a digital phantom experiment
consisting of one set covering approximately 11% of a 256 × 256 pixel image (18). We assumed
three segmenters, one yielding results equal to the ground truth, and one set equal to the ground
truth shifted left 10 columns, and set equal to the ground truth shifted right 10 columns. After
11 iterations, STAPLE discovered that one of the segmenters’ result was identical to the ground
truth, and the remaining two were slightly incorrect. A comparison between the STAPLE result
and other measures, such as those based on a voting rule or using the median of the segmenters,
will be investigated in the future.

However, all parametric models should be used with caution. If parametric assumptions are
not met, then violations of the corresponding assumptions could lead to poor fitting and
inferences. Alternative methods such as nonparametric smoothing methods may be considered,
which may be much more computer intensive and less straightforward (23,24).

Statistical validation of classification accuracy may be conducted using several other metrics
(16,25), particularly when spatial information is also important in dealing with 2-dimensional
imaging pixel or 3D voxel data. For comparing two sets of segmentation results, existing
validation metrics other than area under the ROC curve, for example, entropy-based mutual
information (26), Jaccard (27) and Dice (28) similarity coefficient, and Hausdorff distance
measure (29,30). We have already investigated such metrics in separate articles (19,31).

In summary, we have conducted parametric evaluations of two types of continuous
classification data using ROC analysis, with application to three clinical examples. The
proposed method may be adapted to several validation tasks in radiologic research, as
illustrated in our clinical examples.
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A.1. A Box-Cox Normality Transformation
The Box-Cox transformation (14), from a positive-valued measurement X to a real-valued
measurement X′, has the form X′ = (Xλ − 1).λ when λ ≠ 0, and = log(X) when λ = 0. The
transformation parameter, λ, is estimated by a maximum likelihood method via nonlinear
optimization (2). Subsequently, a test of normality may be performed using the z-test (32)
under each binary gold standard class to ensure the bi-normal assumption.

Here we now include an S-Plus (http://www.insightful.com) function to estimate the optimal
Box-Cox transformation coefficient (l in the following program codes) after entering the x-
and y- sample data under classes C0 and C1, respectively.

It can be shown that we may maximize the profile log likelihood, a function of λ, conditioned
on other ROC parameters (33):

(1)

where c is a constant free of the parameters. Because a nonlinear optimization routine is used,
we include the S-Plus codes using a built-in a nonlinear minimization function:

bclik<−function(lambda){

m <− length(x); n<− length(y); xlog<− log(x); ylog<− log(y)

if (l = = 0){xnew<-xlog;ynew<-ylog}; else {xnew<− (x^l−1)/l; ynew<− (y^l−1)/l}
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m×log(stdev(xnew))+n×log(stdev(ynew))-l-1)×(sum(xlog)+sum(ylog))}nlmin(bclik,0)

A.2. Expectation-Maximization Algorithm for Estimating a Composite Gold
Standard

Denote the hidden voxel-wise gold standard by T, and a set of manual segmentations by r = 1,
…,R segmenters. For simplicity, assume that their conditionally independent manual
segmentations on the same image with a total of l = 1,…,N voxels, yielded binary decisions
(eg, tumor versus background; diseased versus non-diseased) Blr.

Characterize the r-th segmenter’s performance quality by his true specificity (Q0r) and and
sensitivity (Q1r), respectively. The conditional independence assumes that (Blr|Tl,Q0r,Q1r)⊥
(Blr′|Tl,Q0r′,Q1r) for any pair of segmenters, r ≠ r′.

To estimate all of the Tl’s, the maximum likelihood estimate is ,
for all voxels. However, segmentor-specific quality, Q0r and Q1rare unknown. We have
developed a software (STAPLE) to iteratively estimate the voxel-wise gold standard using an
EM-algorithm (17–20). This algorithm is briefly outlined as follows, with k = 1,…K iterations
till convergence:

The expectation (E) step
In the (k−1)-th iteration, let

(2)

Define a weight variable, a common notation in an EM-algorithm, for iteration (k−1):

(3)

where π = P(T=0) and . At k = 0, the initial segmentation quality
parameters may be estimated using the median rating or a voting rule as the initial gold standard
over R segmenters.

The maximization (M) step
At the k-th iterative step, we maximize the log-likelihood, such that

(4)

and that for the r-th segmenter,
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(5)

where  is the weight variable defined earlier for iteration (k−1), and .

The maximum likelihood estimates of the segmentation quality parameters are:

(6)

In our experience, typically only K <20 iterations were required to achieve convergence in
several segmentation applications.

A.3. Mixture Modeling in Receiver Operating Characteristic Analysis
For simplicity, independence is assumed in space or over all individuals, both for classes C0
and C1. We label the measurements of C0 as Xi(I = 1,…,m individuals or pixels), and the
measurements of C1 as Yj (j = 1,…,n individuals or pixels).

At each possible threshold γ, the underlying cumulative distributional function (c.d.f.) under
class C0 is F(γ), with a survival function, and a probability density function (p.d.f.) f(γ).
Similarly, at the same threshold γ, the underlying c.d.f. under class C1 is G(γ), with a survival
function, a p.d.f. g(γ).

Each point along the ROC curve, given γ, is the false positive rate

 and true positive rate . When the
threshold takes on all possible values (ie, γ ⊆ [0, 1] for fractional data and γ ⊆ ℜ for real-
valued data), an ROC curve is formed in the space [0,1] × [0,1].

A.4. A Bi-Beta Receiver Operating Characteristic Curve
Assume F(x) ~ Beta(α0,β0) and G(y) ~Beta (α1,β1). The estimates of the four beta shape
parameters are obtained by matching the mean and variances of the beta distributions with
what are found in each sample, separately from the nondiseased and from the diseased sample
data (I do not understand how exactly this is done). This moment approach is much simpler
than solving iteratively for the maximum likelihood estimates, and works well for a large
number of pixel data typically encountered in image processing, which we will present with
simulations in a separate article.

From the sample data in class C0, let the mean of be and the standard deviation be sx; similarly,
from the sample data in class C1, let the mean and standard deviations be &ymacr; and the
standard deviation be sy, respectively, then the estimates of the parameters in the bi-beta model
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are: ; similarly,  and

.

The definition of the area under the ROC curve (AUC) (34) is

, which is approximated by numerical integration using S-
Plus or other software packages under the bi-beta model.

A.5. A Bi-Normal Receiver Operating Characteristic Curve
Based on a bi-normal model for Examples 2 and 3, after the Box-Cox transformation, assume
F(x) ~ N(0,1) and G(y) ~ N(α,β), the maximum likelihood estimates of the parameters may also
be derived from the sample means and standard deviations, , and sy. The estimated

parameters are: .

In the bi-normal model, the AUC is an explicit function of the ROC parameters

, where Φ is the cumulative probability function of a standard normal
distribution (35). The standard error for making inferences based on AUC may be found in the
literature (2).
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Figure 1.
Three segmenters’ manual segmentation results (left) and the estimated composite binary pixel-
wise ground truth (right) for Example 1 on MRI brain segmentations of meningiomas,
astrocytomas, and gliomas.
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Figure 2.
Bi-beta ROC curves for Example 1 on MRI brain segmentations of meningiomas (left),
astrocytomas (center), and gliomas (right).
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Figure 3.
Empirical and bi-normal ROC curve for Example 2 on CT of ureteral stone sizes for predicting
treatment outcomes.
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Figure 4.
Empirical and bi-normal ROC curve for Example 3 on PSA for prostate cancer staging.
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Table 1
The Bi-Beta ROC Parameters and AUCs for Example 1

Tumor Type AUC

Meningioma 0.029 0.885 0.269 0.041 0.984
0.032 1.523 0.130 0.023 0.968
0.172 0.783 1.184 0.339 0.924

Astrocytoma 3.208 5.504 1.379 0.794 0.786
0.250 1.130 1.010 0.304 0.926
0.177 2.679 0.217 0.009 0.986

Glioma 0.004 0.339 0.109 0.016 0.983
0.106 0.573 1.169 0.411 0.916
0.351 1.190 1.131 0.404 0.896
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Table 2
Bi-Beta ROC Parameters and the Resulting AUCs in a Simulated Study

Variances AUC

Equal 1 1 1 1 0.500
1 1.5 1.5 1 0.706
1 2 2 1 0.834
1 2.5 2.5 1 0.908
1 3 3 1 0.950
1 9 9 1 1.000

Unequal 1 3 1.5 1 0.847
1 1.5 3 1 0.847
1 9 3 1 0.995
1 3 9 1 0.995
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Table 3
Bi-Normal ROC Parameters and the Resulting AUCs in a Simulated Study

Variances AUC

Equal 0.25 1 0.570
0.50 1 0.638
0.75 1 0.702
1.00 1 0.760
1.25 1 0.811
1.50 1 0.856
1.75 1 0.892
2.00 1 0.921
2.25 1 0.944
2.50 1 0.961

Unequal 0.25 1.5 0.555
0.50 1.5 0.609
0.75 1.5 0.661
1.00 1.5 0.710
1.25 1.5 0.756
1.50 1.5 0.797
1.75 1.5 0.834
2.00 1.5 0.866
2.25 1.5 0.894
2.50 1.5 0.917
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