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Using a previously undescribed approach, we develop an analytic
model that predicts whether an asexual population accumulates
advantageous or deleterious mutations over time and the rate at
which either process occurs. The model considers a large number
of linked identical loci, or nucleotide sites; assumes that the
selection coefficient per site is much less than the mutation rate per
genome; and includes back and compensating mutations. Using
analysis and Monte Carlo simulations, we demonstrate the accu-
racy of our results over almost the entire range of population sizes.
Two limiting cases of our results, when either deleterious or
advantageous mutations can be neglected, correspond to the
Fisher–Muller effect and Muller’s ratchet, respectively. By compar-
ing predictions of our model (no recombination) to those of simple
single-locus models (strong recombination), we show that the
accumulation of advantageous mutations is slowed by linkage
over a broad, finite range of population size. This supports the
view of Fisher and Muller, who argued in the 1930s that progres-
sive evolution of organisms is slowed because loci at which
beneficial mutations can occur are often linked together on the
same chromosome. These results follow from our main finding,
that distribution of sequences over the mutation number evolves
as a traveling wave whose speed and width depend on population
size and other parameters. The model explains a logarithmic
dependence of steady-state fitness on the population size reported
recently for an RNA virus.

The scope of evolutionary biology ranges from understanding
the origin and extinction of species to predicting the accu-

mulation of drug- or antibody-resistant mutations in a popula-
tion of microbes during an infection of an individual. Viruses like
HIV in which persistent infection of individuals lasts for large
numbers of viral generations provide a valuable opportunity to
test evolutionary theory by comparing model predictions to a
wealth of readily obtained data. In addition, evolutionary models
can be used to infer important properties of viral populations.

The forces that produce and maintain genetic variation in a
population are thought to be known. These include the ‘‘sys-
tematic pressures’’ (1) of mutation, natural selection, and mi-
gration. If these were the only forces operating, the fate of the
population could be modeled deterministically. However, all
evolution occurs in finite-size populations, which is the source of
the other major evolutionary factor: random genetic drift. Drift
adds a stochastic element to evolution, resulting from the chance
sampling of individuals from one generation to the next and from
the fact that not all possible genetic variants can be present in a
finite population. For given levels of systematic pressure, evo-
lution will be mostly deterministic if the population size is large
enough but will be mostly neutral and dominated by drift (2)
when the population size is small. Between these two limits there
exists a large intermediate region, in which both selection and
stochastic effects are critically important (3).

The roles of the principal factors in evolution are well studied
by using models restricted to one or two nucleotide sites (loci).
The linkage between loci in a chromosome and the associated
interdependence of loci is another major factor of evolution
presenting a serious mathematical challenge. Seventy years ago,
Fisher (4) and Muller (5) suggested that the fixation of advan-
tageous genotypes is slowed down by linkage. They argued
further that recombination associated with sex can decouple the

fates of genetic variants (alleles) at different loci. Later, Hill and
Robertson (6) showed that selection of an allele at one locus
increases genetic drift at a second linked locus, decreasing the
effectiveness of selection at both loci. Recent analytic (7) and
simulation-based (8) work supports this view. Felsenstein (9)
argued that the views of Fisher (4), Muller (5), and Hill and
Robertson (6) are essentially the same. Quantitative studies of
this effect either consider two or three loci, use pseudorandom
simulation, or make drastic simplifying assumptions.

A second major effect of linkage is Muller’s ratchet (9), which
is the steady accumulation of deleterious mutations via genetic
drift. Simply put, when drift and mutation operate, the best-fit
genotype in the population will eventually be lost, despite the
action of selection; then the next best-fit genotype will be lost,
and so on. The loss of the fittest genotypes will be irreparable
unless some other process recreates individuals of comparable
fitness. One such process is recombination. Thus, Muller’s
ratchet has figured prominently in discussions of the evolution of
sex (10–14). Back mutations at mutated loci can, in principle,
also counteract Muller’s ratchet, but when such loci are sparse
in a genome, back mutations are rare. It is known experimentally
that the loss of fitness due to a mutation at one locus can be
compensated by mutations at other loci (15). Interaction such as
this between loci, or epistasis, has been shown to be an efficient
deterrent of Muller’s ratchet (16–18).

Prior analytic studies of Muller’s ratchet have considered one
of two possible extremes. In the one limit, when a population is
very small, all individuals are of the same genotype nearly all of
the time, and events of fixation of new alleles are well-separated
in time (19–21). In the opposite limit, when a population is very
large, the distribution of genomes over the number of deleterious
mutations has to be considered. The main idea of the approach
used in this case is that the distribution is nearly always close to
an equilibrium distribution (22). After the best-fit genotype is
lost from population, this equilibrium is regained rapidly. The
average time to loss of the best-fit genotype has been calculated
by using diffusion theory (23–26).

In the present work, we consider a model of multilocus
evolution that does not include recombination but does include
advantageous, deleterious, and compensating mutations. We
predict the rate of either decline or advance in fitness for
arbitrary values of the parameters and compare these results to
the well-studied case of very strong recombination. When either
the frequency of mutant alleles or the population size is suffi-
ciently large, deleterious mutations can be neglected, and ad-
vantageous mutants accumulate. In this case, our results repre-
sent an accurate prediction for the Fisher–Muller effect. In the
opposite limit, in which advantageous mutations are not impor-
tant and deleterious mutation accumulate, our results give the
rate of Muller’s ratchet. In contrast to previous studies of the
Fisher–Muller effect (7, 13, 27), we do not consider fixation
events of single advantageous mutants. Instead, we count to-
gether as a group all of the sequences with the same number of
uncompensated deleterious mutations (22) and study the time
dependence of the size of each group. We treat all of the groups
deterministically, with the exception of the smallest, best-fit
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group (28, 29). In contrast to previous studies of Muller’s ratchet,
our framework does not depend on the population being either
genetically uniform or close to the infinite-population equilib-
rium. As a result, our findings are valid over a very broad range
of population parameters and can be used to predict the overall
evolution rate for a variety of experimental populations. We
show how the model can be applied to data from vesicular
stomatitis virus passed in cell culture (30, 31). Detailed mathe-
matical derivations are published in Mathematical Appendix as
supporting information on the PNAS web site, www.pnas.org.
We present the principal results below.

The Multilocus Model of Asexual Populations
The model (Fig. 1a) considers a haploid population containing
a fixed number of DNA or genomic RNA sequences (genomes),
N, each comprising L nonconserved nucleotide sites (loci).
There is no recombination. Each locus can be in one of two states
(alleles): better fit (defined as wild type) or less fit (mutant). We
model Wright–Fisher reproduction (1, 4). Each generation,
every sequence in the population is replaced by its progeny, the

average number of which is proportional to the fitness of the
sequence. We assume that the population size is constant
through time. Each mutant allele a sequence carries decreases its
log fitness by a small amount s (the selection coefficient). The
actual number of progeny of a sequence varies randomly around
the average value, according to the Poisson distribution, re-
stricted by the condition that the total number of sequences
remains constant. Mutations occur after progeny are generated
at average rate � per locus per generation. If the locus is in the
wild-type state, the mutation is deleterious to fitness (forward)
with fitness cost s, and if the locus is in the mutant state, the
mutation is advantageous (back).

In real biological systems, log fitness may be nonadditive over
loci, because different regions of RNA and proteins representing
the genomic sequences interact with each other in various ways.
We include this effect (epistasis, or coselection) as follows. For
each locus that is in the less-fit state, there is a fraction q of all
loci at which a mutation can occur to fully compensate the
deleterious effect of the mutation at the locus (21) (within q, we
include a back mutation at the same locus). If the first locus is
in the better-fit state, forward mutations at these other loci
decrease fitness, and back mutations increase it, as if in the
absence of epistasis. In this model of epistasis, all sequences with
the same number of uncompensated mutant loci, k, have the
same fitness, exp(-sk), and we count them together as one group
(Fig. 1a). This model implies that: (i) whether a locus is in the
wild-type or the mutant state or is compensating depends on the
state of other loci; (ii) a sequence with maximum fitness 1 is not
unique; (iii) the number of locus differences between a sequence
and a best-fit sequence is, generally, not equal to k. The existence
of compensatory mutations is well established experimentally
for a number of viruses and bacteria (15, 32–36), although the
degree of compensation is often not 100%. A compensatory
mutation, for example, can restore the proper folding of a
protein (or RNA) or the local binding between two protein (or
RNA) regions impaired by a mutation at the first locus.

The choice of an appropriate mathematical method depends
on the range of model parameters (s, �L, q, N) and the average
number of the uncompensated mutations per sequence, kav. For
RNA viruses, the typical mutation rate per locus, �, is in the
range �10�4 to 10�5, and the number of loci under consideration
(i.e., of nonconserved nucleotides) is L � 102–103. The param-
eter relevant to this work is the effective mutation rate per
genome, �L. For a number of RNA viruses, the total mutation
rate per genome has been estimated to be between 0.1 and 1 (37).
However, these estimates extrapolate from rates measured at a
few loci to the entire genome and do not take into account that
many mutations will be lethal or very strongly deleterious. For
long-term evolution considered here, only substitutions with
small s are relevant, so that we can safely assume that �L � 0.1.
[In HIV, we have estimated that nucleotides with s � 0.01 occupy
10–20% of the genome and exhibit typically two, not four, as
assumed in ref. 37, variants per nucleotide (38, 39). Assuming
that other RNA viruses are similar in this respect, these two
observations lower an effective genomic rate, as compared with
estimates in ref. 37, by the factors of 0.16 and 1�3, respectively.
Excluding deletions and insertions included in ref. 37, and taking
into account that �L is defined per virus replication cycle, not
per RNA replication cycle, yields additional factors, 1�1.4 and 2,
respectively.] We note that our Monte Carlo results show that
predictions of the model are accurate even when �L is not much
less than one.

The relevant range of the selection coefficient, s, which
generally varies widely among nucleotides, depends on the time
scale of interest. Here we focus on long time scales, on the order
of 102 to 103 generations, and assume that s is much less than the
effective mutation rate per genome, �L. Although the range of
q is unknown, we estimate it as being between its minimum value,

Fig. 1. (a) A model for genetic evolution of many linked loci in a haploid
population. Sequences are grouped according to the number of uncompen-
sated mutant loci per sequence, k. Filled circles show mutant (less-fit) loci.
Open circles connected by brackets show compensated mutations. Green
arrows show events of forward, back, and compensating mutations. (b–e)
Two numerically obtained examples of evolution of a population at a low (b
and c) and moderate (d and e) density of mutant�compensating loci per
mutant locus, q. Parameter values are shown in c and e, respectively. (b and d)
The frequency of sequences with k mutant loci at different times (shown on
the curves). Ragged curves obtained by pseudorandom simulation correspond
to Muller’s ratchet (purple), initial value k � 1 and to its reversion (magenta),
initial k � 70. The smooth curves (cyan for the ratchet and red for reversion)
were obtained numerically by using the semideterministic approximation
(Eqs. 2, 6, and 8–10 in Mathematical Appendix). (c and e) Corresponding time
dependence for the average and the standard deviation of k (wave width).
Dashed lines in d and e show the steady-state value of kav.
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1�L � 10�3, and 10�2 (see Fig. 4). We are interested in the entire
range of population sizes, N �� 10, and a broad range of kav, 0 �
qkav � 0.5.

Semideterministic Approximation and Solitary Wave
The main idea of our mathematical treatment, which applies if
s �� �L, was based on observing the distribution of sequences
over k through time in Monte Carlo simulations (ragged curves
in Fig. 1 b and d). We observed that, unless the population size
N was very small, (i) a typical distribution contains many groups
of sequences indexed by k, and (ii) most groups contain a large
number of sequences. Thus, changes in the distribution may be
treated nearly deterministically. The relevant evolutionary fac-
tors affecting very large groups are mutation and selection but
not drift. The frequencies of these groups obey a deterministic
equation (Eqs. 1 or 2; Mathematical Appendix). In contrast, the
groups at the edges of distribution are small and subject to
random drift that may cause these groups to be lost from a
population (Fig. 1a). Based on a standard one-locus diffusion
model, we implemented a cutoff condition determining when an
edge group is regarded to be lost (Eqs. 3–10). The more
important of the two edges is the left edge, which contains the
best-fit sequences present in a population.

Using this semideterministic approach, which takes much less
computer time than pseudorandom simulation, we calculated
numerically the time dependence of the average frequency of
sequences with k loci in the mutant (less-fit) state for various sets
of parameters. We assumed that all of the sequences initially
have the same number of mutant loci. Two characteristic exam-
ples are shown in Fig. 1 b and c, and d and e. The average
distribution over k, after a transition time, assumes a quasistable
profile that moves like a solitary wave either to the left or to the
right in successive generations, depending on the parameter
values and the initial value of k. Gessler (40) also found a stable
distribution profile by using pseudorandom simulations. If back
and compensating mutations are absent, i.e., q � 0, the wave
moves at a constant speed to the right (the population becomes
less-fit), the effect of Muller’s ratchet (Fig. 1 b and c). In contrast
to the prediction of neutral models (41), the average rate of
accumulation of mutations, dkav�dt, is not equal to the neutral
mutation rate. Instead, it is less than this and depends on the
population size and other parameters. In contrast to the pre-
diction of one-locus models including selection (3), the accu-
mulation rate does not increase rapidly in time but rather
remains constant.

If back or compensating mutations are present, the wave can
move either to the right (ratchet) or to the left (reversion),
slowing down gradually as it approaches a steady-state point
(Fig. 1 d and e). At sufficiently large N, a steady state is reached
at kav close to zero (see below), so that only reversion can be
observed (except for extremely small initial values of kav).
Although a distribution obtained by pseudorandom simulation
fluctuates around the average obtained in the semideterministic
approach (Fig. 1 b and d), the accumulation rates over long time
scales obtained by the two methods are similar (similar slopes in
Fig. 1 c and e).

On an intuitive level, the formation of a quasistable wave
moving to the right (Muller’s ratchet) can be understood from
combined action of three factors. Forward mutations work to
move the wave to the right, selection acts to expand its tail to the
left, and random drift checks this expansion by destroying
sequences at the left edge. A fourth factor, back�compensating
mutations, can restore the lost sequences at the left edge and
reverse the direction of the wave (reversion).

To extend the analysis beyond numeric calculations and
simulation, we developed an analytic method (Mathematical
Appendix) that confirms the above results and derives the ratchet
or reversion rate for arbitrary values of the model parameters for

Fig. 2. (a and b) Analytic relationship between the average accumulation rate
of mutations, dkav�dt, the frequency of mutant and compensating loci in a
sequence, �, and the log-normalized population size, (s��L)ln(N�N*), in the case
s �� �L (Eq. 20). The scales on the upper abscissa are for values of N alone, with
the main parameters fixed at �L � 0.1, s � 0.01, and the values of � or dkav�dt
shown at the axes. (a) Dependence of dkav�dt on log-normalized N at fixed values
of � shown on the curves. The scale for the values of N at fixed parameters on the
top was calculated, for � � 0.1, by using Eqs. 15, 19, 20, and 21; and, for � � 0, Eqs.
16, 17, 20, and 47. (b) Dependence of � on N calculated at fixed values of dkav�dt
shown on the curves in units of �L. The open circles in a and b show the point
ln(N�N*) � �L�s at which both the accumulation rate and the value of � are 0.
Blue, purple, and red curves in b correspond to reversion, steady-state, and
Muller’s ratchet, respectively. N* is estimated from Eqs, 15 and 21 with � � 1. (c)
Time dependence of � (Eqs. 20 and 22) at fixed values of the log-normalized N
shown on the curves. Blue and red curves correspond to reversion (initial � � 0.5)
andratchet (initial��0), respectively.Theupperabscissa showsthescalefor time
alone at �L � 0.1, q � 0.01. (d) Dependence of the width of the distribution in k
(stdk) on � at fixed values of log-normalized N (shown on the curves; Eqs. 15 and
20). (e and f ) Examples of predicted accumulation rate with the specific values of
parameters showninthefigure. (e)TheMuller’s ratchetspeedvs.N intheabsence
of back and compensating mutations (q � 0, right moving wave). ( f ) The
dependence of reversion speed on N (finite q, left-moving wave). Symbols show
results of pseudorandom simulation averaged over 5–10 runs. The time interval
was 1,000–5,000 generations ( e ) and the time in which the wave travels one-
fourth of the distance to the steady state value of k (f). For N � 104, the edge
groups that contained �100 sequences per group at a given time were simulated
stochastically, and the remaining groups were treated deterministically. The solid
lines are obtained analytically [Eqs. 20 and 47 (e) and Eqs. 20 and 21 ( f )]. Short
broken lines show the left-hand side of Eq. 15 obtained from simulation, thus
testing Eq. 15, which relates the width and the speed of the wave. Dotted
and dashed curves show previous results for small N (20) and for large N at s��L �
0.1 (26).
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the case when s is much less than �L. Under this assumption, the
distribution of sequences over k can be shown to be broad. The
logarithm of the average distribution changes only slightly be-
tween adjacent discrete values of k and generations t and can be
approximated by a function continuous in these variables. In this
approach, which can be verified analytically (Validity of Approx-
imations, Mathematical Appendix), the semideterministic equa-
tion (Eq. 11) has a continuous set of solutions, each in the form
of a solitary traveling wave (Eqs. 12 and 13). A wave with a width
(standard deviation) larger than the critical value (�L�s)1/2

moves to the left (reversion of deleterious mutations). A wave
with a smaller width moves to the right (Muller’s ratchet). The
specific value of the width and, therefore, of the wave speed and
direction is determined by the stochastic cutoff at the left edge.
The cutoff in this approach is reduced to the requirement that
a group becomes empty when the frequency of sequences in it
drops below �1�(�LN) (Eq. 19). In the absence of the cutoff, as
we found out from the numerical calculation, a wave is not stable
and is increasing its width with time.

Wave Speed vs. Population Size and Mutant Frequency
The accumulation rate in units of the mutation rate, which we
denote v, can be expressed (Eq. 20) in terms of two composite
parameters, the average density of mutant�compensating loci,
� � qkav, and the normalized log population size, (s��L)ln(N�
N*), where N* is the characteristic population size proportional
to the standard deviation of k (Eq. 21). In Fig. 2 a and b, we
present this expression graphically, by plotting either v or � as a
function of the normalized log population size, shown on the
lower axis, when the other parameter, � and v, respectively, is
fixed. The upper axis shows the corresponding values for N at a
set of typical values of model parameters. We observe that: (i)
The ratchet and reversion rates change slowly, logarithmically
with population size (Fig. 2a). (ii) Muller’s ratchet exists in a
broad range of population sizes, which shrinks as � increases
(Fig. 2a). At � � 0, the ratchet speed becomes 0 at N �
N*exp(�L�s) (Eq. 29). The authors (24–26) who studied the case
� � 0 obtained a finite, albeit small, ratchet speed at this point
in N. The reason for the difference between this and our result
is that the continuous approximation in k we use here breaks
down when both v and � become small (Approximation 3,
Mathematical Appendix). (iii) If the population size is less than
N*exp(�L�s), the population has a steady state at some value of
� (Fig. 2b; Eq. 31), at which neither the ratchet nor reversion
occurs. The existence of the steady state in this interval of N is
also evident from the time dependence of � (Fig. 2c; Eqs. 20 and
22). (iv) A wave shrinks as it moves to the right (as � increases)
and expands as it moves to the left (� decreases), although at

moderate population sizes, this happens rather slowly (Fig. 2d;
Eqs. 20 and 22).

To verify the accuracy of our entire approach at s �� �L, we
calculated the ratchet and reversion rate as a function of N for
several representative sets of parameter values (Fig. 2 e and f ).
The comparison with the results of pseudorandom simulation
shows that the analytic approach is, indeed, accurate over a
broad interval of N. We also show, for comparison, analytic

Fig. 3. Overall direction and dominant factors of evolution. Parameter
values for this example (shown in the figure) are representative for RNA
viruses. The schematic diagram is based on the analytic results (Eqs. 20, 21, 33,
and the following text, which are published as supporting information on the
PNAS web site).

Fig. 4. Fit of theory to experimental data for vesicular stomatitis virus. The red
circles are data points (30, 31). Open blue squares and the thick blue line are the
best-fit values obtained from pseudorandom simulation of the model in Fig. 1a
generalized for the experimental setup described in the text. Thin brown lines
show the best-fit values for the one-locus model (20, 44) of a well-mixed popu-
lation of a constant size, Ntran. (a) Relation between Ntran and the critical fitness
determined, as in the experiment, as the average value that did not change
between passages 0 and 20. The red dashed line shows an inferred linear depen-
dence (30). At Ntran � 103, fitness was averaged over 30 simulation runs. Blue bars
show the standard deviation predicted for the average over six experiments (31).
(b) Dependence of the average fitness on the passage number at a large value of
Ntran.Datapoints (andthe largest-Npoint ina)arefromFig.1d in ref.30.Thethick
blue line was obtained in a single run of pseudorandom simulation of a popu-
lation of a constant size Ntran; the groups k containing �100 sequences were
treated deterministically (Eq. 2). The values of the fitting parameters and of the
fixedparametersestimatedfromindependentdataareshown.Overlappingvirus
generations in the experiment are modeled with Mgen � 3 nonoverlapping
generations per passage. The amount of virus in a plaque is assumed to expand
by a factor of r � 10 per generation (larger values of r yield similar results). k1 is
the number of uncompensated mutant loci in the reference variant. The efficient
value of �L per virus replication cycle is explained in the text.
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results from the literature (20, 26) obtained for either very small
or very large N (Fig. 2e). At intermediate N, these models are
clearly at variance with simulation results.

Tsimring and colleagues (28, 29) used essentially the same
initial approach and a very similar population model to predict
a solitary wave that is stable due to a cutoff at the left edge. Our
work confirms this qualitative conclusion. However, our results
for the accumulation rate and the wave shape (Fig. 2 and
Mathematical Appendix) differ from those obtained by these
authors. The reason for the difference is their approximation of
the distribution of mutant frequency with its expansion in the
first and second derivatives in k. As we show in Mathematical
Appendix, one is allowed to expand the logarithm of the distri-
bution but not the distribution itself, because it changes sharply
in k at its far left slope. The resulting equation for the distribution
density (Eq. 11), in contrast to what these authors assumed, does
not have a form of the linear diffusion equation.

Transition to One-Locus Model
The overall direction of evolution and the dominant evolu-
tionary forces over the entire range of N and � are illustrated
schematically in Fig. 3. In two of three regions that correspond
to Muller’s ratchet and delayed reversion, the factors of
mutation, random drift, selection, and linkage are all equally
important. The reversion rate is approximately constant over
a wide time interval (Fig. 1e or 3c) and depends on population
size. Reversion is slowed due to linkage, as compared with the
one-locus result that applies in the limit of strong recombina-
tion, in a broad finite interval of population sizes N, such that
ln(1�s) � ln N �� k ln(��q) (Eqs. 33–35). In the third region,
which is located at large N and small � (Fig. 3), linkage is not
very important, and the reversion rate assumes the value
obtained from the one-locus theory (3). Better-fit variants in
this region accumulate with time, not quasilinearly but either
exponentially or, in the stochastic case, in step-like fashion.
The transition between the multilocus and the one-locus
theory results takes place when the left edge of the ‘‘wave’’ hits
the wall at k � 0 (Approximation 5, Mathematical Appendix).

Generally, a one locus two-allele theory can be used either in
the limit of strong recombination or when only two genetic
variants are present in population at any time. The transition to
the one-locus theory in the limit of large N predicted by the
above model is intuitively expected: at very large N, every genetic
variant preexists in a population, and frequent mutations break
down linkage disequilibrium. This may happen at population
sizes that are unrealistically large from a biological point of view
(Fig. 3). In agreement with this, models assuming infinite
population size do not generally find any advantage of recom-
bination for progressive evolution (9, 13). Our results for the
reversion rate differ from an approximate estimate by Maynard
Smith (10), which predicts that linkage delays reversion at
arbitrarily large N (after Eq. 34).

Comparison with Experiment
It has been observed that RNA viruses often accumulate
mutations approximately linearly over limited but fairly long

time intervals. This effect has been observed in persistent HIV
infection (42) and along transmission chains of various viruses
(see ref. 43 and references therein). Our results show that
linear dependence does not necessarily imply selectively neu-
tral evolution. Note that the predicted linearity is neither exact
nor universal, because the wave slows down when approaching
a steady state, and because there are random fluctuations on
top of the linear dependence (Fig. 1 c and e).

Predictions of our model are also consistent with the results
of in vitro studies of vesicular stomatitis virus by Novella et al.
(30, 31). In these experiments, a fixed amount of virus, N
infectious units, was passed many times between cell cultures.
At each passage, it was allowed to grow into N separate plaques
that were mixed for the next transfer. The average fitness of the
virus mixture was measured at different passages by using a
competition assay with a reference virus variant. The authors
found that the average log fitness either increased or decreased
with passage number, depending on N and on the fitness of the
initial virus strain. The critical value of fitness that did not, on
average, change with passage exhibited a linear dependence on
log N (Fig. 4a). Novella et al. also measured the dependence
of the reference variant fitness on the passage number at a
large value of N (Fig. 4b). Using three fitting parameters and
estimating other parameters from independent data (legend to
Fig. 4), we fit predictions of our model to both dependencies
(Fig. 4 a and b). Because the best-fit value of s for these
experiments is on the order of �L, we could not use the
semideterministic approach and used simulation. We show, for
comparison, results of fitting (Mathematical Appendix) of the
one-locus model (20, 44), which predicts an N-shaped depen-
dence between critical fitness and log N (Fig. 4). Thus, our
model both predicts a linear dependence in log N and gives a
better fit to experimental results. Still, more data points are
needed to make sure that the observed dependence is indeed
linear over the entire range of log N.

To conclude, we have developed an approach to predict the
overall rate of genetic evolution and have applied it to a simple
population model with weak selection and a large number of
linked loci. The general expression for the accumulation rate of
mutations we obtained is valid over a very broad range of
population sizes and other parameters. These results can be
applied to a broad variety of experimental populations of viruses
and bacteria. The approach is quite flexible, and we are working
to generalize it to include the factors we left out in this study,
such as recombination (important for some viruses such as HIV)
and variation of selection coefficient among nucleotides.
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