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Ion channels and receptors in the cell membranes and internal
membranes are often distributed in discrete clusters. One partic-
ularly well-studied example is the distribution of inositol 1,4,5-
triphosphate receptors in the plasma membrane that controls the
flux of Ca2� from the endoplasmic reticulum into the cytosol. By
using mathematical modeling, we show that channel clustering can
enhance the cell’s Ca2� signaling capability. Furthermore, we
predict optimal signaling cellular capability at cluster sizes and
distances that agree with experimentally found values in Xenopus
oocyte.

channel dynamics � Markov process � noise

Receptors and ion channels play an important role in cellular
homeostasis. They regulate electric membrane potentials

and cell volume and turn on and off signaling cascades within the
cell. Highly resolved fluorescent imaging and antibody labeling
technology have revealed that the channel and receptor proteins
are frequently not uniformly distributed over the membrane but
rather form small clusters sometimes only on the nanometer
scale (for a review see ref. 1). One possible mechanism that leads
to clustering is based on the formation of microdomains of the
lipid bilayer of the membrane. These microdomains, the so-
called rafts (2), are more likely to bind specific proteins and form
a, possibly moving, platform for protein trafficking, or signal
relay stations for intracellular signaling. Other proposed mech-
anisms for clustering involve the cytoskeleton (3). Here, micro-
tubules in the membrane undercoat anchor channels that oth-
erwise would perform free motion through the cell membrane.
As a result, �m2-sized clusters of ion channels form on the axon
of e.g., rat retinal ganglion cell. In recent work by Clay and
Kuzirian (4–6) it has been discovered that potassium channels
in the squid giant axon are clustered. Evidence has been pre-
sented that vesicles containing potassium channels are contact-
ing the cluster sites and facilitate channel turnover.

Clustering of chemotactic receptors on Escherichia coli has
been shown to constrain sensitivity of signaling in response to
receptor binding (7). Binding of the chemotactic receptor inac-
tivates a downstream intracellular signaling pathway. If there is
cooperativity between neighboring receptors, in the sense that
an activated receptor in turn activates receptors in its neighbor-
hood, it is clear that this cooperativity will enhance the response
by increasing the change in number of activated receptors. If the
numbers of receptors is limited, however, increasing spatial
range of cooperation between the receptors (i.e., cluster sizes)
increases the response to a small number of binding agonist but
does not leave room for differential response to stimuli of
different intensity. It has been proposed that distributions of
receptors in clusters of variable sizes optimize the response to
small stimuli and the sensitivity to signal amplitudes (7).

We propose a different role for the clustering of receptors and
ion channels in the membrane. We do not attempt to answer the
question of what the molecular mechanism for clustering may be,
but we rather point out some consequences of channel clustering
with respect to signaling capability. As a working example we
consider intracellular Ca2� signaling because experimental data
on clustering are available as well as generally accepted math-

ematical models (8–10). Many important cellular functions are
regulated by intracellular and intercellular Ca2� signals. They
are involved, e.g., in the stimulus-induced contraction in smooth
muscle cells (11), in the hormone-induced glucose production in
liver cells (12), and for the early response to injury of brain tissue
(13) and corneal epithelia (14). Recent new insights into the
biophysical mechanism of intracellular Ca2� release have re-
vealed that the actual release sites are discrete and as small as
�100–200 nm comprising only 20–50 release channels (15–17).
The clustering of these channels is well documented in various
cell types and may be a universal feature of the Ca2� release
mechanism.

In the next section we will give a detailed account of the
model. Then we will discuss the prediction of our model with
respect to Ca2� signaling as a response to agonist binding and
subsequent activation of the G protein-coupled signaling path-
way. We will show that signaling capability is modified with the
discrete distribution of the Ca2� release channels. We will
determine an optimal configuration of release channels and com-
pare these optimal values to experimental data on clustering.

Model for Intracellular Ca2� Response
Ca2� is stored in the endoplasmic reticulum (ER) because it is
toxic for the cell if the cell is exposed for a sufficient amount of
time to large concentrations. Ca2� can enter the cytosol via
channels in the plasma membrane of the ER. The flux through
these channels is determined by the concentration of Ca2� in the
cell and by that of the messenger inositol 1,4,5-triphosphate
(IP3). According to the detailed DeYoung–Keizer model (18)
the IP3 receptor (IP3R) channels consist of three subunits, each
of which has to be in its open state for the channel to be open.
Each subunit has three binding sites: one for IP3 and two for
Ca2�. The first Ca2� binding site activates the subunit whereas
the second binding site inactivates the subunit. Because there is
a vast difference in the time scale of these three binding
processes, one can replace the fast IP3 binding and Ca2�

activation by their average values and only consider the inacti-
vation process dynamically. Such an elimination process results
in a two-variable model for the receptor dynamics (19). The cell
is modeled as a 2D sheet with two domains: the cytosol and the
ER. The sheet is assumed to be thin so that the Ca2� concen-
tration ([Ca2�]) in the cytosol and the ER is homogenous across
it. The two domains interact via the release of Ca2� from ER into
the cytosol through discretely distributed receptor channels and
subsequent diffusion and reuptake by the ER. The smallness of
the release clusters requires stochastic modeling of their con-
ductance. All intracellular Ca2� buffers are assumed to be fast
so that their presence can be modeled by an effective diffusion
coefficient (values have been experimentally determined). The
IP3Rs are distributed in clusters positioned on a regular grid. The
total number of IP3Rs is considered fixed while they can be
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distributed differently, ranging from numerous small clusters
(with possibly only one channel) at a small distance to few large
clusters at larger distances. The equation for the intracellular
[Ca2�] is given by

d�Ca2� ��x, y�
dt

� D�2�Ca2� ��x, y� � f�x, y�JChannel � JPump � JLeak,

[1]

where [Ca2�] can diffuse in the cytosol with diffusion constant
D. In the presence of fast buffers, the diffusion constant has to
be interpreted as effective diffusion constant. The form function
f(x, y) is unity at a cluster of [Ca2�] release channels and zero
elsewhere. There are three fluxes of [Ca2�] between the cytosol
and the ER. The channel f lux Jchannel describes the [Ca2�] f lux
through the release channels and is localized at the cluster sites,
the flux JPump describes the Ca2� reuptake through sarco(endo)-
plasmic reticulum Ca2� ATPase pumps, and JLeak describes leak
flux. The pumps and leaks are assumed homogeneously distrib-
uted over the plasma membrane of the ER and their f luxes are
given by

JPump � vP

�Ca2� �2

k2 � �Ca2�]2 [2]

JLeak�vL([Ca2� ]ER � �Ca2� �), [3]

where [Ca2�]ER denotes the [Ca2�] in the ER.
To complete the model, we have to specify the channel f lux.

We use the stochastic version (20) of the Li–Rinzel model (16),
which is a reduction of the more detailed stochastic DeYoung–
Keizer model (18) but is still accurate for processes on the time
scale of seconds (21). The channels are concentrated in clusters
of 	0.5 �m diameter, which is much smaller than the diffusion
length of Ca2� with a physiologic diffusion constant of D � 20
�m2�s. This small size of a cluster allows us to assume that the
Ca2� is constant within the cluster (see also ref. 17). This in turn
allows us to model the Ca2� f lux from the ER into the cytosol
as a point source with a weight factor that describes the strengths
(size) of the source. That results in a Ca2� f lux through cluster
i, given by

JChannel
�i� � vCm


3 n

3 Nopen

�i� ��Ca2� �ER � �Ca2� ��, [4]

where vC contains the ratio of channel size and grid size and

m
 �
�IP3�

�IP3� � d3

n
 �
�Ca2� �

�Ca2� � � d5
,

[5]

where the number of open channels of cluster i Nopen
i is deter-

mined by a Markov process describing the state of each channel.
Each cluster has N IP3R channels. The three subunits of the IP3R
result in three gates in the reduced model, with opening and
closing rates �h and �h, respectively, given by

�h � ad2

�IP3� � d1

�IP3� � d3

�h � a�Ca2� �.
[6]

This approach is standard and we refer the reader to the
literature for details (e.g., ref. 22).

The size of the cell simulated is 60 �m � 60 �m. In the
simulations presented here, the total number of channels in
the entire cell was fixed at 14,400 channels. The computer cell

thus has the form of mosaic of active and passive (still nonlinear)
patches. Of critical importance is the diffusion constant of Ca2�

in the cytosol. The effective diffusion coefficient of Ca2� in the
cytosol reported in the literature ranges from 20 to 30 �m2�s
(23). In our simulations we will cover this interval of diffusion
coefficients. The parameter values in the model are: vC � 0.6 s�1,
vP � 0.5 s�1, vL � 0.001 �M�s, [Ca2�]ER � 15.0 �M, k � 0.1 �M,
a � 0.2 �M�1�s�1, d1 � 0.13 �M, d2 � 1.05 �M, d3 � 0.94 �M,
d4 � 0.13 �M, and d5 � 0.08 �M. These parameters are slightly
modified from the original Li–Rinzel model (19). As a result of
these simulations we determine the spatially averaged (over the
entire cell) Ca2� and Ca2� recordings at selected sites.

Results and Discussion
We start with single channels distributed homogeneously at a
distance of L � 0.5 �m over a cell, i.e., in 120 � 120 clusters of
single channels (N � 1) at a physiologic diffusion coefficient of
D � 20 �m2�s and [IP3] � 0.21 �M. The Ca2� traces shown in
Fig. 1 A2 and A3 are obtained from two neighbored cluster sites.
They are correlated with small amplitudes and no temporal
coherence (periodicity). The cell-averaged Ca2� signal (Fig.
1A1) does not exhibit spikes that could be interpreted as a signal
in response to the stimulation by IP3. For smaller diffusion
coefficients D, the channels are less synchronized but also lead
to a spike-free cell-averaged Ca2� response of the entire cell (not
shown).

In the next step we increase the distance L of the clusters of
the IP3Rs but increase their sizes (i.e., numbers of channels N)
so that the total number of channels remains 14,400. Traces of
Ca2� taken at two neighbored cluster sites and the cell-averaged
[Ca2�] are shown for D � 20 �m2�s and [IP3] � 0.21 �M in Fig.
1 B2 and B3 at a cluster distance of L � 3 �m. The Ca2� traces
at the neighbored active sites are now almost periodic with some
stochasticity in the amplitude, but well phase synchronized. Most
importantly, the cell-averaged Ca2� response (Fig. 1B1) is almost
periodic with some stochasticity in the amplitude that is orders
of magnitude larger than in the previously discussed case where
the cluster distance was only 0.5 �m. Such a coherent behavior
enables the distributed Ca2� decoder calmodulin to interpret the
signal generated by the IP3 stimulus.

Increasing the distance between the clusters further to L � 5
�m with a cluster size of N � 100 channels results again in
stochastic, desynchronized Ca2� signals at the two neighbored
cluster sites (Fig. 1 C2 and C3). The cell-averaged Ca2� signal
(Fig. 1C1) is temporally incoherent with a small amplitude. Thus,
similar to the homogeneous clustering in Fig. 1, the cell cannot
produce a global Ca2� signal on stimulation with IP3. It is
important to keep in mind that the values for the intracellular
diffusion coefficient D of Ca2� and the concentration of [IP3],
i.e., the amplitude of stimulation by agonist binding, are the same
in Fig. 1.

To quantify the signaling capability of the entire cell we record
the minimum and maximum of the computed cell-averaged
[Ca2�] as a function of the cluster distance. Such diagrams are
shown for [IP3] � 0.21 �M and various values of D in Fig. 2.
Large gaps between minimum and maximum amplitude go along
with spatiotemporal coherence as shown in Fig. 3 (discussion
below). For small and large cluster distances, minimum and
maximum amplitudes are very close (see Fig. 2), i.e., the cell is
not capable of signaling on weak IP3 stimulation. In between, we
find intervals of cluster distances at which the cell is capable of
generating large amplitude and coherent Ca2� signals that may
be decoded in the cell to trigger processes downstream.

At the physiologic value of the (buffered) Ca2� diffusion
constant of 20 �m2�s, the regime where the cell signals
optimally ranges from 2 to 3 �m at [IP3] � 0.21 �M, which is
remarkably close to average cluster distances measured in
Xenopus oocyte (15, 16). Furthermore, the corresponding
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number of channels per cluster ranges from 16 to 36, which is
also consistent with the prediction obtained with independent
methods in ref. 17.

Some spontaneous Ca2� waves are shown in Fig. 3. The top
row in Fig. 3 shows a sequence of snapshots for [IP3] � 0.21 �M
and D � 20 �m2�s at a cluster distance of 1.5 �m. There is no
significant Ca2� signal generated on the stimulation with IP3. For
cluster distances between 2.0 and 3.0 �m there is a clearly visible
Ca2� response that is repetitive. At a cluster distance of 2 �m
(second row from the top in Fig. 3), the Ca2� signal consists of
a repetitive abortive wave. It is initiated in the lower left corner,
spreads out, but then retreats again. Such waves have been
observed in Xenopus oocyte (15) and theoretically predicted in
ref. 10. At cluster distances of 2.5 and 3.0 �m we observe global
oscillations generated by Ca2� waves initiated at multiple initi-
ation sites (third and fourth rows from the top in Fig. 3). The
average oscillation frequency for the cell-averaged Ca2� signals
is 0.02 and 0.03 Hz for these two waves, respectively. These
frequencies are consistent, but somewhat smaller than the
oscillation frequency at the onset of deterministic oscillations at

[IP3] �0.24 �M. At a cluster distance of 4 �m the activity consists
of local Ca2� puffs with little cross-correlation.

Consistent with the observations above, the cluster–cluster
correlations defined by the correlation time �c of the cluster–
cluster correlation function

�c � �
0




d��
x̃1�t�x̃2�t � ���

�
x̃1
2�
x̃2

2��1/2 �2

, x̃ � x � 
x�, [7]

exhibits at D � 20 �m�s2 a maximum at a cluster distance of
�3 �m (see Fig. 4).

To understand the observed phenomenon of optimal cluster-
ing, we have to go one step back and reconsider the Ca2� cluster
release dynamics in the absence of diffusion and interaction with
other clusters. For a large number of channels this release
dynamics is described by the deterministic model

d�Ca2� �

dt
� JChannel � JPump � JLeak, [8]

with

J
Channel

� vCm

3 n


3 h3��Ca2�]ER � �Ca2���

dh
dt

� �h�1 � h� � �hh,
[9]

where h is the fraction of occupied inhibitive Ca2� binding sites
of the IP3R (19). The [Ca2�] resulting from Eqs. 8 and 9 as a
function of the second messenger [IP3] is shown in Fig. 5.
Below a concentration of IP3 of 0.24 �M the equations predict
a stable stationary concentration of Ca2�. Beyond it, the model
predicts Ca2� oscillations. Small clusters of IP3Rs cannot be
described by this deterministic model; channel f luctuations
require the use of stochastic models. A stochastic version of the
Li–Rinzel model has been described in detail (20, 21, 24).
Important in this context is the finding that the Ca2� signals
of a cluster in response to deterministically subthreshold IP3
concentrations (i.e., weak stimulation) exhibit a small degree
of periodicity if the clusters are within a range of optimal sizes
(24). The effect is due to conductance f luctuations that assist
in occasionally shifting the cluster above the oscillations

Fig. 1. [Ca2�] at two neighbored active sites 0.5 �m apart (A2 and A3), 3 �m apart (B2 and B3), and 5 �m apart (C2 and C3) and the corresponding cell-averaged
[Ca2�] (A1, B1, and C1). The other parameters are D � 20 �m2�s and [IP3] � 0.21 �M.

Fig. 2. The minimum and maximum amplitudes of the cell-averaged Ca2�

are shown as a function of the cluster distance. In a small interval of cluster
distances, there is a large gap between the minimum and the maximum
amplitude, indicating a signal of large amplitude. In the same intervals, the
cell-averaged Ca2� signals are also temporally coherent and the clusters are
phase-synchronized.
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threshold of 0.24 �M. This effect, however, is very subtle and
may not be detectable by the cell. A related effect has been
described in refs. 25 and 26. In those articles it has been shown
that a single cluster of neuronal Na� and K� channels responds
to a weak, subthreshold electric AC stimulation best at a finite
cluster size.

In the spatially extended model for the entire cell, small cluster
distances correspond to small clusters (1�10 channels) that

release Ca2� stochastically with little coherence. The thermal
noise-induced subunit and channel openings dominate the Ca2�

release of the cluster. For small diffusion coefficients D the cell
responds with uncorrelated events at the discrete release sites.
For large diffusion coefficients D (like the physiological value of
20 �m2�s with a diffusion length of tens of micrometers), the
clusters correlate and behave more like one large cluster with all
channels of the cell, where open-closed fluctuations are exceed-

Fig. 3. Snapshots of the [Ca2�] are shown at five different cluster distances at [IP3] � 0.21 �M and D � 20 �m2�s. Each snapshot has a size of 60 �m � 60 �m.
The gray scales from black to white represent [Ca2�] from 0.05 to 0.25 �M.

Fig. 4. The cross-correlation time (see Eq. 7) of two nearby clusters at the
center of the cell model (dashed line) and between the cell-averaged Ca2�

signal and the Ca2� signal of the center cluster (solid line) for [IP3] � 0.21 �M
and D � 20 �m2�s is shown as a function of the cluster distance.

Fig. 5. The bifurcation diagram of the deterministic Li–Rinzel model is
shown for our set of parameters. For concentrations of IP3 of 	0.24 �M, the
[Ca2�] approaches a fixed point. Above that concentration, the [Ca2�] oscil-
lates and the minimum and maximum amplitudes are shown.
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ingly unlikely, thus resulting in very weak Ca2� signals (Fig. 1 A).
Increasing the distance between the clusters (thereby increasing
the cluster size) reduces their tight coupling, thus allowing for
spontaneous Ca2� events. Yet, the coupling is still large enough
that cross-synchronization between clusters enhances the tem-
poral coherence. This coupling leads to the onset of spatially and
temporally coherent oscillations (see also ref. 27) that decode
the IP3 signal. At an IP3 concentration of 0.21 �M (Fig. 1B) this
optimal clustering is reached when the clusters comprise 16�64
channels. Further increasing the distance between the clusters
desynchronizes the clusters while each individual cluster still
exhibits large-amplitude stochastic Ca2� release. Averaging
these desynchronized cluster responses to obtain the decidable
cell-averaged Ca2� response one finds the small signal in Fig. 1C.

If the concentration of IP3 increases beyond the critical
concentration of 0.24 �M, the effect of optimal clustering
disappears. The best cell signal is achieved when the channels are
homogeneously distributed. In Fig. 6, we show the minima and
maxima of the Ca2� signals as a function of the cluster distance
for various Ca2� diffusion constants D at [IP3] � 0.25 �M.
Increasing cluster size and thus cluster distance reduces the cell
signal. At D � 20 �m2�s the cellular Ca2� signal vanishes at
distances of L � 4 �m and larger. For distances such as 2 �m or
less, however, the clustering does not degrade the cellular signal
significantly so that the cell can still respond to large signals with
large amounts of IP3 with a coherent cellular Ca2� signal.

In conclusion, we have reported that channel clustering can
dramatically enhance the cell’s capability of creating a large Ca2�

response to weak stimulation. The theory predicts an optimal
clustered distribution consistent with experimental data from
Xenopus oocyte. In the model the effects of slow Ca2� buffers are
neglected. In the real cell, the clusters of Ca2� release channels
are not arranged on a regular grid and do not have the same
channel numbers as in our model. We furthermore assumed that

the [Ca2�] in the ER is homogeneous and time independent. For
the parameters used here, the [Ca2�] in the ER is large in
comparison to the intracellular [Ca2�] and the gradients are
small so that the overall effect of Ca2� diffusion in the ER is
small. Future research will have to consider more details. We
believe that similar consequences of ion channel clusters can be
found in many other cell types and may play an important role
in signal transduction in general and for electric signals in e.g.,
neurons.

This material is based on work supported by National Science Founda-
tion Grant IBN-0078055.
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