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Mutualisms provide benefits to those who participate in them. As
a mutualism evolves, how will these benefits come to be allocated
among the participants? We approach this question by using
evolutionary game theory and explore the ways in which the
coevolutionary process determines the allocation of benefits in
mutualistic interactions. Motivated by the Red Queen theory,
which states that coevolutionary processes favor rapid rates of
evolution, we pay particular attention to the role of evolutionary
rates in the establishment of mutualism and the partitioning of
benefits among mutualist partners. We find that, contrary to the
Red Queen, in mutualism evolution the slowly evolving species is
likely to gain a disproportionate share of the benefits. Moreover,
population structure serves to magnify the advantage to the
slower species.

When individuals of two different species engage in a
mutualistic interaction, both benefit; and yet certain

changes in the interaction might offer additional benefits to one
species or the other (or even to both). To understand how
beneficial interspecific associations evolve and are maintained,
we need to answer two basic questions. First, we need to know
how interspecific cooperation can persist over evolutionary time,
and what keeps the interaction from breaking down as individ-
uals succumb to incentives to ‘‘cheat’’ on their partners. Second,
given that cooperation is somehow maintained, we need to know
how the resulting benefits will be allotted to the participants. To
date, theoretical work on the evolution of mutualism has focused
almost exclusively on the former question. In this paper, we use
evolutionary game theory to address the latter one: how does the
evolutionary process distribute the benefits of mutualism?

In some cases, the mechanics of an interaction may dictate an
obvious allocation of benefits. Consider the mutualistic interac-
tions in which a cleaner wrasse Labroides dimidiatus removes
parasites from a larger ‘‘client’’ fish (1). In an idealized inter-
action where there is no potential for cleaners to feed on live
tissue or for clients to prey on cleaners (2, 3), the actual
allocation of benefits will be relatively straightforward. The
wrasse receives access to a ready food source, and the client
enjoys a reduced parasite load (4).

In other situations, the mechanics of the interaction fail to
single out any one specific way to parcel up the benefits. In the
well-studied ant-lycaenid butterfly mutualism (5), ants protect
caterpillars from parasitoids. As parasitism is a huge contributor
to mortality, ant-associated caterpillars enjoy enormous in-
creases in survivorship to and during pupation (6). As an
incentive for continued protection, the caterpillars take on
substantial energetic and fitness costs to provide their ant
attendants with sugar- and protein-rich exocrine secretions (7,
8). But as a mutualism evolves, how much nutrient provisions will
lycaenid caterpillars offer to the ants? And how much should the
ants ‘‘demand’’ in return for tending to the caterpillars? No
single salient solution stands out, and indeed the level of nutrient
provisioning appears to be subject to context-dependent fine-
tuning by the caterpillars (9). Like the aforementioned lycaenids,
species ranging from aphids and treehoppers to acacia bushes
have developed mutualistic associations with ants in which food
is exchanged for defense (10, 11). In each of these systems,

similar questions about allocating benefits arise. Other mutual-
isms that lack an obvious way of parceling up benefits include
plant–pollinator interactions, symbioses between insects and gut
microbes, and endosymbioses.

In our efforts to understand how the benefits from a mutu-
alism will be allocated, we will pay particular attention to the role
of the relative evolutionary rates, and thus the rate of strategy
change, of the species involved. Mutualist partners may evolve at
different rates for a number of reasons, including differences in
generation time, differences in the importance of the interaction,
differences in population size, and differences in the amount of
segregating genetic variation (12). Analogous asymmetries in the
rate of strategy change may also arise when members of one
species select strategies by learning instead of by genetic evolu-
tion. Whatever the source of asymmetry, differences in evolu-
tionary rates are commonly thought to influence coevolutionary
outcomes, though previous work in this area has eschewed
mutualism in favor of antagonistic interactions, such as the
contests that occur between predator and prey, between host and
parasite, or among competitors for a common ecological re-
source. In these antagonistic relationships, coevolution is typi-
cally thought to select for accelerated evolution. Pairs of species
become locked into arms races with each rushing to evolve the
upper hand in the interaction. As a result of this Red Queen
process (13), each species is forced to evolve ever more rapidly
just to break even. In the words of Lewis Carroll, ‘‘it takes all the
running you can do, to keep in the same place.’’

Here, we concentrate on mutualism rather than antagonism.
Can mutualisms, despite their cooperative elements, also be
viewed as evolutionary races to outmaneuver the partner and
win a greater share of the surplus? Previous authors have argued
that the answer is yes: the Red Queen effect should operate
under these circumstances as well (14). Just as antagonists are
forced to evolve rapidly to avoid falling behind in the struggle
with their competitors, we might expect that mutualists will need
to evolve rapidly to avoid being exploited and ultimately para-
sitized by their partners. In light of these predictions, our results
are surprising: we find that in contrast to the Red Queen theory,
mutualistic interactions often favor slow rates of evolution.

Methods and Models
Throughout the present paper, we take the common approach
(15) of treating mutualism as an evolutionary game in which
players evolve strategies according to basic Darwinian (replica-
tor) dynamics (16–18). Because previous studies have concen-
trated on explaining what factors prevent mutualism from
breaking down into parasitism or other forms of exploitation,
they have focused on games used to study the evolution of
cooperation: the prisoner’s dilemma, public goods games, and
related scenarios. This body of work has shown how interspecific
cooperation can be maintained by mechanisms such as recipro-
cal altruism (19–21), partner choice (22, 23), byproduct benefits
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or pseudoreciprocity (19, 24, 25), and various forms of sanction-
ing and partner control (26, 27).

In the present paper, we focus on a different matter: how the
benefits will be distributed, given that mutualism can persist.
Therefore, we will use a different class of models. Essentially, we
need to select a model and a modeling framework that will allow
us to explore the evolution of the individual strategies used in
mutualistic interactions. The Nash equilibrium concept will not
alone be sufficient; the relevant games of resource division
typically have multiple Nash equilibria (28). Thus, we need to
work within a dynamic modeling framework that allows us to
compare among Nash equilibria. But how to do this? What form
should we envision for the coevolutionary process by which these
strategies are selected?

Because this space of possible strategies for interspecific
interaction is enormous, and because dynamic evolutionary
models can be difficult to apply to games with huge strategy
spaces, we try to find a simpler discrete model that captures the
essence of the problem of interest. Here, we use a one-shot 2 �
2 game. This modeling strategy is sometimes described as a
minigames approach (29).

What is the essence of the problem of interest, in our case? We
are interested in situations in which multiple Nash equilibria
exist, but different players have different preferences over the set
of equilibria. Thus, we use not a prisoner’s dilemma with one
Nash equilibrium, but rather a coordination-type game with two
Nash equilibria and no incentive to defect on a cooperative
agreement once established. Each player can make a generous
offer or a selfish offer, with the following payoff matrix.

If both make selfish offers, the association breaks down and
the players fail to generate the benefits that result from mutu-
alism; each gets payoff 0. If one makes a generous offer and the
other makes a selfish offer, the selfish player gets 2 units and the
generous players gets 1. If both players make generous offers,
each gets an amount k of the benefits. When k � 1, the game is
in essence a minigame version of the Nash bargaining game (28,
30, 31), with strategies ‘‘demand 1’’ and ‘‘demand 2,’’ and an
available total of 3 units. When k � 0, two generous offers leads
to a coordination failure as severe as that resulting from two
selfish offers: the players suffer a complete loss of the mutualistic
benefits and the game is a standard battle-of-the-sexes game.
When k � 1.5, the game is a hawk–dove game. We stress that in
this game neither strategy precludes mutualistic interaction

entirely. Notice that (for k � 2) the equilibria lie on the main
diagonal, and the symmetric behaviors on the off-diagonal.

Because we can add an arbitrary constant to any column of
player 1’s payoff matrix or any row of player 2’s payoff matrix
without changing the evolutionary dynamics as treated in the
next section (18), this game serves as a general model of
two-by-two games with two equilibria and symmetry in payoffs
between the two players. (Although such changes to the payoff
matrix do not alter the local dynamics considered in the section
on local dynamics of mutualism, they do alter the degree to which
an equilibrium favors one species or the other, and thus they will
affect the higher-level dynamics considered in the section on
higher-level population structure. For this reason we cannot
follow the tradition of specifying the game using a payoff matrix
with the diagonals normalized to zero.) With this model, we have
a simple framework in which to pursue the problem of how the
benefits are allocated. Obviously, our general approach could be
extended to games with more Nash equilibria, for example n �
n games, iterated games, signaling games, and so forth.

In an interspecific mutualism, the participants come from two
separate populations of two separate species to engage in
pairwise interactions. Thus we assume that the game described
above is a two-population role-asymmetric game: the row player
comes from one species and the column player comes from the
other (16, 32).

Local Dynamics of Mutualism
In the Appendix, we derive the equations that describe the changes
in strategy frequencies over evolutionary time, i.e., the replicator
dynamics, for role-asymmetric games in which the players come
from separate populations with evolutionary rates m and n, respec-
tively. Where x is the frequency of selfish players in the species 2
population, y is the frequency of selfish players in the species 1
population, and x and y are the time derivatives, the dynamics for
the game considered here are given by

ẋ � m x�2�1 � y� � �2�1 � y�x � �y � k�1 � y���1 � x���
ẏ � n y�2�1 � x� � �2�1 � x�y � �x � k�1 � x���1 � y���

.

[1]

We begin by looking at these dynamics when k � 1. Fig. 1 Left
shows a set of evolutionary trajectories with strategy frequencies
for individuals from species 1 on the y axis and strategy fre-
quencies for individuals from species 2 on the x axis, under
replicator dynamics with the two populations evolving at equal
rates. With probability 1, the selfish strategy becomes fixed in
one population and the generous strategy becomes fixed in the
other. That is, almost every evolutionary trajectory ends at one

Fig. 1. Evolutionary trajectories for the mutualism game, determined numerically from Eq. 1. Trajectories above the diagonal (red) lead to the equilibrium
favoring species 1; trajectories below the diagonal (blue) lead to the equilibrium favoring species 2. The diagonal (yellow) is the separatrix between the two
domains of attraction. The vertical and horizontal lines (gray) show the places at which the change in strategy frequency switches direction, for species 1 and
2, respectively. The game parameters determine the positions of these lines.
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of two dynamically stable equilibria: the upper left corner in
which species 1 enjoys a majority of the benefits, or the lower
right corner in which species 2 enjoys the majority share. The
eventual end-point is determined by the initial strategy frequen-
cies; the set of all points from which the dynamics lead to a given
equilibrium is called the domain of attraction of that equilibrium.
The yellow line in Fig. 1 Left shows the separatrix between the
two domains of attraction. All trajectories beginning at points on
the same side of the yellow line lead to the same equilibrium.

We see from Fig. 1 Left that the ultimate distribution of the
rewards from the mutualism will depend on the starting point,
i.e., on the initial strategy frequencies in each species. Put simply,
to predict with certainty where the system will finish, we need to
know where it started. In the absence of such knowledge, one
reasonable measure of the chance of reaching each equilibrium
is simply the relative size of the corresponding domain of
attraction. All else being equal, we might expect that equilibria
with large domains of attraction will be reached more often than
equilibria with small domains of attraction.

But what factors determine the sizes of the domains of
attraction? We can use the replicator equations (Eq. 1) to map
out the direction of evolution in each species, i.e., the direction
of change of strategy frequencies at each point. We can quali-
tatively understand these dynamics by dividing the phase space
into four regions: one in which evolutionary trajectories move up
and to the right, one in which they move up and to the left, one
down and to the right, and one down and to the left. The
boundaries of these regions (indicated by the gray ‘‘crossover
lines’’ in Figs. 1 and 2) are easily computed from the dynamics
(Eq. 1) by setting first ẋ and then ẏ to 0 and solving. For the game
treated here, these lines will be given by the equations x � (2 �
k)�(3 � k) and y � (2 � k)�(3 � k). Fig. 1 shows how these
regions shift with changes in the parameter k; the evolutionary
rates m and n do not appear in these expressions.

In games of the basic form considered here, the separatrix
between domains of attraction always runs from the lower left
corner to the upper right one, through the intersection point of
the crossover lines. Because the separatrix is composed of
integral curves of the vector field corresponding to the replicator
equations (Eq. 1), we can always find it by solving these equations
with initial conditions arbitrarily close to the intersection of the
crossover lines. Although the relative rates of evolution do not
affect the position of the gray crossover lines, they do influence
the shape of this separatrix, ‘‘bending’’ it as illustrated in Fig. 2.
However, the upper left and the lower right quadrants each lie
entirely to one side of the separatrix, and therefore changes in
evolutionary rate cannot alter the terminus of any evolutionary
trajectory beginning in either of these quadrants. Evolutionary
rate will only affect the equilibrium reached for trajectories that
begin in the lower left and upper right quadrants.

Depending on the payoffs of the game, changes in the shape
of the separatrix can increase the domain of attraction around
the equilibrium favoring the slower species or the one favoring
the faster species. Fig. 2 shows the evolutionary trajectories
for the game in which k � 1.5. Here the domain of attraction
around the upper left equilibrium increases in size as the relative
rate of evolution by species 1 decreases. That is, the slower that
species 1 evolves, the higher chance it has of reaching its favored
equilibrium. This is the first manifestation of what we call the
Red King effect.

In the lower left quadrant, the ultimate resting place depends
on which crossover line is reached first. When the horizontal line
is reached first, the dynamics lead to the upper left; when the
vertical is reached first, the dynamics lead to the lower right. The
two species are, in effect, racing to reach the edges of that
quadrant. Fast evolution by species 1 corresponds to predomi-
nantly vertical motion and thus most trajectories beginning in
this quadrant first reach the horizontal crossover line, yielding
the equilibrium favorable to species 1. Fast evolution by species
2 corresponds to predominantly horizontal motion, and causes
most points in this quadrant to follow trajectories that terminate
at the equilibrium favorable to species 2. In the limit as species
2 evolves arbitrarily faster than species 1, all points in the lower
left quadrant lead to the equilibrium favorable to species 2.

In the upper right quadrant, the situation is precisely reversed.
Again the ultimate resting place depends on which line is crossed
first, but here each species does better to lose the race! In the
limit as species 2 evolves faster than species 1, all points in
the upper right quadrant lead to the equilibrium favorable to
species 1.

Thus the effect of evolutionary rate on the size of the domains
of attraction depends on the chance that the starting point is in
the lower left quadrant versus the upper right quadrant. In effect,
the rapidly evolving species ‘‘gets’’ the lower left quadrant and
‘‘loses’’ the upper right one. Fig. 3 summarizes this effect. As an
aside, this phenomenon may explain a curious observation
reported by Doebeli and Knowlton (20). In their simulations of
mutualism evolution, based on an iterated prisoner’s dilemma
model, they found that the more slowly evolving species received
higher payoffs (their figure 3C).

But what determines the quadrant in which the coevolutionary
process is likely to begin? For one thing, the regions’ sizes will
matter. Simple calculations show that the equilibrium favoring
the slower-evolving species will have a larger domain of attrac-
tion around its favored equilibrium whenever k � 1, whereas the
faster-evolving species will have a larger domain of attraction
when k � 1.

In this section, we have seen that the ultimate division of a
mutualistic surplus depends on (i) the game payoffs, (ii) the
evolutionary rates of the species involved, and (iii) the initial

Fig. 2. The effect of evolutionary rate on domains of attraction when k � 1.5. (Left) Species 1 evolves eight times slower than species 2. (Center) Equal rates
of evolution. (Right) Species 2 evolves eight times slower. In this game, the slower-evolving species has the larger domain of attraction around its favored
equilibrium.
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distribution of strategies used by each species. As yet, we have
said little about the third item. Perhaps certain aspects of a
nascent mutualism will tend to bring together players who
initially make overly generous offers (favoring fast evolution) or
those who make overly selfish ones (favoring slow evolution).
Alternatively, higher-level population structure and the dynam-
ics of mixing or migration may weight some quadrants more
highly than others as starting-points of local coevolutionary
interaction. We consider this possibility in the next section.

Higher-Level Population Structure
When potential mutualists come together in a given location, where
do their initial strategy choices come from? If strategies are
genetically specified or learned from parents, these initial strategies
are presumably those that were used in individuals’ natal patches.
Thus we might do well to consider a higher level of population
structure, in which the dynamical process considered in the previous
section occurs in parallel in a number of local subpopulations or
‘‘patches,’’ each of which sends out migrants to join existing
subpopulations or to found new ones. Such a process can be
modeled in a number of different ways. Here we opt to work with
a haystack-type model (33–35); other models can be expected to
produce similar results. We will find that the higher-level popula-
tion structure accentuates the Red King effect, in that it gives rise
to local patches that initially begin in the upper right quadrant,
exactly where slow evolution is favored.

A basic haystack model works as follows. For each species, the
global space is divided into local subpopulations. Each ‘‘season’’
begins with each patch containing a small number of founder
individuals from each species. Within each patch during the course
of a single season, strategy frequencies change according to the
dynamics (Eq. 1), as characterized in the previous section. At the
end of the season, the individuals from all patches disperse and new
patches are formed of founders chosen at random from the larger
ensemble. A new season begins and the process repeats.

We can model the population dynamics within a patch in a
number of different ways that are consistent with the local
dynamics. One very simple approach would be to assume that the
payoff matrix specifies the relative population growth rates per
generation. However, this would lead to unchecked exponential
growth within each patch within each season.

Here we opt instead to use a model in which population sizes
are internally regulated; the results are not appreciably different.
We assume that over the course of a single season, each patch
reaches some fixed carrying capacity for each species. For the
ease of analysis, we will also assume that each season is suffi-
ciently long that every local subpopulation reaches an equilib-
rium with respect to strategy frequencies. (This assumption is not
essential to the dynamics at hand.) The carrying capacity within
a patch reflects the ‘‘favored’’ or ‘‘disfavored’’ nature of the
equilibrium. That is, the carrying capacity for species 1 is larger
in a patch that reaches the equilibrium favored by species 1 than
it is in a patch that reaches the equilibrium favored by species 2.
Notice that the carrying capacities represent an additional set of
assumptions about the ecological process operating within
patches, and thus this model requires that we specify the carrying
capacity ratios in addition to the payoff matrix which describes
the dynamics of strategy frequency change.

The global population dynamics then proceed as follows.
Beginning with initial frequencies y and x of individuals playing
selfish in species 1 and 2 respectively, new patches with N
individuals from each species are formed at random. That is,
each new patch has species 1 and species 2 strategy frequencies
independently drawn from binomial distributions with means y
N and x N, respectively. During each season, strategy frequencies
within each patch change according to the local dynamics. All
patches end at one of the two equilibria; therefore, the fraction
of patches at each equilibrium at the end of a season can be
determined directly from the fraction of patches on each side of
the separatrix at the start of that season. Final population sizes
in each patch depend on which equilibrium is reached. Specif-
ically, we let � be the ratio of the carrying capacity at the favored
equilibrium to the carrying capacity at the disfavored equilib-
rium, for species 1. We let � be the equivalent ratio for species
2. This gives us the global frequencies of each strategy in each
species. The starting patch distributions in the next season are
then determined by binomial draw from these strategy frequen-

Fig. 4. Domains of attraction for the equilibrium favoring the fast evolver
(species 1, red) and the slow evolver (species 2, blue) in the local dynamics (Left)
andtheglobaldynamics (Right).Domainsofattractionareequal in sizeunder the
local dynamics, but the domain of attraction around the equilibrium favored by
the slow evolver increases in the global dynamics. Parameters: species 1 evolves
eight times faster than species 2, and k � 1. In the global dynamics, each species’
carrying capacity at its favored equilibrium is four times that at the disfavored
equilibrium and each new patch is founded by nine individuals. Local domains of
attraction are computed as in the section on the local dynamics of mutualism.
Global domains of attraction are found by exact numerical solution. Given the
starting strategy frequencies for each species, the fraction of patches of each type
(i.e., with each possible distribution of founders) has a bivariate binomial distri-
bution. Patch types above the local separatrix go to equilibrium 1 and those
below the separatrix go to equilibrium 2, and from this we find the fraction of
patches reaching each equilibrium at the end of the season. This gives the new
global strategy frequencies; we then apply the mapping shown in Fig. 6 to
determine whether the global system will ultimately converge to the equilibrium
favoring species 1 or to that favoring species 2.

Fig. 3. Summary of the local dynamics. Upper right quadrant (shaded):
slower-evolving species reaches its favored equilibrium. Lower left quadrant:
faster-evolving species reaches its favored equilibrium. Upper left and lower
right quadrants: evolutionary rates do not affect outcome.
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cies. The entire process is then iterated until the global strategy
frequencies reach an equilibrium.

Fig. 4 compares the domains of attraction under the local
dynamics against the domains of attraction under the higher-
level population dynamics with initial subpopulations formed by
random draw from the global strategy frequencies. Because k �
1, the domains of attraction are equal in size under the local
dynamics; neither fast nor slow evolution is favored. Nonethe-
less, the global dynamics give the slowly evolving species a larger
domain of attraction around its favored equilibrium.

Why does this happen? First consider the process by which a new
patch is formed. Members arrive from other patches. Patches at the
equilibrium where species 1 is favored, i.e., those in which species
1 is playing selfishly, have a higher carrying capacity for species 1
and thus produce more species 1 individuals than do patches in
which species 2 is favored. Consequently, a majority of the indi-
viduals of each species in a newly formed patch are likely to be
playing selfishly. That is, each newly formed patch is likely to begin
with a set of strategy frequencies belonging to the shaded upper
right quadrant in Fig. 3. We know that the local dynamics favor the
slowly evolving species in this quadrant, because there both species
are selected to ‘‘retreat’’ (evolutionarily) to more generous strate-
gies. Obviously, the fast-evolving species will be able to do so more
quickly. Ironically this ultimately favors the slowly evolving species,
which in turn has no need to retreat to generous behavior, and can
instead play selfishly and receive the higher payoffs. Thus in each
newly formed patch, the slowly evolving species will have a relative
advantage.

We can visualize this argument as follows. If a proportion s of
the patches reach the equilibrium that favors species 1, and a
proportion 1 � s reach the equilibrium that favors species 2, then

at the end of a season the proportion in the global pool of species
1 individuals playing the selfish strategy will be � s�(� s � (1 � s)),
and the proportion of species 2 playing the selfish strategy will
be �(1 � s)�(�(1 � s) � s). Thus, at the end of a season, the
strategy frequencies in the global pool will lie somewhere along
the curve depicted in Fig. 5. This curve passes through the upper
right quadrant, where slow evolution is favored, and not through
the lower left one, where fast evolution is favored.

Viewed in this way, the global dynamics describe a mapping
from this path onto itself; each season represents an iteration of
this mapping. Fig. 6 depicts this mapping for a case in which k �
1 (and thus the local dynamics favor neither fast nor slow
evolution) and in which species 1 evolves 8-fold faster than
species 2. From this figure, we see that the global dynamics has
three equilibria: a stable equilibrium where all subpopulations
are at the equilibrium favoring species 1, a stable equilibrium
where all subpopulations are at the equilibrium favoring species
2, and an unstable equilibrium where roughly 27% of the
subpopulations are at the equilibrium favoring species 2. The
domains of attraction of the global dynamics are determined by
the location of this unstable equilibrium point. To the left (lower
frequencies of subpopulations favoring species 2) the global
dynamics will ultimately converge to the first stable equilibrium.
To the right, the global dynamics will converge to the second
stable equilibrium. Because of these higher-level dynamics, the
slowly evolving species has a substantially larger domain of
attraction around its favored equilibrium.

Conclusions
In this paper, we have looked at how the benefits that result from
mutualism will be allocated among the participants. We have
paid particular attention to the role of evolutionary rate in
determining coevolutionary outcomes, and we have described
why, contrary to the Red Queen hypothesis, slow evolution may
actually lead to favorable outcomes.

Our results make intuitive sense in light of economic bargaining
theory. In bargaining games, there may be a strategic advantage to
‘‘having one’s hands tied’’ during the bargaining process (36, 37). If
a player’s options are limited, threats made by this player can
become more credible and at the same time threats against this
player can be rendered ineffective. Because susceptibility to threats
often acts as a major determinant of the strength of one’s bargaining
position, this is a significant advantage.

Fig. 5. Summary of the global dynamics. Each subpopulation ends with either
species1playingGenerousandspecies2playingSelfish,orviceversa.Thefraction
of subpopulations in each state (upper horizontal line) at the end of one season
determines the expected frequencies in each new subpopulation at the start of
the subsequent season. Carrying capacity ratios are � � 4 and � � 4.

Fig. 6. Global dynamics. The solid curve maps the fraction of patches at the
equilibrium favored by slowly evolving species 2 in one generation to the
fraction of such patches in the next generation. The dashed line has slope 1,
for reference. The unstable equilibrium occurs at the intersection of these
curves, 	0.273. Parameters are as in Fig. 4. The position of this equilibrium
does not depend strongly on the number of founders in each patch, because
the advantage to the slowly evolving species does not derive from stochastic
variation in patch composition.
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The Red King effect described in this paper can be seen as a
manifestation of this principle. If we envision the coevolutionary
process as an extended negotiation in which the risk of a breakdown
of cooperation serves as a threat imposed by one species on another,
we might argue that the slowly evolving species has its hands tied in
the negotiating process. Fast evolution does not allow a species to
outrun a partner, it simply causes this species to yield to whatever
threats are made. This is captured by the local dynamics described
in the section on the local dynamics of mutualism.

Of course, the initial proposals brought to the bargaining table
by the negotiating parties will also have a major impact on the
outcome. In the mutualism example considered here, if both species
initially ask for more than their share of the proverbial pie,
susceptibility to threat will be important. But what will be the initial
proposals that the species bring to the table? We have argued that
in coevolutionary interactions, population structure bears critically
on this question. If new patches are formed by immigrants from
other patches, individuals will come together prepared by evolution
to pursue a division similar to that which they were receiving in their
previous patches. In the section on higher-level population struc-
ture, we show that when the carrying capacity of a patch is affected
by the division of the mutualistic surplus, most players entering a
new patch will arrive ‘‘demanding’’ more than half of the benefits.
This circumstance (when the parties do not initially agree on how
to proceed because both expect an allocation that favors them
rather than their partner) is when the Red King effect operates.
This circumstance is precisely when it pays to evolve slowly.

Appendix
For a two-by-two role-asymmetric game with moves (U, D) and
(L, R) for players 1 and 2, respectively, the basic form of the
discrete-time replicator dynamics for players coming from sep-
arate populations is given below (38). Here, xt is the frequency
of L players in population 1 at time t and yt is the frequency of
U players in population 2 at t. The function �(D, z) is the payoff
to choosing strategy D when a fraction z of the other population
plays strategy L.

xt�1 � xt� ��U, y�
��U, y�x � ��D, y��1�x�

�
yt�1 � yt� ��L, x�

��L, x�y � ��R, x��1�y��

We represent differing evolutionary rates by assuming that
during a given time-step, a fraction m of one population and n
of the other have fitnesses affected by the payoffs from the
interaction:

xt�1 �
�1�m�xt � mxt��U, y�

�1 � m� � m�xt��U, y� � �1�xt���D, y��

yt�1 �
�1�n�yt � nyt��L, x�

�1 � n� � n�yt��L, x� � �1�yt���R, x��

From this, we can derive at least two different continuous-time
approximations, which differ by a normalizing factor and can
diverge in their dynamic behavior. Weibull (17) and Hofbauer
and Sigmund (18) provide detailed discussions of their deriva-
tions and differences. Here we consider what would happen in
a small time-step, during which only a fraction � of the players
even play the game at all:

xt�� �
�1�m��xt � m� xt��U, y�

�1�m�� � m��xt��U, y� � �1�xt���D, y��

yt�� �
�1�n��yt � n�yt��L, x�

�1�n�� � n��yt��L, x� � �1�yt���R, x��

The time-derivatives ẋ and ẏ are lim�30[(xt�� � xt)��] and
lim�30[(yt�� � yt)��]

ẋ � m x���U, y��
��U, y�x � ��D, y��1�x���

ẏ � n y���L, x��
��L, x�y � ��R, x��1�y���
[2]

These are simply the ‘‘standard’’ (i.e., non-normalized) con-
tinuous-time replicator dynamics for a role-asymmetric game
(17), weighted by the appropriate evolutionary rates.
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