Progress report

Prostaglandins and the gastrointestinal tract

Prostaglandins (PGs) are hydroxy-fatty acids widely distributed in animal and human tissues and biologically active in minute amounts. Despite the vast literature¹⁻⁸ their physiological role remains unclear. They are present in the gastrointestinal tract and although comparatively little is known about the function of these PGs⁹⁻¹², there is some evidence that they may be concerned in some physiological and pathological processes affecting the gut. This review examines the present state of knowledge about PGs in relation to the gastrointestinal tract.

Chemical Structure and Synthesis

The PGs are derived from 'prostanoic acid'. They are unusual amongst biological compounds in that they contain no nitrogen, but consist of a C_{20} molecule with a five-membered ring between C_8 and C_{12} (figs 1 and 2)^{1, 13-15}. Many naturally occurring PGs have been isolated, but the gastrointestinal effects of only PGE₁, PGE₂, and PGF_{2α} and to a lesser extent PGA₁ and PGF_{1α} have been studied. Although the F type PGs differ from prostaglandins of the E type solely in having a hydroxyl instead of a ketone group at the C₈ position, their biological properties are markedly different.

Only PGs produced by biosynthetic methods have so far been available for study, but chemical methods are being developed¹⁶⁻²². Earlier methods yielded racemic mixtures of PGs and their analogues^{20,22,23} which not surprisingly were considerably less active than the natural compounds²⁴. An exciting advance has been the development of stereospecific methods of synthesis with early optical resolution and intermediate steps common to several of the prostaglandins¹⁸. It is likely therefore that larger amounts of these compounds may soon become available for study.

Occurrence and Release

Prostaglandins have been isolated from gastrointestinal mucosa and muscle and from the pancreas of both animals and man²⁵⁻³⁷, and they have been detected in animal but not human liver^{28, 29}. There are species differences in the occurrence of various PGs in the gut. For example, the human tissues studied have yielded mainly PGE₂^{33, 36, 37} but both PGE₂ and PGF_{2α} have been found in animals^{27, 29, 31}. Similarly PGE₁ is the predominant PG in rat gastric mucous membrane^{32, 38} in contrast to human gastric mucosa which contains mainly PGE₂³³. The interpretation of data on the distribution and tissue levels of the various prostaglandins is made difficult because of the many pitfalls that can beset the investigator. For example, the type of PG and

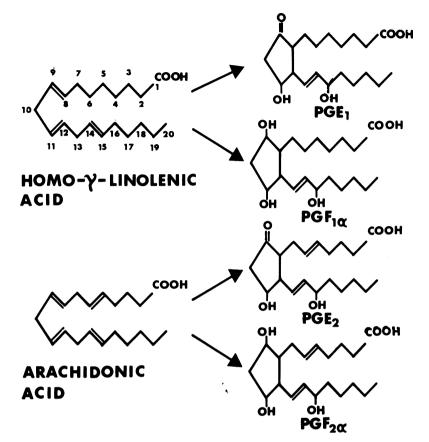
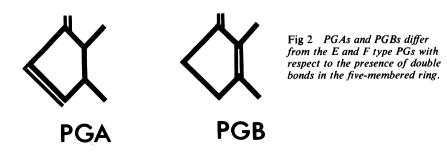



Fig 1 PGE_1 , PGE_2 , $PGF_{1\alpha}$, and $PGF_{2\alpha}$ and their precursors. Stereoisomerism at the C_9 position in PGFs, the naturally occurring isomers having the α configuration. The suffix represents the number of double bonds in the molecule.

its concentration may depend on the method used for its characterization and erroneously high levels may be recorded because non-enzymic formation of PGs (autoxidation) can occur during homogenization, even when this procedure is carried out in the cold³⁹. Moreover the isolation of a PG from a tissue does not necessarily imply that the PG is stored in that tissue. It seems more likely that PGs are continuously formed and liberated as required⁴ because gut homogenates can synthesize various PGs from appropriate fatty

4

acid precursors (fig 1)^{31,39-42}, and vascular perfusion of frog intestine with labelled precursors leads to the recovery of tagged prostaglandin from the venous effluent⁴³.

Spontaneous release of PGs from a variety of gastrointestinal preparations both *in vitro*^{30,44-50} and *in vivo*^{32,37,38,51} have been reported. The type of PG released depends on the species studied, the preparation used, whether collections are made from the serosal²⁶ or mucosal surface^{28,32}, and finally by the capability of the assay system to detect them; so far PGE₁, PGE₂, PGF_{1a}, and PGA₁ have been identified. The amount released can be greatly altered by various stimuli and also by the availability of the biosynthetic substrate. Stimuli which increase the rate at which PGs are released from intestinal muscle or mucosa include acetylcholine⁴⁸, DMPP⁴⁸, transmural and vagal electrical stimulation^{31,32,38,46,49,51,52}, gastrin³⁸, pentagastrin⁵¹, histamine⁵¹, theophylline and cyclic AMP (cAMP)^{38,51}, arachidonic acid^{47,48}, and phospholipase A^{45,47,48}. Perfusion of isolated rat liver with glucagon also releases PGA₁⁵³.

Vane⁵⁴ has recently shown that anti-inflammatory drugs, such as aspirin and indomethacin, inhibit synthesis of PGs in lung homogenates, probably by affecting PG synthetase⁵⁵, and similar findings have been reported for isolated strips of rabbit jejunum⁵⁰. Corticosteroids were considerably less effective in inhibiting PG synthesis⁵⁰. These observations may possibly be relevant to the known ulcerogenic properties of anti-inflammatory drugs, because PGs have been shown to protect animals from experimentally induced gastroduodenal ulceration⁵⁶⁻⁵⁸.

Inactivation

Discussion of effects which follow intravenous infusions of PGs into animals should take account of the observation that 90-95% of the E and F types and 60% of the A type are removed from the blood during one circulation through the lungs or liver⁵⁹⁻⁶². Intraluminally administered PGE₁ is inactivated in the small intestinal wall of rats^{63,64}. This rapid removal of PGs from the circulation is probably effected enzymatically and three enzymes capable of inactivating PGs have been isolated from gut and blood. 15-Hydroxy-PGdehydrogenase, which is present in pig lung⁶⁵, stomach, liver, and small intestine^{66,67}, is capable of degrading PGE₁ and PGE₂ and less rapidly PGA₁⁶⁸ *in vitro*. A reductase is present in the small intestine, liver, stomach, and pancreas of the pig^{66,67}, whilst the blood of several animals contains an isomerase which can inactivate PGA₁^{69,70}. Further, beta-oxidation of PGEs^{64,69,71,72} and ω -oxidation of PGA₁⁷³ have been demonstrated, *in vitro*, using fractions of animal liver and small intestine or isolated perfused rat liver⁷⁴.

Little is known about PG metabolism in man, but labelled PGs are rapidly removed from the blood and the label is excreted in urine and $facces^{75-77}$. Analysis of urinary metabolites indicates that a 15-hydroxy-PG-dehydrogenase, a reductase, beta- and ω -oxidation are all involved in PG degradation^{76,78,79}. Human liver can inactivate PGA₁ in vitro⁷⁹, but no PGA isomerase has been demonstrated in human blood⁷⁰.

Since PGs can be synthesized and degraded in the same tissues it seems likely that under physiological conditions they may act as local regulators rather than as circulating hormones. The rapid removal of PGs from venous blood and the marked cardiovascular effects of minute amounts of PGEs and PGAs lend further support to this concept, although in pathological states they might be carried in the blood stream to act at distant sites². Indeed it has been suggested that PG synthesis and degradation probably occur within the same cell⁸⁰. Such a theory could explain some of the discrepancies between findings *in vitro* and *in vivo*, not only because intravenous PGs are rapidly destroyed, but also because tissues vary in their ability to take up exogenous PGs^{38,81}. Similarly stimuli which bring about intracellular formation of PGs are likely to be more effective than exogenous PGs.

Gastrointestinal Motility

The great sensitivity of gastrointestinal smooth muscle to PGs has been exploited for the bioassay and identification of these substances. However, the effects of PGs on the gut examined *in vitro* show considerable variability which depends on the type of PG, the dose, the species, and even the muscle layer studied. It is therefore not possible to make any general statement without defining the variables mentioned.

STUDIES in vitro

Human and animal longitudinal muscle from both small and large intestine is contracted by the PGEs and PGF_{2α} (and by arachidonic acid)⁸²⁻⁹³, whilst the circular muscle is relaxed by the E type^{89,93}, but contracted by the F type of PGs^{93,96,97}. However, exceptions to this general rule have been reported^{82,96,98,99}. Effects of PGs on the stomach have been less studied. Human gastric circular muscle is relaxed by PGE₂, whilst the response of longitudinal muscle is variable³³; PGF_{2α} contracts both circular and longitudinal gastric muscle⁹⁶. On the other hand both circular and longitudinal strips of rat fundus are contracted by the E and F groups of PGs (and by arachidonic acid)^{87,91,100-102}. No studies of the effect of PGs on oesophageal muscle have yet been reported, although it has been shown that they are released from the oesophagus⁴⁹. Gastrointestinal muscle seems relatively insensitive to PGs of the A group, but small contractions of some animal and human longitudinal muscle have been described^{60,90,93}.

Differences in the effects of PGs applied to the mucosal or serosal surface complicate the picture further. PGE_1 applied serosally to isolated segments of guinea-pig ileum has the expected effects resulting in decreased propulsion of intraluminal contents¹⁰³, but the longitudinal layer is unaffected when PGE_1 is placed in the lumen¹⁰³, probably because either PGE_1 is metabolized⁶⁴ before reaching the longitudinal muscle or because it is not absorbed.

Pharmacological analysis suggests that the contractions or relaxations produced by PGs are mediated by different mechanisms. Relaxations result from direct action of PG on the receptors on or in the smooth muscle cells^{89,92,93,97}, but excitatory responses may be mediated either via the intrinsic nerves or at non-neural sites⁸⁹ (possibly by potentiating intrinsic acetylcholine¹⁰⁴). The way in which PGs act on smooth muscle cells is uncertain; the process is oxygen dependent and alterations in the amount of intracellular bound Ca⁺⁺, in permeability to Ca⁺⁺, or in the mycoplasmic Ca⁺⁺ concentration produced either directly or indirectly through changes in cAMP levels, have all been invoked^{100,105,106}.

STUDIES in vivo

Effects on motility of PG administered *in vivo* are usually in accord with observations recorded *in vitro*, but relatively high doses often accompanied by unpleasant side effects are required to elicit the responses.

In animals E type PGs inhibit contractions of vagally driven canine antral pouches¹⁰⁷, inhibit jejunal motility¹⁰⁸ but increase ileal pressures^{103,109}; PGF_{2α} increases both jejunal and ileal pressures^{108,109}. The lower oesophageal sphincter of the opossum has a differential response to PGs: it is contracted by PGF_{2α} but relaxed by PGE₁^{110,111}. There are no published data on the colonic response to PGs in laboratory animals.

The way human gastrointestinal motility is affected by PGs has not been extensively studied¹¹². Intravenous PGF_{2x} increases cardiac sphincter pressures¹¹³ and PGA₁ prevents heartburn caused by intravenous histamine¹¹⁴, suggesting that PGs might be involved in the control of the lower oesophageal sphincter. It is not yet known whether PGE₁ relaxes the cardiac sphincter or inhibits the motility of the human stomach as it does in animals¹⁰⁷, but this might be expected from the nausea and vomiting which this substance produces. Moreover oral administration of PGE, is associated with the reflux of bile into the stomach¹¹⁵, which could be taken as indirect evidence for inhibition of gastric motility. Abdominal cramps and the passage of clear watery fluid per rectum, with an accelerated transit of markers through the gut and an increased number of progressive pressure waves in the pelvic colon, follow oral PGE₁¹¹⁶; but the increased rate of transit may, at least in part, be secondary to the net secretion of fluid into the small intestinal lumen¹¹⁷. Intravenous infusions of PGF_{2a} inhibits segmental pressure activity in both the jejunum and ileum. Later in the course of the infusion fluid is secreted into the lumen and abnormal progressive pressure waves, which might have been expected to facilitate propulsion, occur in the ileum. Despite these effects, no clear changes in transit time (measured with a dve technique) could be detected in a 30-cm segment of the small intestine¹¹⁸: perhaps because of the limitation of the dye method. Although the speed of transit was unaffected, it seems likely that the volume of fluid entering the right colon was increased, possibly initiating mass movements and causing the subsequent diarrhoea experienced by the subjects. Abdominal colic occurred despite the inhibition of small intestinal motor activity, but at the moment the mechanism of this symptom is uncertain¹¹⁸. Abdominal pain may be associated with high intraluminal pressure waves¹¹⁹, but these were not observed in the colon after oral PGE₁¹¹⁶, and only very rarely in the small gut during intravenous PGF_{2a}¹¹⁸. Prostaglandin antagonists, eg, polyphloretin phosphate and SC19220, have recently been introduced and tested mostly against the effects of PGs on gastrointestinal motility in vitro120-122,96. These substances are ineffective against the inhibitory effects of PGs and their ability to block excitatory effects varies with the tissue and species under study⁹⁶. However, they are said to decrease muscle tone⁹⁶. More recently it has been shown that inhibition of PG synthesis by anti-inflammatory drugs progressively lowers the tone of isolated segments of rabbit jejunum, although the tissue is still responsive to exogenous PGs⁵⁰. On the other hand the tone of untreated jejunal strips increased steadily over the same period of time⁵⁰, as did the tone of strips of colonic muscle repeatedly stimulated electrically without changing the organ bath fluid¹²³: this increase in tone was accompanied by a continuous release of PGs into organ bath fluid^{50,123}. These

Prostaglandins and the gastrointestinal tract

observations suggest that PGs may be involved in the local maintenance of gastrointestinal muscle tone, and, if confirmed, would be a very interesting development in the physiology of the gut. Meanwhile it seems likely that PGs are involved in the local regulation of gastrointestinal motility. However, it is not possible at this stage to decide whether diarrhoea following their administration is caused primarily by the effects of PGs on intestinal motility¹⁰ or whether it is secondary to the net secretion of fluid and electrolytes also caused by these substances^{117,118}.

Gastric Secretion and Ulcer Formation

ANIMAL STUDIES

Evidence is accumulating that PGs of the E and A (but not the F) type and their precursors given parenterally or orally reduce the volume and hence output of acid and of pepsin from innervated and denervated stomachs of both conscious and anaesthetized animals. The available data are summarized in table I. This inhibition is non-selective. It affects basal, as well as sub-maximal and maximal acid secretion brought about by a variety of stimuli acting by different mechanisms¹³² (table I). The degree of inhibition depends not only on the dose of PG but also on the stimulus to acid secretion¹³².

Just how PGs inhibit gastric secretion is still unknown. It seems unlikely to be secondary to nausea or vomiting, or to the reflux of bile into the stomach from the duodenum¹³². Prostaglandins of the E and A type are powerful vasoactive agents which dilate gastric blood vessels in the fasting animal^{138-140,128,129}. However during inhibition of acid secretion with PGE₁, PGE₂, PGA₁ or PGA₂, gastric blood flow is reduced,^{128-130,133,134,141,142} but

Animal.	Route of Administra- tion	Prostaglandin Tested	Dose	Stimulus for Acid Secretion	Inhibition Noted
Rat	Subcutaneous	$E_1 = \frac{50-400 \ \mu g/kg^{57}}{0.5-1.0 \ \mu g/kg/min^{57}}$		None (pylorus and oesophagus ligated for 4 hr) ^{34, 57, 124, 135}	+
		Synthetic PGs	0.2-0.8 mg/kg ^{124,125} 0.4-0.32 mg/kg ^{24,124,125}	Pentagastrin 1 μ g/kg subcutaneously at 20-min intervals × 5	- ! -
	Intraluminal perfusion		0.5-1.0 µg/min ^{38,51}	None ^{38,51}	+
	Intratumnal pertusion	L1 L1	1-5 μg/kg/min ¹³⁶	Pentagastrin iv 4 $\mu g/kg^{38,51}$	+
				Pentagastrin iv 10 ng/kg/min ¹³⁶	+
				Histamine iv 500 µg/kg ^{38,51}	+
				Vagal stimulation ^{38,51}	+
		$F_{i_{\alpha}}F_{i_{\alpha}}$	Not given ³⁸		±
	Intravenous infusion		0.2-2.0 µg/min ¹²⁷	Pentagastrin iv 0.05-2 µg/min ¹²⁷	+
			2.0 µg/kg/min ^{128,125}	Pentagastrin iv 0.33 µg/kg/min ^{128,129}	+
		A1 A2	4 µg/kg/min ^{128,129}	Histamine iv 33 µg/kg/min ^{128,129}	+
Cat	Intravenous infusion	E ₂ ¹³⁰	8 μg/kg/30 min	Pentagastrin 8 µg/kg/hr	+
Dog Pavlov Heidenhain fistula	Intravenous infusion	E ₁ E ₂	0·5-1·5 µg/kg/min or	Food ^{56,181,132}	+
			0r 200 μg/kg ^{56,131,132}	Histamine iv 1-2.5 mg/hr ^{56,131,133}	+
		A ₁	1-2 μg/kg/min ^{56,131,133,134}	Histamine iv 200 $\mu g/kg/hr^{133,134}$	+
				Pentagastrin 0.3 μ g/kg/min ^{56,131,182}	+
				2-Deoxyglucose 70-200 mg/kg/min ^{56,131,132}	
		Arachidonic acid ¹⁸⁵	10 μg/kg/min	Histamine ED50	+
		Fax	$1 \ \mu g/kg/min$	Histamine 1 mg/hr	_
	Intravenous injection	- 2α E ₂ ¹³⁶	$20 \ \mu g/kg$	Histamine (no dose given)	+
	Intravenous Injection	MePGE ₂ ¹³⁶	$2 \mu g/kg$	Pentagastrin (no dose given)	÷
Ferret	Subcutaneous	E1137	0.5 mg/kg	Basal	+
		-		Pentagastrin 10 µg/kg (intraperitoneal)	±

Table I Effect of prostaglandins on gastric secretion in animals

the ratio of clearance of amidopyrine or ¹⁴C-aniline to acid output rises^{140,142,134,128,129}. This observation makes it more likely that the reduction in blood flow is the result rather than the cause of the inhibition of acid secretion^{140,142,134,128,129} and not vice versa as other workers believe^{134,130}. Using isolated preparations of the bull frog mucosa in which blood flow is not a factor, Way and Durbin¹⁴³ showed that PGE₁ inhibited acid secretion stimulated by gastrin and submaximal histamine, but was ineffective against maximal histamine and cAMP. As histamine and gastrin increase adenyl cyclase activity of the isolated frog and guinea-pig mucosa^{144,145}, PGE₁ might act by inhibiting the formation of acid output and increased adenyl cyclase activity in isolated gastric mucosae by PGE₁^{144,146}. These divergent results could be due to different doses of PGE₁.

Observations in vivo are equally conflicting, for whilst the majority of observations suggest that PGs inhibit acid output, cAMP may inhibit or stimulate acid secretion. For example, intraluminal PGE₁ inhibited gastric acid secretion stimulated by cAMP in the anaesthetized rat⁵¹, but both cAMP and PGE₁ given intravenously antagonized histamine stimulated secretion in man and dogs¹³³. Clearly much more work is required with careful control of the experimental design before it can be decided whether PGs inhibit gastric secretion by modifying the levels of cAMP.

The importance of PGs in the local regulation of acid secretion⁵¹, perhaps by a negative feedback system², is not yet certain. In favour of this idea is the presence of PGs in the gastric mucosa^{30-32,38}, and in basal and stimulated gastric juice⁵¹, although it is not clear whether the PGs are secreted, or merely derived from exfoliated cells¹⁰. The finding that infused PGE₁ diminishes the incidence of ulcers induced experimentally in animals is of great interest⁵¹⁻⁵³, and has led to suggestions that lack of PGs might be a factor in human ulcer diathesis and that PGs might be of value in the treatment of peptic ulcer.

HUMAN STUDIES

The evidence that natural PGs reduce, or act as local regulators of acid secretion in man, is less convincing. The data are summarized in table II. Intravenous PGE₁ and PGA₁ inhibit basal and stimulated acid secretion, but at doses of PGE₁ which often produce unwanted effects^{149,150}. These were trivial with PGA₁, but the inhibition was less and became less marked with increasing doses¹¹⁴. Oral PGE₁, PGE₂, and intravenous PGF_{2a} do not inhibit pentagastrin-induced acid output^{115,151,152}. Histamine or pentagastrin decrease PGE₂ levels in gastric juice, whilst rectal indomethacin fails to augment submaximally stimulated acid output³⁷. These latter observations could be taken as evidence against the local role of PGs in human gastric secretion.

The failure of oral PGs to inhibit human gastric secretion in man is interesting^{115,147}. It might have been expected that PGE₂ would be more effective, because it is found in gastric tissues^{33,37}. However, both intraluminal PGE₁ and PGE₂ inhibit acid output in the rat^{38,126} although PGE₁ is present in higher concentrations in the mucosa. More likely alternative explanations are the instability of PGE₁ in an acid environment¹¹⁵ or the rapid enzymatic degradation of natural PGs to inactive metabolites.

It is difficult to see at this stage how naturally occurring PGs can be used to treat peptic ulcer, because the intravenous route is obviously impracticable,

Route of Administration	Pr ostaglandin	Dose	Stimulus to Acid Secretion	No. of Subjects in whom Inhibition of Volume and/or Output Noted	Unwanted Effects
Oral	PGE1 ¹¹⁶	10-40 µg/kg/30 min	Subcutaneous pentagastrin 6 μ g/kg	0/4*	Diarrhoea
	PGE ₂ ¹⁴⁷	2·5 mg 4·0 mg	None	0/1* 0/3* 14/14**	None
	15(R)15 MePGE ₂ ¹⁴⁸	100-200 μg	Intramuscular pentagastrin 6 µg/kg	8/8**	Nil reported
	PGE ₁ ^{149,150}	4 μg/kg/30 min 7 μg/kg/30 min	None Intravenous penta- gastrin 2 µg/kg/hr	8/8 7/8	Cardiovascular Desire to defaecate
Intravenous infusion	PGA ₁ 114	0·5-0·6 µg/kg/min	None Intravenous histamine 0·015 mg/kg/hr	1/1 9 subjects but no. in whom inhibition noted not given (P<0.01)	Pulse rate ↑
			None	0/2	Occasional nausea
		1-1·25 μg/kg/min	Intravenous histamine 0.015 mg/kg/hr		Gocasional nausca
	PGF ₂ α ¹⁵¹	0·5 μg/kg/min for 20 min	Intravenous penta- gastrin 0·01 μg/kg/ min	0/5	Nil noted
Intravenous injection	15(R)15 MePGE,148	100-200 μg	None	0/5	Nil noted

Table II Effect of prostaglandins on gastric secretion in man

*There was a tendency for an increase in acid secretion after oral PGE₁ and PGE₂

**A rise in pH was also noted here

the oral route ineffective, and both may be associated with diarrhoea. This gloomy outlook may be radically altered by the introduction of analogues of prostaglandins. As prostaglandins are rapidly inactivated by 15-hydroxy-PG-dehydrogenase, analogues modified at the C₁₅ position can be expected to be more stable: one such analogue, 15(S)15-methylprostaglandin E₂ (MePGE₂)^{21,152}, is an effective inhibitor of gastric secretion in animals¹³⁶. This compound is known to have a more prolonged effect on human uterine contractions than natural PGs but is associated with a greater incidence of unwanted effects¹⁵³. However, recently Karim and his colleagues^{147,148} examined the effects of the other isomer 15(R)15-methylprostaglandin E_2 $(15(R)15MePGE_{\circ})$ on gastric secretion in man. Given orally (100-200 μ g), this compound markedly diminished basal and pentagastrin-stimulated gastric acid secretion. The effect was mediated by a reduction in acid concentration and was reflected by a sustained elevation of pH: this was unusual, as after natural PGs most workers have noted an inhibition of volume (and hence output). Intravenous injection of 15(R)15MePGE₂ was ineffective against pentagastrin-induced acid secretion¹⁴⁸. There were no unwanted effects following administration by either route. If confirmed, these new observations now open exciting possibilities for the control of gastric secretion in man.

Intestinal Absorption and Secretion

The main interest in the effects of PGs on intestinal absorptive function is their possible role in the pathogenesis of some diarrhoeal states. Diarrhoea often occurs in women given high doses of oral or intravenous PGE_1 , PGE_2 , or $PGF_{2\alpha}$ for therapeutic abortion^{154–158}, but is less frequent with the lower

doses required for induction of labour at term^{159,160}. This complication is rarely seen after intravaginal¹⁶¹ or intraamniotic administration¹⁶², presumably because comparatively little is absorbed. PGF_{2a} tends to cause diarrhoea more often than PGEs. Under experimental conditions diarrhoea is frequently induced by PGEs or PGF_{2a}^{115,116,118,147,148,155} but rarely by PGA₁^{114,163}. Arachidonic acid, a precursor of PGE₂, causes marked diarrhoea in animals¹⁶⁴.

Prostaglandins were known to affect water and electrolyte transport across a variety of biological membranes^{165,166}, but in the absence of data on gastrointestinal mucosa and because of the potent effects of PGs on gastrointestinal smooth muscle (see above), it was thought that the diarrhoea was caused by stimulation of gastrointestinal motility¹⁰. However, the presence of clear fluid in the faecal output in man following oral PGE₁ suggested that water and electrolyte transport across the mucous membrane of the gut was altered and that the accelerated intestinal transit was due, at least in part, to the mechanical effect of the increased bulk of intestinal contents¹¹⁶. Recent reports support this theory.

In vitro PGE₁, PGE₂, and PGF_{2,4} inhibited Na⁺ absorption and stimulated Cl- secretion by isolated rabbit ileal mucosa¹⁶⁷⁻¹⁶⁹, whilst PGE₂ reduced the net absorption of electrolyte and water by everted sacs of hamster terminal ileum¹⁷⁰. In vivo intraarterial infusion of PGE₁, PGA₁, or PGF_{2 α} caused a prompt secretion of water and electrolytes into Thiery Vella jejunal loops of anaesthetized dogs. On the other hand intraluminal PGE₁ was less active: it reduced net absorption but there was no secretion of water and electrolytes into the lumen¹⁷¹. It seemed unlikely that alterations in blood flow were responsible for changes in electrolyte and water secretion, although the profound hypotension with high arterial doses of PGs probably accounted for the marked changes in the few jejunal biopsies examined: lower doses had little effect on jejunal morphology¹⁷¹. A more likely explanation for the alterations in water and electrolyte transport observed is that PGs modify levels of cAMP. PGE₁, PGE₂, and to a lesser extent PGF_{2 α}, stimulate adenyl cyclase activity of isolated rabbit and guinea-pig small intestinal mucosa^{172,173}, whilst cAMP and theophylline increase Cl⁻ secretion and inhibit Na⁺ absorption by isolated rabbit and human ileal mucosa^{174,175}. In vivo, in anaesthetized dogs, subthreshold doses of $PGF_{2\alpha}$ and the ophylline had a synergistic effect, suggesting that both may act by increasing cAMP¹⁷¹. It thus seems probable that PGs influence electrolyte and water transport by small intestinal mucosa through alterations in cAMP levels.

In man intrajejunal PGE₁ caused secretion of water and electrolytes apparently resulting from increased unidirectional flux from blood to lumen^{117,176}. In healthy male volunteers intravenous infusions of PGE_{2α} (0·28-0·81 μ g/kg/min) produced net secretion of water and electrolytes into the jejunum and ileum. More PGF_{2α} was needed to stimulate jejunal than ileal secretion and all but one of the 15 subjects passed loose motions at the end of the study regardless of whether secretion was noted or not: many also experienced abdominal cramps¹¹⁸.

Exogenous PGs are thus associated with diarrhoea. It is possible that some forms of clinical diarrhoea might be caused by excessive or abnormal endogenous synthesis of these substances, but the data available are circumstantial. For example, some patients with medullary carcinoma of the thyroid, neural crest tumours, or phaochromocytomas have diarrhoea and in a few high levels of $PGF_{2\alpha}$ and PGE_2 were found in tumour tissue, and in

peripheral and tumour venous blood^{177,178}. It is also possible that $PGF_{2\alpha}$ is responsible for diarrhoea during menstruation, because high levels of $PGF_{2\alpha}$ are present in the menstrual flow^{179,180}. A similar mechanism might account for the infantile diarrhoea which sometimes occurs when a lactating mother menstruates¹⁸⁰. The validity of these suggestions awaits the availability of sensitive methods for the assay of PGs in peripheral blood¹⁸¹⁻¹⁸⁷ and of specific antagonists which can be used in man. Early reports suggest that pretreatment with the PG antagonist polyphloretin phosphate (PPP) prevents diarrhoea caused by exogenous PGs in mice^{109,188}. An alternative approach is to measure the urinary excretion of metabolites as an index of the rate of PG synthesis¹⁸⁹.

In cholera profuse watery diarrhoea with severe dehydration occurs. Cholera exotoxin (CT) inhibits water and Na⁺ absorption by isolated animal and human ileal mucosa^{167,175}, stimulates adenyl cyclase activity in vitro and in vivo^{172,190-192}, and increases the cAMP levels in vitro¹⁹³; all these effects resemble the actions of PGs. However, intestinal secretion induced in dogs by CT, though slower in onset, was considerably greater than the response to either intraluminal PGE_1 or intraarterial PGF_{2n} . Moreover the effect persisted for several hours after the CT had been removed from the loop, whereas the response to PGs did not¹⁷¹. Release of PGs within the cells by CT⁸⁰ might account for its greater effect as compared with that of exogenous PGs. Aspirin inhibits the synthesis of PGs⁵⁴, and it has been proposed that it might be possible to determine whether PGs are involved in cholera by giving this drug to patients with this disease¹⁹⁴. This idea may be difficult to evaluate clinically, because unless fluid lost is promptly replaced intravenously, cholera is often fatal. Recent studies suggest that animals pretreated with large doses of oral or parenteral antiinflammatory drugs are protected from the effects of CT^{195,196}. These observations raise the possibility that such drugs might protect patients from the effects of cholera but give no indication whether the treatment would be effective once the disease is established.

The effect of PGs on electrolyte transport by the colon has not been investigated. A recent report suggests that intraluminal sulphasalazine prevents colonic secretion of water and electrolytes in patients with ulcerative colitis¹⁹⁷, but the rapidity of the effect is difficult to reconcile with the observation that a metabolite of the drug is the active agent¹⁹⁸. However, PGs are released by damaged tissues¹⁹⁹⁻²⁰¹, and as sulphasalazine has antiinflammatory properties, it may inhibit synthesis of PGs by the damaged mucosa. It is conceivable that PGs may be a factor in the pathogenesis of ulcerative colitis.

Exocrine Pancreas

The few published observations regarding PGs and pancreatic function are of uncertain significance. In animals PGEs but not PGFs inhibit secretinstimulated fluid and electrolyte secretion^{202,203}, produce hypotension, and decrease pancreatic blood flow²⁰³. In cats this inhibition was sometimes preceded by a transient stimulation of secretion and of blood flow²⁰³. The effects of PGs on enzyme output by the pancreas depended on the species studied; whilst neither PGEs nor PGFs influenced enzyme secretion in the cat²⁰³, PGE₁ caused an increase in enzyme output in the dog²⁰², which probably did not result from pancreozymin release²⁰⁴. In vitro, on the other hand, PGEs and PGFs stimulated fluid and electrolyte output by the salineperfused pancreas and this effect was potentiated by theophylline²⁰³; the adenyl cyclase was also increased by PGE₁ in guinea-pig pancreas²⁰². PGE₁ decreased and PGF_{2a}, PGB₁ and PGB₂ increased the vascular resistance of the pancreas *in vitro*^{205,206}. It is possible therefore that PGs may stimulate pancreatic secretion, perhaps through adenyl cyclase, but that this effect is masked *in vivo* by diminution of blood flow, or by the release of an antisecretory agent, or both²⁰³.

Comment

There is thus no lack of evidence for the synthesis, release, and breakdown of PGs in gastrointestinal tissues, nor that under experimental conditions they markedly affect gastrointestinal function. The evidence is less clear that PGs have a role in gastrointestinal physiology, although it seems likely that if they do, they act as local regulators. There is some circumstantial evidence to suggest that they may play a part in pathological conditions. With the arrival of analogues that appear to have specific actions on the gastrointestinal tract yet few unwanted effects, a role for PGs in the treatment of gastrointestinal disorders begins to look promising.

The author wishes to thank Dr J. J. Misiewicz for much help with writing this review. She also thanks Drs E. N. Rowlands and I. H. M. Main for helpful criticism, Mrs I. M. Prentice, FMAA, and Mr A. G. Booker, FPS for the photographs, and Mrs C. McDonald for typing the manuscript.

SHEILA L. WALLER MRC Gastroenterology Unit, Central Middlesex Hospital, London

References

¹Bergström, S., Carlson, L. A., and Weeks, J. R. (1968). The prostaglandins: a family of biologically active lipids. *Pharmacol. Rev.*, 20, 1-48.

²Horton, E. W. (1969). Hypothesis on physiological roles of prostaglandins. Physiol. Rev., 49, 122-161.

³Pickles, V. R. (1969). Prostaglandins. Nature (Lond.), 224, 221-225.

⁴Ramwell, P. W., and Shaw, Jane E. (1970). Biological significance of the prostaglandins. Recent Progr. Hormone Res., 26, 139-187.

⁸Hinman, J. W. (1972). Prostaglandins. Ann. Rev. Biochem., 41, 161-178.

Bass, P., and Bennett, D. R. (1968). Local chemical regulation of motor action of the bowel-substance P and lipid-soluble acids. In *Handbook of Physiology Sect. 6, Alimentary Canal*, edited by C. F. Code, Vol. 4, pp. 2193-2212. American Physiological Society, Washington D.C.

¹⁰Bennett, A., and Fleshler, B. (1970). Prostaglandins and the gastrointestinal tract. Gastroenterology, 59, 790-800.

¹¹Wilson, D. E. (1972). Prostaglandins and the gastrointestinal tract. Prostaglandins, 1, 281-293.

¹⁴Bennett, A. (1972). Effects of prostaglandins on the gastrointestinal tract. In *The Prostaglandins: Progress in Research*, edited by S. M. M. Karim, pp. 205-221. Medical and Technical Publishing Co. Ltd, Oxford and Lancaster.

¹³Bergström, S., and Samuelsson, B. (1965). Prostaglandins. Ann. Rev. Biochem., 34, 101-108.

¹⁴Bergström, S. (1966). The prostaglandins. Recent. Progr. Hormone Res., 22, 153-175.

¹⁴Bergström, S. (1967). Prostaglandins: members of a new hormonal system. Science, 157, 382-391.

¹⁴Corey, E. J., Andersen, N. H., Carlson, R. M., Paust, J., Vedis, E., Vlattas, I., and Winter, R. E. K. (1968). Total synthesis of prostaglandins: synthesis of the pure dl-E₁, -F₁α -F₁β -A₁ and B₁ hormones. J. Amer. Chem. Soc., 90, 3245-3247.

¹⁷Corey, E. J., Vlattas, I., Andersen, N. H., and Harding, K. (1968). A new total synthesis of prostaglandins of the E₁ and F₁ series including 11-epiprostaglandins. J. Amer. chem. Soc., 90, 3247-3248.

¹⁸Corey, E. J. (1971). Studies on the total synthesis of prostaglandins. Ann. N.Y. Acad. Sci., 180, 24-35.

^sHorton, E. W. (1972). Prostaglandins (Monographs on Endocrinology, Vol. 7). Heinemann, London. Springer, Berlin.

⁶Karim, S. M. M. Editor (1972). The Prostaglandins: Progress in Research. MTP Medical and Technical Publishing Co. Ltd., Oxford and Lancaster.

⁷Weeks, J. R. (1972). Prostaglandins. Ann. Rev. Pharmacol., 12, 317-336.

- ¹⁹Fried, J., Lin, C., Mehra, M., Kao, W., and Dalven, P. (1971). Synthesis and biological activity of prostaglandins and prostaglandin antagonists. Ann. N.Y. Acad. Sci., 180, 38-63.
- ³⁰Pappo, R., Collins, P., and Jung, C. (1971). New synthetic approach in the prostaglandin field. Ann. N.Y. Acad. Sci., 180, 64-75.
- ¹¹Bundy, G., Lincoln, F., Nelson, N., Pike, J., and Schneider, W. (1971). Novel prostaglandin syntheses. Ann. N.Y. Acad. Sci., 180, 76-90.
- ³³Strike, D., and Smith, H. (1971). A novel approach to the total synthesis of prostaglandins. Preparation of a stereoisomeric mixture containing (±)-13, 14-dihydroprostaglandin E₁. Ann. N.Y. Acad. Sci., 180, 91-100.
- ²³Fried, J., Santhanakrishnan, T. S., Himizu, J., Lin, C. H., Ford, S. H., Rubin, B., and Grigas, E. O. (1969). Prostaglandin antagonists: synthesis and smooth muscle activity. *Nature (Lond.)*, 223, 208-210.
- ²⁴Lippmann, W. (1969). Inhibition of gastric acid secretion in the rat by synthetic prostaglandins. J. Pharm. Pharmacol., 21, 335-336.
- ²⁵Ambache, N., Brummer, H. C., Whiting, J., and Wood, M. (1966). Atropine-resistant substances in extracts of plexus-containing longitudinal muscle (PC-LM) from guinea-pig ileum. J. Physiol. (Lond.),186, 32-33P.
 ²⁶Ambache, N., Brummer, H. C., Rose, J. G., and Whiting, J. (1966). Thin-layer chromatography of spasmo-
- genic unsaturated hydroxy-acids from various tissues. J. Physiol. (Lond.), 185, 77-78P. ²⁷Bergström, S. (1967). Isolation, structure and action of prostaglandins. In Prostaglandins: Proceedings of the
- 2nd Nobel Symposium, edited by S. Bergström and B. Samuelsson, pp. 19-30. Interscience, New York. Almqvist and Wiksell, Stockholm.
- ²⁸Karim, S. M. M., Sandler, M., and Williams, E. D. (1967). Distribution of prostaglandins in human tissues. Brit. J. Pharmacol., 31, 340-344.
- ²⁹Karim, S. M. M., Hillier, K., and Devlin, J. (1968). Distribution of prostaglandins E₁, E₂, F₁a and F₂a in some animal tissues. J. Pharm. Pharmacol., 20, 749-753.
- ³⁰Coceani, F., Pace-Asciak, C., Volta, F., and Wolfe, L. S. (1967). Effect of nerve stimulation on prostaglandir. formation and release from the rat stomach. *Amer. J. Physiol.*, 213, 1056-1064.
- ³¹Wolfe, L. S., Coceani, F., and Pace-Asciak, C. (1967). The relationship between nerve stimulation and the formation and release of prostaglandins. *Pharmacologist*, 9, 171-172.
- ³³Bennett, A., Friedmann, C. A., and Vane, J. R. (1967). Release of prostaglandin E₁ from the rat stomach. Nature (Lond.), 216, 873-876.
- ³³Bennett, A., Murray, J. G., and Wyllie, J. H. (1968). Occurrence of prostaglandin E₂ in the human stomach and a study of its effects on human isolated gastric muscle. Brit. J. Pharmacol., 32, 339-349.
- ³⁴Distelkötter, B., and Vogt, W. (1968). Spontane Neubildung von Prostaglandin im isolierten Froschdarm. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak., 260, 324-329.
- ³⁵Miyazaki, Y. (1968). Occurrence of prostaglandin E_1 in the mucus membrane layer of swine intestine. Sapporo med. J., 34, 321-334.
- ³⁶Bennett, A. Personal communication.
- ³⁷Bennett, A., Stamford, I. F., and Unger, W. G. (1972). Prostaglandin E₂ and gastric acid secretion in man. J. Physiol. (Lond.), 226, 96-98P.
 ³⁸Shaw, J. E., and Ramwell, P. W. (1968). Inhibition of gastric secretion in rats by prostaglandin E₁. In Prosta-
- ³⁸Shaw, J. E., and Ramwell, P. W. (1968). Inhibition of gastric secretion in rats by prostaglandin E₁. In *Prostaglandin: Symposium of the Worcester Foundation for Experimental Biology*, edited by P. W. Ramwell and J. E. Shaw, pp. 55-66. Interscience, New York.
- ^{3*}Nugteren, D. H., Vonkeman, H., and Dorp, D. A. van. (1967). Non-enzymic conversion of all-cis 8, 11, 14eicosatrienoic acid into prostaglandin E₁. Rec. Trav. chim. Pays-Bas, 86, 1237-1245.
- ⁴⁰Dorp, D. A. van (1966). The biosynthesis of prostaglandins. Mem. Soc. Endocr. 14, 39-47.
- ⁴¹Nugteren, D. H., Beerthuis, R. K., and Dorp, D. A. van (1966). The enzymic conversion of all-cis 8, 11, 14eicosatrienoic acid into prostaglandin E₁. Rec. Trav. chim. Pays-Bas, 85, 405-419.
- ⁴¹Pace-Asciak, C., Morawska, K., Coceani, F., and Wolfe, L. S. (1968). The biosynthesis of prostaglandin E₂ and F_{4a} in homogenates of the rat stomach. In *Prostaglandin: Symposium of the Worcester Foundation for Experimental Biology*, edited by P. W. Ramwell and J. E. Shaw, pp. 371-378. Interscience, New York.
- ⁴³Kunze, H. (1970). Formation of (1-14C) prostaglandin E₂ and two prostaglandin metabolites from (1-14C) arachidonic acid during vascular perfusion of the frog intestine. *Biochim. biophys. Acta (Amst.)*, 202, 180-183.
- ⁴⁴Suzuki, T., and Vogt, W. (1965). Prostaglandine in einem Darmstoffpräparat aus Froschdarm. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak., 252, 68-78.
- ⁴⁵Vogt, W., and Distelkötter, B. (1967). Release of prostaglandin from frog intestine. In *Prostaglandins: 2nd Nobel Symposium*, edited by S. Bergström and B. Samuelsson, pp. 237-240. Almqvist and Wiksell, Stockholm.
- ⁴⁴Coceani, F., Pace-Asciak, C., and Wolfe, L. S. (1968). Studies of the effect of nerve stimulation on prostaglandin formation and release in the rat stomach. In *Prostaglandin: Symposium of the Worcester Foundation for Experimental Biology*, edited by P. W. Ramwell and J. E. Shaw, pp. 39-45. Interscience, New York.
- ⁴'Bartels, J., Vogt, W., and Wille, G. (1968). Prostaglandin release from and formation in perfused frog intestine. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak., 259, 153-154.
- ⁴⁸Bartels, J., Kunze, H., Vogt, W., and Wille, G. (1970). Prostaglandin: Liberation and formation in perfused frog intestine. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak., 266, 199-207.
- ⁴⁹Rashid, S. (1971). The release of prostaglandin from the oesophagus and the stomach of the frog (Rana temporaria). J. Pharm. Pharmacol., 23, 456-457.
- ⁵⁰Ferreira, S. H., Herman, A., and Vane, J. R. (1972). Prostaglandin generation maintains the smooth muscle tone of the rabbit isolated jejunum. Brit. J. Pharmacol., 44, 328-330P.
- ⁵¹Ramwell, P. W., and Shaw, J. E. (1968). Prostaglandin inhibition of gastric secretion. J. Physiol. (Lond.), 195, 34-36P.
- ⁵³Radmanović, B. (1968). Prostaglandins in the perfusate of the rat small intestine after vagal stimulation. Jugoslav. physiol. pharmac. Acta, 4, 123-124.
- ⁵Dawson, W. D., and Ramwell, P. W. Unpublished observations. Quoted Ramwell, P. W. and Shaw, J. E. (1970). (Reference 4).
- ⁵⁴Vane, J. R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature [new Biol.], 231, 232-235.

- ⁵⁵Flower, R., Gryglewski, R., Herbaczynska-Cedro, K., and Vane, J. R. (1972). Effects of anti-inflammatory drugs on prostaglandin biosynthesis. *Nature [new Biol.]*, 238, 104-106.
- ³⁴Roberts, A. (1968). Antisecretory property of prostaglandins. In Prostaglandin: Symposium of the Worcester Foundation for Experimental Biology, edited by P. W. Ramwell and J. E. Shaw, pp. 47-54. Interscience, New York.
- ⁵⁷Robert, A., Nezamis, J. E., and Phillips, J. P. (1968). Effect of prostaglandin E₁ on gastric secretion and ulcer formation in the rat. *Gastroenterology*, 55, 481-487.
- **Robert, A., Stowe, D. F., and Nezamis, J. E. (1971). Prevention of duodenal ulcers by administration of prostaglandin E₂ (PGE₂). Scand. J. Gastroent., 6, 303-305.
- ⁵⁹Ferreira, S. H., and Vane, J. R. (1967). Prostaglandins: their disappearance from and release into the circulation. Nature (Lond.), 216, 868-873.
- **Horton, E. W., and Jones, R. L. (1969). Prostaglandins A₁, A₂ and 19-hydroxy A₁: their actions on smooth muscle and their inactivation on passage through the pulmonary and hepatic portal vascular beds. Brit. J. Pharmacol., 37, 705-722.
- ⁴¹McGiff, J. C., Terragno, N. A., Strand, J. C., Lee, J. B., Lonigro, A. J., and Ng, K. K. F. (1969). Selective passage of prostaglandins across the lung. *Nature (Lond.)*, 223, 742-745.
- ⁴³Piper, P. J., Vane, J. R., and Wyllie, J. H. (1970). Inactivation of prostaglandins by the lungs. *Nature (Lond.)*, 225, 600-604.
- **Parkinson, T. M., Schneider, J. C., Jr., Krake, J. J., and Miller, W. L. (1968). Intestinal absorption and metabolism of prostaglandin E₁-1-¹C by thoracic duct and bile duct cannulated rats. *Life Sci.*, 7, 883-889.
 **Parkinson, T. M., and Schneider, J. C., Jr., (1969). Absorption and metabolism of prostaglandin E₁ by per-

fused rat jejunum in vitro. Biochim. biophys. Acta (Amst.), 176, 78-85. **Änggård, E., and Samuelsson, B. (1966). Purification and properties of a 15-hydroxyprostaglandin dehydro-

- genase from swine lung. Ark. Kemi, 25, 293-300. **Larsson, C., and Änggård, E. (1970). Distribution of prostaglandin metabolizing enzymes in tissues of the swine.
- Acta pharmacol (Kbh.), 28, Suppl. 1, 61. ⁴⁷Änggård, E., Larsson, C., and Samuelsson, B. (1971). Distribution of 15-hydroxy prostaglandin dehydrogenase
- and gard, E., Latson, C., and Gardisson, D. (177). Distribution of prostaglandin ∠1³¹-reductase in tissues of the swine. Acta physiol. scand., 81, 396-404.
 ⁴⁸Vonkeman, H., Nugteren, D. H., and Dorp, D. A. van. (1969). The action of prostaglandin 15-dehydrogenase
- on various prostaglandins. Biochim. biophys. Acta (Amst.), 187, 581-583.
- "Jones, R. L. (1970). A prostaglandin isomerase in cat plasma. Biochem. J., 119, 64-65P.
- ⁷⁰Horton, E. W., Thompson, C., Jones, R. L., and Poyser, N. (1971). Release of prostaglandins. Ann. N.Y. Acad. Sci., 180, 351-362.

¹¹Hamberg, M. (1968). Metabolism of prostaglandins in rat liver mitochondria. Europ. J. Biochem., 6, 135-146.

⁷²Hamberg, M., and Israelsson, U. (1970). Metabolism of prostaglandin E₂ in guinea-pig liver. I. Identification of seven metabolites. J. biol. Chem., 245, 5107-5114.

- ¹³Israelsson, U., Hamberg, M., and Samuelsson, B. (1969). Biosynthesis of 19-hydroxyprostaglandin A₁. Europ. J. Biochem., 11, 390-394.
- ¹⁴Dawson, W. D., Jessup, S. J., McDonald-Gibson, W., Ramwell, P. W., and Shaw, J. E. (1970). Prostaglandin uptake and metabolism by the perfused rat liver. Brit. J. Pharmacol., 39, 585-598.
- ¹⁴Granström, E. (1967). On the metabolism of prostaglandin E₁ in man: prostaglandins and related factors 50. Progr. Biochem. Pharmacol., 3, 89-93.
- ¹⁶Granström, E., and Samuelsson, B. (1971). On the metabolism of prostaglandin F₂a in female subjects. J. biol-Chem., 246, 5254-5263.
- ¹⁷Hamberg, M., and Samuelsson, B. (1971). On the metabolism of prostaglandins E₁ and E₂ in man. J. biol. Chem., 246, 6713-6721.
- ⁷⁸Änggård, E., and Samuelsson, B. (1967). The metabolism of prostaglandins in lung tissue. In Prostaglandins: Proceedings of the 2nd Nobel Symposium, edited by S. Bergström and B. Samuelsson, pp. 97-105. Interscience, New York. Almqvist and Wiksell, Stockholm.
- ¹⁸Samuelsson, B., Granström, E., Greén, K., and Hamberg, M. (1971). Metabolism of prostaglandins. Ann. N.Y. Acad. Sci., 180, 138-163.
- ⁸⁰Änggård, E. (1971). Studies on the analysis and metabolism of the prostaglandins. Ann. N.Y. Acad. Sci., 180, 200-217.
- ⁸¹Bito, L. Z. (1972). Accumulation and apparent active transport of prostaglandins by some rabbit tissues in vitro. J. Physiol. (Lond.), 221, 371-387.
- **Bergström, S., Elliason, R., Euler, U. S. von, and Sjövall, J. (1959). Some biological effects of two crystalline prostaglandin factors. Acta physiol. scand., 45, 133-144.
- ⁸³Horton, E. W., and Main, I. H. M. (1963). A comparison of the biological activities of four prostaglandins. Brit. J. Pharmacol., 21, 182-189.
- ⁴⁴Holmes, S. W., Horton, E. W., and Main, I. H. M. (1963). The effect of prostaglandin E₁ on responses of smooth muscle to catecholamines, angiotensin and vasopressin. Brit. J. Pharmacol., 21, 538-543.
- ⁸⁴Horton, E. W. (1963). Action of prostaglandin E₁ on tissues which respond to bradykinin. *Nature (Lond.)*, 200, 892-893.
- ^{set}Horton, E. W., and Main, I. H. M. (1965). A comparison of the actions of prostaglandins F₂α and E₁ on smooth muscle. Brit. J. Pharmacol., 24, 470-476.
- ⁸⁷Clegg, P. C. (1966). Antagonism by prostaglandins of the responses of various smooth muscle preparations to sympathomimetics. *Nature (Lond.)*, 209, 1137-1139.
- **Miyazaki, E., Ishizawa, M., Sunano, S., Syuto, B., and Sakagami, T. (1967). Stimulating action of prostaglandin on the rabbit duodenal muscle. In *Prostaglandins: Proceedings of the 2nd Nobel Symposium*, edited by S. Bergström and B. Samuelsson, pp. 277-281. Interscience, New York. Almqvist and Wiksell, Stockholm.
- **Bennett, A., Eley, K. G., and Scholes, G. B. (1968). Effects of prostaglandins E₁ and E₂ on human, guinea-pig and rat isolated small intestine. *Brit. J. Pharmacol.*, 34, 630-638.
- Weeks, J. R., Sekhar, N. C., and Ducharme, D. W. (1968). Relative activity of prostaglandins E₁, A₁, E₂ and A₂ on lipolysis, platelet aggregation, smooth muscle and the cardiovascular system. J. Pharm. Pharmacol., 21, 103-108.
- ⁹¹Weeks, J. R., Schultz, J. R., and Brown, W. E. (1968). Evaluation of smooth muscle bioassays for prostaglandins E₁ and F_{1α}. J. appl. Physiol., 25, 783-785.
- **Bennett, A., and Fleshler, B. (1969). Action of prostaglandin E₁ on the longitudinal muscle of the guinea-pig isolated colon. Brit. J. Pharmacol., 35, 351-352P.

- ³³Vanasin, B., Greenough, W., and Schuster, M. M. (1970). Effect of prostaglandin (PG) on electrical and motor activity of isolated colonic muscle. (Abstr.) Gastroenterology, 58, 1004.
- *Ambache, N., and Zar, M. A. (1970). An inhibitory action of histamine on the guinea-pig ileum. Brit. J. Pharmacol., 38, 229-240.
- ⁹⁵Jager, F. C. (1970). Effect of fatty acids on the contraction of guinea-pig ileum in vitro. *Experientia* (Basel), 26, 731-732.

⁹⁴Bennett, A., and Posner, J. (1971). Studies on prostaglandin antagonists. Brit. J. Pharmacol., 42, 584-594.

- ⁹⁷Fleshler, B., and Bennett, A. (1969). Responses of human, guinea-pig and rat colonic circular muscle to prostaglandins. J. Lab. clin. Med., 74, 872-873.
- **Khairallah, P. A., Page, I. H., and Türker, R. K. (1967). Some properties of prostaglandin E₁ action on muscle. Arch. int. Pharmacodyn., 169, 328-341.
- *Türker, R. K., and Özer, A. (1970). The effect of prostaglandin E₁ and bradykinin on normal and depolarised isolated duodenum of the rat. Agents Actions, 1, 124-127.
- ¹⁰⁰Coceani, F., and Wolfe, L. S. (1966). On the action of prostaglandin E₁ and prostaglandins from brain on the isolated rat stomach. *Canad. J. Physiol. Pharmacol.*, 44, 933-950.
- ¹⁰¹Horton, E. W., and Jones, R. L. (1968). The biological assay of prostaglandins A₁ and A₂. J. Physiol. (Lond.), 200, 56-57P.
- ¹⁰²Splawinski, J. A., Nies, A. S., Bieck, P. R., and Oates, J. A. (1971). Mechanism of the contraction induced by arachidonic acid (AA) on the rat stomach longitudinal muscle strip. *Pharmacologist*, 13, 291.
- ¹⁰³Bennett, A., Eley, K. G., and Scholes, G. B. (1968). Effect of prostaglandins E₁ and E₂ on intestinal motility in the guinea-pig and rat. Brit. J. Pharmacol., 34, 639-647.
- ¹⁰⁴Harry, J. D. (1968). The action of prostaglandin E₁ on the guinea-pig isolated intestine. Brit. J. Pharmacol., 33, 213-214P.
- ¹⁰⁵Akanuma, M. (1970). Relationship between stimulating action of prostaglandin E₁ and calcium on the gastrointestinal smooth muscle from the guinea-pig. (Partly Japanese.) Sapporo med. J., 38, 53-59.
- ¹⁰⁶Andersson, R., and Nilsson, K. (1972). Cyclic AMP and calcium in relaxation in intestinal smooth muscle. *Nature [new Biol.]*, 238, 119-120.
- ¹⁰⁷Chawla, R. C., and Eisenberg, M. M. (1969). Prostaglandin inhibition of innervated antral motility in dogs. Proc. Soc. exp. Biol. (N.Y.), 132, 1081-1086.
- ¹⁰⁸Shehadeh, Z., Price, W. E., and Jacobson, E. D. (1969). Effects of vasoactive agents on intestinal blood flow and motility in the dog. Amer. J. Physiol., 216, 386-392.
- ¹⁰⁹Villanueva, R., Hinds, L., Katz, R. L., and Eakins, K. E. (1972). The effect of polyphloretin phosphate on some smooth muscle actions of prostaglandins in the cat. J. Pharmacol. exp. Ther., 180, 78-85.
- ¹¹⁰Rattan, S., Hersh, T., and Goyal, R. K. (1971). Effects of prostaglandins on the lower oesophageal sphincter. Clin. Res., 19, 660.
- ¹¹¹Goyal, R. K., Rattan, S., and Hersh, T. (1972). Dose-response curves of the effects of the different prostaglandins on the lower oesophageal sphincter. Clin. Res., 20, 454.
- ¹¹²Carlson, L. A., Ekelund, L. G., and Orö, L. (1968). Clinical and metabolic effects of different doses of prostaglandin E₁ in man. Acta med. scand., 183, 423-430.
- ¹¹³Dilawari, J., Newman, A., Poleo, J., and Misiewicz, J. J. Personal communication.
- ¹¹⁴Wilson, D. E., Phillips, C., and Levine, R. A. (1971). Inhibition of gastric secretion in man by prostaglandin A₁. Gastroenterology, 61, 201-206.
- ¹¹⁵Horton, E. W., Main, I. H. M., Thompson, C. J., and Wright, P. M. (1968). Effects of orally administered prostaglandin E₁ on gastric secretion and gastrointestinal motility in man. *Gut*, 9, 655-658.
- ¹¹⁹Misiewicz, J. J., Waller, S. L., Kiley, N. and Horton, E. W. (1969). Effect of oral prostaglandin E₁ on intestinal transit in man. *Lancet*, 1, 648-651.
- ¹¹⁷Matuchansky, C., and Bernier, J. J. (1971). Effects of prostaglandin E₁ on net and unidirectional movements of water and electrolytes across the jejunal mucosa in man. (Abstr.) Gut, 12, 854.
- ¹¹⁵Cummings, J. H., Milton-Thompson, G. J., Billings, J. A., Newman, A., and Misiewicz, J. J. (1972). The effect of intravenous prostaglandin F₃₀ on small intestinal function. (Abstr.) Gut, 13, 854.
- ¹¹*Holdstock, D. J., Misiewicz, J. J., and Waller, S. L. (1969). Observations on the mechanism of abdominal pain. Gut, 10, 19-31.
- ¹²⁰Eakins, K. E., Karim, S. M. M., and Miller, J. D. (1970). Antagonism of some smooth muscle actions of prostaglandins by polyphloretin phosphate. Brit. J. Pharmacol., 39, 556-563.
- ¹²¹Eakins, K. E., Miller, J. D., and Karim, S. M. M. (1971). The nature of the prostaglandin-blocking activity of polyphloretin phosphate. J. Pharmacol. exp. Ther., 176, 441-447.
- ¹²²Sanner, J. (1971). Prostaglandin inhibition with a dibenzoxazepine hydrazide derivative and morphine. Ann. N.Y. Acad. Sci., 180, 396-409.
- ¹²³Gandini, A., Lualdi, P., and Della Bella, D. (1971). Release of prostaglandins and its effects on the colon responses to transmural stimulation. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak., 269, 388-389.
- ¹³⁴Lippmann, W. (1971). Inhibition of gastric acid secretion in the rat by synthetic prostaglandin analogues. Ann. N.Y. Acad. Sci., 180, 332-335.
- ¹¹⁵Lippmann, W. (1970). Inhibition of gastric acid secretion by a potent synthetic prostaglandin. J. Pharm. Pharmacol., 22, 65-67.
- ^{13*}Banerjee, A. K., Phillips, J., and Winning, W. M. (1972). E type prostaglandins and gastric acid secretion in the rat. Nature [new Biol.], 238, 177-179.
- ¹²⁷Main, I. H. M. (1969). Effects of prostaglandin E₂ (PGE₂) on the output of histamine and acid in rat gastric secretion induced by pentagastrin or histamine. Brit. J. Pharmacol., 36, 214-215P.
- ¹²⁸Main, I. H. M., and Whittle, B. J. R. (1972). Effects of prostaglandins of the E and A series on rat gastric mucosal blood flow as determined by ¹⁴C-aniline clearance. In Proceedings of the 5th International Congress on Pharmacology, Vienna, 1972. (To be published).
- ¹²⁹Main, I. H. M., and Whittle, B. J. R. (1972). The relationship between rat gastric mucosal blood flow and acid secretion during oral or intravenous administration of prostaglandins and cyclic AMP. In Proceedings of the International Conference on Prostaglandins, Vienna, 1972. Advanc. Biosci., 9. (In press.)
- ¹³⁰Koch, H., Demling, L., and Classen, M. (1972). The influence of prostaglandin E₂ on the blood flow and secretion of the stomach stimulated with pentagastrin in the anaesthetised cat. (Abstr.) Arch. Mal. Appar. dig., 61, 268C.
- ¹³¹Robert, A., Nezamis, J. E., and Phillips, J. P. (1967). Inhibition of gastric secretion by prostaglandins. Amer. J. dig. Dis., 12, 1073-1076.

- ¹³²Nezamis, J. E., Robert, A., and Stowe, D. F. (1971). Inhibition by prostaglandin E₁ of gastric secretion in the dog. J. Physiol. (Lond.), 218, 369-383.
- 133Levine, R. (1971). Effect of prostaglandins and cyclic AMP on gastric secretion. Ann. N.Y. Acad. Sci., 180, 336-337.

¹³⁴Wilson, D. E., and Levine, R. A. (1972). The effect of prostaglandin E₁ on canine gastric acid secretion and gastric mucosal blood flow. Amer. J. dig. Dis., 17, 527-532.

- 135 Bieck, P. R., Oates, J. A., and Adkins, R. B. (1971). Inhibition of gastric secretion by arachidonic acid in the dog. Clin. Res., 19, 387.
- ^{13e}Robert, A., Nezamis, J. E., and Lancaster, C. (1972). 15-Methyl-Prostaglandin E₂: A potent inhibitor of gastric secretion. In Proceedings of the International Conference on Prostaglandins. Vienna, 1972, Advanc. Biosci., 9. (In press.)
- ¹³⁷Pfeiffer, C. J., and Lewandowski, L. G. (1972). Experimentelle Gastroenterologie in Nordamerika: Wirkung von Prostaglandin und Aspirin auf die Magensekretion des Laborfrettchens. Leber, Magen, Darm, 2, 142-144.

¹³⁸Nakano, J., Prancan, A. V., and Kessinger, J. M. (1971). Effect of prostaglandins E₁ and A₁ on the gastric circulation in dogs. Clin. Res., 19, 399

¹³⁹Nakano, J., and Prancan, A. V. (1972). Effect of prostaglandins E₁ and A₁ on the gastric circulation in dogs. Proc. Soc. exp. Biol. (N.Y.), 139, 1151-1154.

140 Main, I. H. M., and Whittle, B. J. R. (1972). Effects of prostaglandin E₂ on rat gastric mucosal blood flow, as determined by 14C-aniline clearance. Brit. J. Pharmacol., 44, 331-332P.

¹⁴¹Wilson, D. E., and Levine, R. A. (1969). Decreased canine gastric mucosal blood flow induced by prostaglandin E1: a mechanism for its inhibitory effect on gastric secretion. (Abstr.) Gastroenterology, 56, 1268. ¹⁴³Jacobson, E. D. (1970). Comparison of prostaglandin E₁ and norepinephrine on the gastric mucosal circula-

- tion. Proc. Soc. exp. Biol. (N.Y.), 133, 516-519. ¹⁴³Way, L., and Durbin, R. P. (1969). Inhibition of gastric acid secretion in vitro by prostaglandin E₁. Nature
- (Lond.), 221, 874-875.
- ¹⁴⁴Perrier, C. V., and Laster, L. (1970). Adenyl cyclase activity of guinea-pig gastric mucosa: stimulation by histamine and prostaglandins. J. clin. Invest., 49, 73a.

¹⁴⁵Sachs, G. Quoted by Levine, R. A., and Wilson, D. E. (1971). The role of cyclic AMP in gastric secretion. Ann. N.Y. Acad. Sci., 185, 363-375.

¹⁴Shaw, J. E., Ramwell, P. W. (1969). Direct effect of prostaglandin E₁ on the frog gastric mucosa. In *Abstracts* of the Fourth International Congress on Pharmacology, 1969, Basle, pp. 109-110. Schwabe, Basle.

¹⁴⁷Karim, S. M. M., Carter, D. C., Bhana, D., and Genesan, P. A. (1973). Effect of orally administered prostaglandin E, and its 15 methyl analogues on gastric secretion in man. Brit. med. J., 1, 143-146.

- 148Karim, S. M. M. Personal communication.
- ¹⁴⁹Classen, M., Koch, H., Deyhle, P., Weidenhiller, S., and Demling, L. (1970). Wirkung von Prostaglandin E₁ auf die basale Magensekretion des Menschen. Klin. Wschr., 48, 876-878.

¹⁶⁰Classen, M., Koch, H., Bickhardt, J., Topf, G., and Demling, L. (1971). The effect of prostaglandin E₁ on the pentagastrin-stimulated gastric secretion in man. Digestion, 4, 333-344.

 ¹⁵¹Newman, A., Prado, J., and Misiewicz, J. J. Personal communication.
 ¹⁵³Yankee, E. W., and Bundy, G. L. (1972). (15S)-15-Methylprostaglandins. J. Amer. chem. Soc., 94, 3651-3652. ¹³Karim, S. M. M., and Sharma, S. D. (1972). Termination of second trimester pregnancy with 15-methyl analogues of prostaglandins E₁ and F₂₀. J. Obstet. Gynaec. Brit. Cwlth, **79**, 737-743.

¹⁶⁴Karim, S. M. M., and Filshie, G. M. (1970). Therapeutic abortion using prostaglandin F₂₀. Lancet, 1, 157-159.

¹⁵⁵Karim, S. M. M. (1971). Effects of oral administration of prostaglandins E₂ and F₂ on the human uterus. J. Obstet. Gynaec. Brit. Cwlth, 78, 289-293.

¹⁵⁶Bygdeman, M., and Wiqvist, N. (1971). Early abortion in the human. Ann. N.Y. Acad. Sci., 180, 473-482. 157 Hillier, K., and Embrey, M. P. (1972). High-dose intravenous administration of prostaglandin E₂ and F_{2α}

- for the termination of mid-trimester pregnancies. J. Obstet. Gynaec. Brit. Cwlth, 79, 14-22. ¹⁵⁸Karim, S. M. M., and Filshie, G. M. (1972). The use of prostaglandin E₁ for therapeutic abortion. J. Obstet.
- Gynaec. Brit. Cwlth. 79, 1-13.

¹⁵⁹Embrey, M. P. (1970). Induction of labour with prostaglandins E₁ and E₂. Brit. med. J., 2, 256-258.

- 160 Barr, W., and Naismith, W. C. M. K. (1972). Oral prostaglandins in the induction of labour. Brit. med. J., 2, 188-191
- ¹⁶¹Karim, S. M. M., and Sharma, S. D. (1971). Therapeutic abortion and induction of labour by the intravaginal administration of prostaglandins E₂ and F₂₀. J. Obstet. Gynaec. Brit. Cwlth, 78, 294-300.

162 Miller, A. W. F., Calder, A. A., and McNaughton, M. C. (1972). Termination of pregnancy by continuous intrauterine infusion of prostaglandins. Lancet, 2, 5-7

143Lee, J., Kannegiesser, H., O'Toole, J., and Westura, E. (1971). Hypertension and the renomedullary prostaglandins: a human study of the antihypertensive effects of PGA1. Ann. N.Y. Acad. Sci., 180, 218-240.

¹⁴⁴Jaques, R. (1969). Morphine as an inhibitor of prostaglandin E₁ on the isolated guinea-pig intestine. Experientia (Basel), 25, 1059-1060.

¹⁶⁵Orloff, J., Handler, J. S., and Bergström, S. (1965). Effect of prostaglandin (PGE₁) on the permeability response of toad bladder to vasopressin, theophylline and adenosine 3',5'-monophosphate. Nature (Lond.), 205, 397-398.

¹⁴⁸Barry, E., and Hall, W. J. (1968). Stimulation of sodium movement across frog skin by prostaglandin E₁. J. Physiol. (Lond.), 200, 83-84P.

167Greenough, W. B., III, Pierce, N. F., Al Awgati, Q., and Carpenter, C. C. J. (1969). Stimulation of gut electrolyte secretion by prostaglandins, theophylline and cholera exotoxin. (Abstr.) J. clin. Invest., 48, 32-33a.

- 148Al-Awqati, Q., Field, M., Pierce, N. F., and Greenough, W. B. III (1970). Effect of prostaglandin E1 on electrolyte transport in rabbit ileal mucosa. (Abstr.) J. clin. Invest., 49, 2a.
- 148Al-Awqati, Q., and Greenough, W. B., III (1972). Prostaglandins inhibit intestinal sodium transport. Nature [new Biol.], 238, 26-27.
- ¹⁷⁰Kaplan, E. L., Saxena, N., and Peskin, G. W. (1970). Prostaglandins: a possible mediator of diarrhea in endocrine syndromes. Surg. Forum, 21, 94-95.
- ¹⁷¹Pierce, N. F., Carpenter, C. C. J., Jr., Elliott, H. L., and Greenough, W. B. III (1971). Effects of prostaglandins, theophylline, and cholera exotoxin upon transmucosal water and electrolyte movement in the canine jejunum. Gastroenterology, 60, 22-32.

- ¹⁷²Kimberg, D. V., and Field, M. (1970). Adenyl cyclase in gut mucosa: Effects of cholera toxin and prostaglandins. *Clin. Res.*, 18, 680.
- ¹⁷³Kimberg, D. V., Field, M., Johnson, J., Henderson, A., and Gershon, E. (1971). Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J. clin. Invest., 50, 1218-1230.
- ¹⁷⁴Field, M., Plotkin, G. R., and Silen, W. (1968). Effects of vasopressin, theophylline and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. *Nature (Lond.)*, 217, 469-471.
- ¹⁷⁵Al-Awqati, Q., Cameron, J. L., Field, M., and Greenough, W. B. III (1970). Response of human ileal mucosa to choleragen and theophylline. J. clin. Invest., 49, 2a.
- ¹⁷⁶Matuchansky, C., Mary, J. Y., and Bernier, J. J. (1972). Effets de la prostaglandine E₁ sur l'absorption du glucose et les mouvements trans-intestinaux de l'eaux, et les électrolytes dans le jéjunum humain. (Abstracts, 9° Congrès International de Gastroenterologie) Biol. Gastroentérol. (Paris), 5, 636C.
- ¹⁷⁷Williams, E. D., Karim, S. M. M., and Sandler, M. (1968). Prostaglandin secretion by medullary carcinoma of the thyroid. A possible cause of the associated diarrhoea. *Lancet*, 1, 22-23.
- ¹⁷⁸Sandler, M., Karim, S. M. M., and Williams, E. D. (1968). Prostaglandins in amine-peptide-secreting tumours. Lancet, 2, 1053-1054.
- ¹⁷⁹McCance, R. A., and Pickles, V. R. (1960). Cyclical variations in intestinal activity in women. J. Endocr., 20, xxvii-xxviii.
- ¹⁸⁰Pickles, V. R., Hall, W. J., Best, F. A., and Smith, G. N. (1965). Prostaglandins in endometrium and menstrual fluid from normal and dysmenorrhoeic subjects. J. Obstet. Gynaec. Brit. Cwlth, 72, 185-192.
- ¹⁸¹Holmes, S. W., Hcrton, E. W., and Stewart, M. J. (1968). Observations on the extraction of prostaglandins from blood. Life Sci., 7, 349-354.
- ¹⁸²Jaffe, B. M., Smith, J. W., and Parker, C. W. (1971). Radioimmunoassay for prostaglandins. (Abstr.) J. clin. Invest., 50, 48-49a.
- ¹⁸³Unger, W. G., Stamford, I. F., and Bennett, A. (1971). Extraction of prostaglandins from human blood. Nature (Lond.), 233, 336-337.
- ¹⁸⁴Greaves, M. W., and McDonald-Gibson, W. (1972). Extraction of prostaglandin-like activity from whole human blood. Life Sci. I (Physiol. Pharm.), 11, 73-81.
- ¹⁸⁵Cernosek, R. M., Morill, L. M., and Levine, L. (1972). Prostaglandin F₂₀ levels in peripheral sera of man. Prostaglandins, 1, 71-80.
- ¹⁸⁶Gershman, H., Powers, E., Levine, L., and Van Vunakis, H. (1972). Radioimmunoassay of prostaglandins, angiotensin, digoxin, morphine, and adenosine-3'-5'-cyclic-monophosphate with nitrocellulose membranes. Prostaglandins, 1, 407-423.
- ¹⁸⁷Sharma, S. C. (1972). A sensitive radioimmune assay for prostaglandins F. J. Physiol. (Lond.), 226, 74-75P.
 ¹⁸⁸Eakins, K. E. (1971). Prostaglandin antagonism by polymeric phosphates of phloretin and related compounds. Ann. N.Y. Acad. Sci., 180, 386-395.
- 189 Hamberg, M., and Samuelsson, B. Unpublished results. Quoted by Samuelsson, B. et al (1971). (Reference 79.)
- ¹³⁰Sharp, G. W. G., and Hynie, S. (1971). Stimulation of intestinal adenyl cyclase by cholera toxin. Nature (Lond.), 229, 266-269.
- ¹⁹Sharp, G. W. G., Hynie, S., Lipson, L. C., and Parkinson, D. (1971). Action of cholera toxin to stimulate adenyl cyclase. Clin. Res., 19, 577.
- ¹⁹²Chen, L. C., Rohde, J. E., and Sharp, G. W. G. (1971). Intestinal adenyl-cyclase activity in human cholera. Lancet, 1, 939-941.
- ¹⁹³Schafer, D. E., Lust, W. D., Sircar, B., and Goldberg, N. D. (1970). Elevated concentration of adenosine 3':5'-cyclic monophosphate in intestinal mucosa after treatment with cholera toxin. Proc. nat. Acad. Sci., 67, 851-856.
- ¹⁹⁴Bennett, A. (1971). Cholera and prostaglandins. Nature (Lond.), 231, 536.
- ¹⁹⁵Jacoby, H. I., and Marshall, C. H. (1972). Antagonism of cholera enterotoxin by anti-inflammatory agents in the rat. Nature (Lond.), 235, 163-165.
- ¹⁰⁶Finck, A. D., and Katz, R. L. (1972). Prevention of cholera-induced intestinal secretion in the cat by aspirin. Nature (Lond.), 238, 273-274.
- ¹⁹⁷Harris, J., Archampong, E. Q., and Clark, C. G. (1972). The effect of salazopyrin on water and electrolyte transport in the human colon measured in vivo and in vitro. (Abstr.) Gut, 13, 855.
- ¹⁹⁸Das, K. M., Eastwood, M. A., MacManus, J. P. A., and Sircus, W. (1972). Salazopyrin metabolism in ulcerative colitis. (Abstr.) Gut, 13, 840.
- ¹⁹⁹Änggård, E., Arturson, G., and Jonsson, C. E. (1970). Efflux of prostaglandins in lymph from scalded tissues. Acta physiol. scand., 80, 46A-47A.
 ²⁰⁰Greaves, M. W., Søndergaard, J., and McDonald-Gibson, W. (1971). Recovery of prostaglandins in human
- ²⁰⁰Greaves, M. W., Søndergaard, J., and McDonald-Gibson, W. (1971). Recovery of prostaglandins in human cutaneous inflammation. *Brit. med. J.*, 2, 258-260.
- ²⁰¹Eakins, K. E., Whitelocke, R. A. F., Bennett, A., and Martenet, A. C. (1972). Prostaglandin-like activity in ocular inflammation. *Brit. med. J.*, 3, 452-453.
- ²⁰³Rudick, J., Gonda, M., Dreiling, D. A., and Janowitz, H. D. (1971). Effects of prostaglandin E₁ on pancreatic exocrine function. *Gastroenterology*, **60**, 272-278.
- ²⁰³Case, R. M., and Scatcherd, T. (1972). Prostaglandin action on pancreatic blood flow and on electrolytes and enzyme secretion by exocrine pancreas in vivo and in vitro. J. Physiol. (Lond.), 226, 393-405.
- ²⁰⁴Berry, H., and Flower, R. J. (1971). The assay of endogenous cholecystokinin and factors influencing its release in the dog and cat. *Gastroenterology*, **60**, 409-420.
- ²⁰⁵Saunders, R. N., and Moser, C. A. (1972). Changes in vascular resistance induced by prostaglandins E₂ and F_{2,2} in the isolated rat pancreas. Arch. int. Pharmacodyn., 197, 86-92.
- ²⁰⁴Saunders, R. N., and Moser, C. A. (1972). Increased vascular resistance by prostaglandins B₁ and B₂ in the isolated rat pancreas. *Nature [new Biol.]*, 237, 285.