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ABSTRACT

We introduce M-Coffee, a meta-method for assem-
bling multiple sequence alignments (MSA) by com-
bining the output of several individual methods into
one single MSA. M-Coffee is an extension of T-Coffee
and uses consistency to estimate a consensus
alignment. We show that the procedure is robust to
variations in the choice of constituent methods and
reasonably tolerant to duplicate MSAs. We also show
that performances can be improved by carefully
selecting the constituent methods. M-Coffee outper-
forms all the individual methods on three major refer-
ence datasets: HOMSTRAD, Prefab and Balibase.
We also show that on a case-by-case basis,
M-Coffee is twice as likely todeliver thebestalignment
than any individual method. Given a collection of
pre-computed MSAs, M-Coffee has similar CPU
requirements to the original T-Coffee. M-Coffee is
a freeware open-source package available from
http://www.tcoffee.org/.

INTRODUCTION

The multiple alignment of DNA or protein sequences is one of
the most commonly used techniques in sequence analysis.
Multiple alignments constitute a necessary pre-requisite in
phylogeny, remote homologue detection and structure predic-
tion. Until recently the choice for building multiple sequence
alignments (MSAs) was limited to a handful of packages but
a recent increase in genomic data has fuelled the development
of many novel methods arguably more accurate and faster than
the older ones. In practice this widened choice has also made
it harder to objectively choose the appropriate method for
a specific problem.

Unfortunately the standard multiple sequence alignment
problem is NP-hard, which means that it is impossible to
solve it for more than a few sequences. This complexity
explains why so many different approaches have been
developed (1,2), such as progressive alignment (3), iteration
(4–6) and genetic algorithms (7). One very useful development
has been the design of consistency-based methods whose
purpose is to generate an alignment consistent with a set of
pairwise alignments. The use of consistency was first
described by Gotoh (8) and Kececioglu (9) and independently
re-formalized by Vingron and Argos (10) as a dot matrix
multiplication procedure that bears much resemblance with
T-Coffee. Consistency was later re-discovered by
Morgenstern et al. (11) who refers to it as overlapping weights.
In 2000, Notredame et al. (12) described a novel algorithm
combining the overlapping weights with a progressive align-
ment strategy. This algorithm was implemented in T-Coffee
and resulted in significant accuracy improvement over existing
methods. Since then, consistency based objective functions
have been used within several new multiple alignment pack-
ages, including POA (13), MAFFT 5 (14), Muscle 6 (5),
ProbCons (15) and PCMA (16).

More than 50 MSA methods have been described over the
last 10 years (Medline, January 08, 2006), with no less than
20 new publications in 2005 alone. The complexity and variety
of these algorithms and the fact than none provides a definite
answer to the problem makes it almost impossible to tell them
apart from a theoretical point of view. In practice however,
these methods are compared using empirical evaluations made
on structure-based sequence alignments. This popular
approach suffers from at least two shortcomings, most notably
the fact that MSA methods trained and evaluated this way
are biased toward generating structurally rather than evolu-
tionarily correct alignments. Furthermore, although structural
information is more resilient than sequence signal over long
evolutionary distances, the assembly of a structure-based
MSA is in itself a difficult task, which has resulted in the
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development of several alternative structure-based MSA
collections. Some, like BaliBase (17) or Prefab (5), have
been designed specifically for the validation of MSA methods
while others like HOMSTRAD (18) are more generic. As there
is no simple way to evaluate and rank these reference collec-
tions, it has become common practice to use them all when
benchmarking new packages. The rationale for these analyses
is that the average best performing package will constitute the
safest choice when computing an MSA of uncharacterized
sequences. However, such a choice is no guarantee for success
as it is well established that the best performer is only more
likely, but not certain, to be the most accurate on any specific
dataset. Using this average best is merely an attempt to
increase the chances of success, just like betting on the
horse with the best odds.

The description of a complex problem partially solved by
several more or less different methods calls for comparisons
with other similar situations in computational biology like
secondary structure and gene predictions. In these contexts,
Meta-methods, or Jury-based methods (19,20) have often
proven to be superior to the constitutive methods. However,
in the case of gene or structure predictions, the output is
relatively easy to combine into the intersection or union of
individual predictions. Such a combination protocol is harder
to define when it comes to MSAs where each pair of aligned
residues constitutes an element of prediction. Fortunately,
consistency-based objective functions provide an elegant
and simple solution to the problem of averaging several align-
ments into one meaningful consensus. Given a collection of
alternative alignments, consistency-based objective functions
define the optimal alignment as the one having the highest
level of consistency with the collection. It is realistic to
consider this optimally consistent alignment as some sort of
consensus. This approach, first described by Bucka-Lassen
et al. (21) for the combination of alternative DNA alignments,
is the core of the T-Coffee algorithm. While any consistency-
based packages currently available would probably be equally
well suited to the combination of MSAs, T-Coffee bears the
advantage of having been specifically designed for that
purpose thanks to the concept of a library. T-Coffee does
not explicitly align sequences but compiles libraries based
on externally produced alignments. During the alignment
process, the libraries are combined into the final MSA.
Originally generated using ClustalW and Lalign, the libraries
can also be produced by structural alignment packages or any
sequence alignment program, pairwise or multiple. In this
work, we took this concept much further and showed that
T-Coffee can easily combine up to 15 alternative MSAs of
the same sequences. We call this meta-mode M-Coffee and
using several well-known benchmarks, we show that
M-Coffee is the most accurate and flexible MSA meta-method
described so far.

SYSTEM AND METHODS

The benchmark system

The main benchmark dataset was derived from the February
2005 release of HOMSTRAD (18). HOMSTRAD is a database
of protein alignments assembled automatically by the struc-
tural alignment program COMPARER from sets of sequences

where all members have a known 3D structure. Alignments
containing <4 sequences were removed, leaving a set of 233
alignments. Alignment accuracy was calculated with Column
Score (CS) using the aln_compare program (12). CS is the
proportion of columns of residues correctly aligned between
the test and reference alignments (22).

Two other Benchmark datasets were used to further validate
the method: Balibase v3.0 (23) and Prefab v4.0 (5). Balibase
(17) is a collection of hand-curated alignments. It contains
five categories of typical alignment problems, including
long internal insertions and terminal deletions. Balibase
v3.0 includes two different sets of sequences: realistic full-
length protein sequences and artificial short sequences
where the homologous regions are extracted from the full-
length sequences. The shorter sequence sets are denoted
by an S in the Results section. This removes the bias for
global alignment programmes in the earlier versions of
Balibase (24).

Prefab is based on pairs of structurally aligned sequences
with known 3D structures. Each pair is supplemented with up
to 50 homologous sequences, used to compute the MSA and
removed when the resulting alignment is compared with the
structural reference.

Generating MSAs

Fifteen widely used multiple alignment programs from eight
different laboratories were selected for this study. They were
chosen to cover a wide range algorithms used to align protein
sequences.

ClustalW (25,26) version 1.83 is the most widely used
multiple alignment program. It uses a progressive alignment
scheme where an initial guide tree (calculated from pairwise
alignments) is used to guide a full multiple alignment by
progressively incorporating all the sequences into the MSA.

T-Coffee (12) version 2.03 uses a consistency-based object-
ive function (27) optimized using progressive alignment.
It tries to maximize the score between the final multiple
alignment and a library of pairwise residue-by-residue
scores derived from a mixture of local and global pairwise
alignments.

ProbCons (15) version 1.09 is, like T-Coffee, a consistency-
based method. Alignments are generated using a library of
paired hidden Markov models. It is currently the most
accurate method as benchmarked on the HOMSTRAD
dataset (14).

PCMA (16) version 2.0 uses a consistency-based objective
function to align distantly related sequences, and a ClustalW
like algorithm to align similar sequences.

Muscle (5) version 3.52 and version 6.0. Muscle v3.52 uses
a progressive alignment algorithm with a Log Expectation
score to align sets of sequences along a guide tree. Muscle
v6.0 uses the same objective function as in ProbCons to further
refine the alignment from Muscle v3.52.

Dialign2 (28) version 2.2.1 is a local multiple alignment
method and is an improvement on the original segment-
to-segment based approach of Dialign (11,29).

Dialign-T (30) v0.1.3 is a new version of Dialign, which
incorporates the Dialign objective function in a progressive
alignment algorithm.
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The MAFFT (14) suite version 5.531 is a series of progress-
ive alignment programs (31). The package consists of five
alignment programs:

FFT-NS1: A progressive alignment algorithm that uses
a fast Fourier transform (FFT) algorithm to calculate the
guide tree.

FFT-NS2: Same as FFT-NS1 except, the guide tree is
re-calculated after a first alignment and the alignment is
repeated.

FFT-NSI: Same as FFT-NSI but includes an iterative align-
ment refinement step.

F-INSI: Incorporates local pairwise alignment information.
G-INSI: Incorporates global pairwise alignment

information.
POA (32) version 2 uses partial order graphs to build an

MSA. Two options of POA were used in this study (i) default,
and (ii) do-global. The default setting is a local alignment
algorithm (called POA-local), while do-global uses a global
alignment algorithm (called POA-global).

The method tree

A method tree was calculated to visually display the level of
similarity between various methods. The first step is the
computation of a distance matrix where each entry is a measure
of the average differences between two methods on the entire
HOMSTRAD dataset. This value is estimated by aligning each
HOMSTRAD dataset with both methods, and by estimating
with aln_compare the proportion of residues identically
aligned in corresponding alignments. These figures are
converted to a distance and averaged to yield the final
entry. Note that in this context HOMSTRAD is used as a source
of homologous sequences rather than a collection of reference
alignments. The tree is calculated by applying the UPGMA
algorithm onto the distance matrix. This tree (shown on
Figure 1) can also be used to compute the method weights.

Combining the alignment methods

T-Coffee (12) was used to combine outputs from different
alignment programs into one improved multiple alignment.
The ability of T-Coffee to take data in the form of a library
was exploited to combine the alignment methods. This func-
tionality has already been used very successfully to incorpor-
ate structural information when PDB entries are available for
one or more sequences (33). A library is a generated by assign-
ing each pair of aligned residues in a pairwise alignment
weight. T-Coffee then tries to find an alignment with the
maximum sum of weights. In this case the libraries are
generated from alignments created by the different MSA
packages. All of the libraries are then input into T-Coffee
to produce one alignment. The default weight used in the
library is the percent identity of the parent sequences. To
apply one of the extra method weighting schemes described
below, the original T-Coffee weight is multiplied by the
method weight.

Method weighting

Four different schemes were used to generate weights for
each of the alignment methods. Two of the schemes are

tree-based, and were calculated based on the method tree
described earlier.

(i) Variance/Covariance (VarCov) weights are calculated
from the inverse of a variance/covariance matrix, as
described for sequence weights by Altschul et al. (34).
For the variance (the diagonal elements of the
matrix) of a method we use the number of columns
differing between the generated alignment and the
corresponding reference alignment in HOMSTRAD.
For the covariance between two methods (the off-diagonal
elements) we use the number of columns identical between
two alignments generated by two different alignment
methods, which are wrong when compared with the
reference alignment. The row sums of the pseudo
inverse of the variance/covariance matrix are the method
weights.

(ii) Altschul Carrillo Lipman (ACL) weights are calculated
using a tree connecting the methods. This was described
in relation to sequences by Altschul et al. (34), but
can be used to weight any data related by a tree. A

Figure 1. Methods Tree. A UPGMA tree which shows the clustering of all the
multiple alignments. Pairwise distances are calculated on the HOMSTRAD
benchmark by computing the SP differences of the alignments produced by
individual methods.

1694 Nucleic Acids Research, 2006, Vol. 34, No. 6



variance/covariance matrix is calculated from the tree and
the row sums from the inverse of this matrix are the method
weights. In this case, the variance of a method is the dis-
tance from the root of the tree. The rationale is that
the nearer an object is to the root, the better an estimate
of the root, it provides. Covariances are calculated using
the function below.

ppq ¼
l2
pq

lplq
‚

where Ppq is the covariance between p and q, lpq is the
shared branch length between p and q, and lp is the dis-
tance of p from the root.
Using this weighting scheme a method receives a low
weight if it is far away from the root of the tree or if
it has close neighbours. The underlying assumption is that
although a divergent method contains lots of information
it is hard to exploit this information without bringing in
too much extra noise.

(iii) Thompson Higgins Gibson (THG) weights are also tree-
based (35) and are used by ClustalW. Weights are assigned
based on the distance of the method from the root of the
tree. Methods, which have a common branch with other
methods, share the weight derived from the shared branch.
For example if three methods share a branch then each
method will receive a third of the weight derived from
the common branch.
Under this scheme a method only gets down weighted for
having closely related neighbours. Methods that have a
common branch share the weight derived from the shared
branch. Groups of related methods receive low weights as
they contain a lot of duplicated information. Highly diver-
gent methods receive high weights as these contain unique
information.

(iv) Accuracy (ACC) weights are crude heuristic weights
rewarding accuracy. They are set to the score of the align-
ment method over HOMSTRAD, normalized so that their
sum equals the number of methods. Highly accurate
methods are up weighted and less accurate methods are
down weighted.

Availability

M-Coffee is part of the T-Coffee package. T-Coffee is written
in Perl and in C, and will run on any UNIX-type platform. It is
a freeware open source distributed under a GNU Public license
and available from http://www.tcoffee.org/.

RESULTS

Our first task was to determine how the 15 MSA methods
considered here should be combined into one consensus align-
ment. Given 15 methods, one should consider either defining
an optimal subset or devising a weighting scheme that makes it
possible to combine all the methods at once. Our first attempt
was to use a greedy procedure in order to define an optimal
subset of methods. Methods were ranked according to their
overall accuracy on the 233 HOMSTRAD reference datasets
and the order thus defined was used to define subsets of meth-
ods used within M-Coffee. Results are shown on Figure 2,
where subset 1 only contains the best method (ProbCons),
subset 2 contains the best and the second best (ProbCons +
Muscle 6), and so on. The graph clearly shows a peak, which is
significantly better than the point before it (Wilcoxon P <
0.001), suggesting that an accumulation of low accuracy meth-
ods eventually affects the overall results. On the other hand,
the graph also indicates that except for the two first subsets,
the accuracy of M-Coffee is clearly higher than any of the
constituting methods, thus establishing the efficiency of the
combination.

The degradation in accuracy when very similar methods are
added, like the MAFFT family of programs (FFTNSI,
FFTNS2, FFTNS1 and so on), is not surprising when consid-
ering the underlying principle of consistency. Consistency is
only useful as an accuracy indicator when methods are
unlikely to commit exactly the same error. However, this
assumption is no longer true when nearly identical methods
are being combined. When this happens, incorrect alignment
portions find their way into the final model simply because
they appear highly consistent to the T-Coffee algorithm. This
intuition that all methods cannot be considered as equally
independent is well confirmed by the tree topology on

Figure 2. CS after combining multiple alignment methods with T-Coffee. Alignments are added in order of decreasing performance as single methods (as determined
on HOMSTRAD) from left to right. The peak of 67.59 is achieved using a combination of six methods. It is significantly better than ProbCons, the best single method
(Wilcoxon signed rank test, P < 0.001), whose performance is materialized by the straight line.
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Figure 1. The objective function plays an important role in
grouping the methods, with, for example, most consistency-
based methods clustered around T-Coffee (ProbCons, Mus-
cle6, finsi, ginsi). The tree also reveals how methods
developed by the same laboratory tend to be highly correlated,
possibly because of arbitrary code settings.

Estimating the level of independent information contributed
by one sequence or method is a recurring problem in biology.
It is especially important when dealing with multiple sets of
sequences (profiles, alignments) where the sequences are
assumed to be independent although they are known to be
evolutionarily related (and therefore correlated). Weighting
schemes are used to deal with these contradictions, by estim-
ating the amount of independent information contained in each
sequence. For instance, given the tree on Figure 1, one would
expect outlier methods like POA or ClustalW to have a high
weight while methods with lots of close neighbours like
T-Coffee, ProbCons and Muscle6 or the MAFFT series are
expected to have lower weights, as if it were split between
close relatives. We tested this hypothesis by applying two
known tree-based weighting schemes on the method tree
(THG and ALT) as well as the VarCov weighting scheme
on the distance matrix (compare System and Methods). We
also designed a fourth scheme, based on accuracy and that is
meant to be used as a control. Results on Table 1 show the high
level of correlation between the two tree-based weighting
schemes that differ mostly by the magnitude of their values
(0.24–2.51 for ACL, 0.56–1.87 for THG). The ACC weights
are simply correlated to the methods accuracy, and attribute
similar high weights to highly similar methods like T-Coffee
and ProbCons. Tree-based methods tend to overweight out-
liers, which may be a shortcoming when the outliers display
very low levels of accuracy, like POA. The VarCov weights
work on a different principle and give credit to the methods
containing the most unique (outliers) and accurate informa-
tion. For instance, under this scheme, ClustalW receives a high
weight (1.77) because it is an outlier and an accurate program.
FFTNSI on the other hand is down weighted because it does
not provide any useful information aside from what is already

in either FFTNS1 or FFTNS2. The ACC weights are used as
a control and simply reflect benchmarks results.

We tested these four sets of weights to combine the 15 meth-
ods into M-Coffee (M-Coffee15). The results (second last
line, Table 1) indicate that although the VarCov weights
deliver the best overall results they fail to significantly out-
perform a simple combination of all the methods (No weights).
These results, combined with the observations made on
Figure 2 led us to believe that the weighting schemes do
not appear to properly address the problem of method redund-
ancy, while the overall results suggest a need for some crude
and discrete filtering. We eventually considered that arbitrary
code setting (e.g. choosing between alignments with equal
scores) could be one of the reasons for misleading consistency
between packages of the same groups. This lead us to hand
pick one method per developer (the most accurate) and use the
resulting subsets to run our tests. The eight selected methods
were POA-global, Dialign-T, ClustalW, PCMA, FINSI,
T-Coffee, Muscle v6 and ProbCons. This combination of
methods will be called M-Coffee8. Results are shown on
the last line of Table 1 and on Figure 3. Interestingly,
M-Coffee8 outperforms any of the constitutive method all
along the combination process, thus suggesting an always
beneficial combination. Figure 3 also shows that M-Coffee8
is more accurate than ProbCons, even before inclusion of that
method. Finally, in order to further analyse the effect of
method redundancy, we increased the number of occurrences
of the ClustalW MSAs, from 1 copy (normal) up to 4. The
results indicate that over-representing some MSA methods
ends up reducing M-Coffee average accuracy, with a drop
correlated with the number of extra copies (Figure 4). Yet
this effect is moderate and even with three extra ClustalW
MSA copies, the overall accuracy remains significantly higher
than that of ClustalW (66% versus 61%).

Further validation of M-Coffee8 with was carried out by
testing this procedure on two other benchmarks: the new Bali-
Base and Prefab. As suggested by results on Table 1, the tests
were carried out by combining for each dataset the eight
un-weighted MSAs with M-Coffee. The results (Table 2)

Table 1. The first column lists the individual methods used

Alignment method Default %CS VarCov weight THG weight ALT weight ACC weight No weight

CLUSTALW v1.83* 61.15 1.77 1.41 1.86 1.01 1.00

DIALIGN 55.71 1.31 1.33 1.83 0.92 1.00
DIALIGN-T* 57.92 1.34 1.33 1.83 0.95 1.00

FFTNS1 58.27 0.81 0.74 0.64 0.96 1.00
FFTNS2 60.47 0.40 0.64 0.44 1.00 1.00
FFTNSI 63.07 0.17 0.64 0.44 1.04 1.00
FINSI* 64.22 0.79 0.74 0.38 1.06 1.00

GINSI 63.43 0.50 0.74 0.38 1.04 1.00
Muscle v3.52 64.49 1.02 0.85 0.54 1.06 1.00
Muscle v6.0* 66.04 0.78 0.56 0.24 1.09 1.00

PCMA* 63.73 1.41 0.94 0.75 1.05 1.00

POA-global* 51.90 1.37 1.87 2.51 0.85 1.00

POA-local 49.28 1.42 1.87 2.51 0.81 1.00
ProbCons v1.09* 66.41 0.73 0.56 0.24 1.09 1.00

T-Coffee v2.03* 65.37 1.18 0.78 0.42 1.08 1.00

%CS for M-Coffee15 67.33 66.96 65.79 67.16 67.11
%CS for M-Coffee8 67.32 66.33 64.89 67.85 67.75

Methods in boldfacemarkedwith an asterisk are partof theM-Coffee8selection of methods. Column2 indicates the averageperformance of each individualmethod on
HOMSTRAD. Columns 3–7 are the weights for each method as calculated by the indicated weighting schemes. The last two lines show the average score of
M-Coffee15 and M-Coffee8, using all the indicted weighting schemes.
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show that M-Coffee significantly outperforms individual
methods on every category of HOMSTRAD and Prefab
(>1400 MSAs altogether) and on 6 out of 10 Balibase categor-
ies. Total results confirm M-Coffee to be the average best
performer on the three datasets. Further analysis on individual
datasets (Table 3) also reveals that on average M-Coffee is
about twice more likely to deliver the most accurate MSA than
any of the individual methods (1104 versus 614).

In terms of CPU time, M-Coffee is very similar to the
standard T-Coffee with the difference that it does not require
the estimation of the pairwise library. For instance, if we
consider 1bxkA-1he2A, a standard prefab dataset of
50 sequences, 200 amino acid long and 47% average identity,
the default T-Coffee requires 270 s to align that dataset on
a standard PC (Pentium 2 MHz, 500 MB RAM), while
M-Coffee8 requires 180 s on a similar machine and

M-Coffee15 requires 220 s (these figures do not include the
pre-computation of the alignments with individual methods).

DISCUSSION AND CONCLUSION

In this paper we describe M-Coffee, an extension of the
T-Coffee package able to efficiently combine the output of
various MSA packages into one final MSA. We show that
M-Coffee is on average 1–3 point percent more accurate
than the best individual method and nearly twice more likely
to deliver the best multiple alignment. Apart from delivering
high quality alignments, M-Coffee constitutes a simple and
efficient platform for the combination of various MSAs into
one unique accurate model. As such it provides a convincing
solution to the daunting task of choosing the right method and
it should prove quite robust with respect to the evolution of
novel individual methods.

M-Coffee relies on consistency and is therefore based on
the assumption that incorrect alignments are less likely to
be consistent than correct ones. This holds well as long as
the combined methods are independent, but it breaks down
when correlated methods are introduced. We have shown here
that the best results can be obtained when carefully selecting
the right combination of methods. The main issue with such
a selection is that it may be hard to automate and will always
require expert knowledge. We propose two reasonable altern-
atives, one based on a weighting scheme that makes it possible
to include all known methods, without a priori knowledge, and
a second simpler (and less efficient recipe) where all methods
are included, except the less accurate ones. Both these means
of selecting methods can easily be adapted to an increasing
number of methods, by setting up some centralized accuracy
evaluation, in the style of the EVA server (36), a server used to
continuously test the accuracy of protein secondary structure
prediction methods. This being said, we also show that the
effect of incorporating duplicated methods is not dramatic, and
that even with 4 duplicated alignments of 12 MSAs, M-Coffee

Figure 3. M-Coffee8. The top line (closed diamonds) is the CS on the HOMSTRAD benchmark after combining multiple alignments using only one method per
developer. The bottom line (closed squares) is the default performance for each method on the benchmark.

Figure 4. Effect of adding in 1, 2 or 3 extra ClustalW alignments to M-Coffee8.
The average accuracy of ClustalW is materialized by the solid line.
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remains more accurate than most individual methods (includ-
ing the duplicated one). These results suggest that the
combination procedure is a rather robust process able to
cope with a significant amount of noise.

The problem with Meta-methods is their tendency to
harmonize a field of research by unfairly competing against
the individual methods they are made of. In the case of
M-Coffee it is interesting to stress the importance of
original and independent individual methods, as illustrated
by the method tree. It is also worth pointing out that our
analysis reveals several method convergences (Figure 1)
that may not be entirely obvious for a non-specialist basing
his judgement on their technical descriptions. Overall,

M-Coffee will perform best and improve, as long as independ-
ent methods keep being produced. Such a concept resonates
strongly with the notions of ‘crowds’ and ‘mobs’ and how
a group of non-expert people can arrive at more accurate
decisions than a small number of ‘experts’ (37). Crowds
are described as having the potential to be wise but only as
long as the crowd members are independent and not forming
a mob. Mobs are consistent but easily lead to the wrong decision.
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Table 3. Individual dataset analysis

M-Coffee8 better M-Coffee8 worse P(Wilcoxon Signed) Best single method

Homstrad 139 65 0.000 ProbCons
Prefab <10% 49 37 0.16 PCMA
Prefab 10 to <20% 326 226 0.000 Finsi
Prefab 20 to <30% 278 132 0.000 Finsi
Prefab 30 to <40% 64 35 0.003 ProbCons
Prefab 40 to <100% 62 25 0.002 Finsi
Prefab total 779 455 0.000 /
BaliBase Set: 11 19 5 0.002 ProbCons
BaliBase Set: 12 26 7 0.008 ProbCons
BaliBase Set: 20 16 14 0.967 Finsi
BaliBase Set: 30 16 5 0.013 PCMA
BaliBase Set: 40 24 10 0.333 Finsi
BaliBase Set: 50 12 4 0.078 PCMA
BaliBase Set: S11 12 15 0.793 Muscle 6
BaliBase Set: S12 13 11 0.437 ProbCons
BaliBase Set: S2 21 13 0.397 Muscle 6
BaliBase Set: S3 19 6 0.024 ProbCons
BaliBase Set: S5 8 5 0.623 Muscle 6
BaliBase total 186 95 0.002 /
Total 1104 615 /
Total versus ProbCons 1249 615 ProBcons

The data are the same as in Table 2. On each subset, M-Coffee8 is compared with the best performing method. Column 2 indicates the number of times M-Cofee8 is
better/worse than the best single method on that subset. The two last lines indicate the total for the table (Total) and the result of a comparison against ProbCons, the best
individual method.

Table 2. The CS accuracy performance of M-Coffee8 and various individual methods on the HOMSTRAD, Prefab and Balibase references

M-Coffee8 ClustalW Dialign-T FINSI Muscle 6 PCMA POA Probcons T-Coffee

Homstrad 67.75* 61.15 57.92 64.22 66.04 63.73 51.9 66.41 65.37
Prefab <10% 27.19 18.25 15.51 24.86 24.14 25.53 9.09 24.81 23.41
Prefab 10 to <20% 59.80* 43.27 44.11 58.76 54.76 55.96 32.26 56.21 55.28
Prefab 20 to <30% 84.58* 74.79 75.28 83.76 82.09 81.47 64.42 82.85 82.39
Prefab 30 to <40% 92.54* 87.27 85.62 91.81 90.42 89.84 79.96 91.68 91.51
Prefab 40 to <100% 97.05* 94.91 96.07 96.92 96.17 95.03 94.30 96.20 96.68
Prefab total 72.91* 61.68 62.05 72.01 69.56 69.76 52.61 70.54 69.97
BaliBase Set: 11 43.18* 22.68 25.32 38.95 34.37 37.45 11.18 39.55 32.68
BaliBase Set: 12 85.91* 71.43 72.57 82.68 84.80 82.61 51.05 84.80 83.00
BaliBase Set: 20 43.12 21.68 29.20 45.85 36.49 44.83 13.37 37.78 39.68
BaliBase Set: 30 59.19* 25.48 35.19 57.59 41.04 58.15 7.89 47.26 47.48
BaliBase Set: 40 58.17 39.04 44.75 60.02 48.42 53.83 14.42 51.25 55.58
BaliBase Set: 50 59.81 33.69 44.25 57.69 50.56 59.88 21.63 55.25 57.31
BaliBase Set: S11 59.50 40.76 33.34 50.63 59.37 44.76 31.37 58.45 47.61
BaliBase Set: S12 86.59 79.05 76.20 84.02 86.95 82.91 68.14 87.05 83.75
BaliBase Set: S2 56.76 44.37 36.90 53.85 55.78 51.85 35.24 54.46 49.78
BaliBase Set: S3 69.41* 49.69 47.31 63.83 63.14 64.10 36.14 65.03 64.45
BaliBase Set: S5 60.60 43.27 45.47 57.73 60.33 56.73 28.47 59.80 55.67
BaliBase total 62.02 42.83 44.59 59.34 56.47 57.92 29.00 58.24 56.10

HOMSTRAD was evaluated with aln_compare, Prefab with Qscore and BaliBAse with BaliScore. Methods significantly better (P < 0.05) than the next best are
marked with an asterisk. The highest score in each benchmark is highlighted in bold.
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