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The determination of macromolecular structures requires weight-
ing of experimental evidence relative to prior physical information.
Although it can critically affect the quality of the calculated
structures, experimental data are routinely weighted on an em-
pirical basis. At present, cross-validation is the most rigorous
method to determine the best weight. We describe a general
method to adaptively weight experimental data in the course of
structure calculation. It is further shown that the necessity to
define weights for the data can be completely alleviated. We
demonstrate the method on a structure calculation from NMR data
and find that the resulting structures are optimal in terms of
accuracy and structural quality. Our method is devoid of the bias
imposed by an empirical choice of the weight and has some
advantages over estimating the weight by cross-validation.

Bayesian probability theory � Markov chain Monte Carlo

Experimental data are typically insufficient to determine a
biomolecular structure in their own right but need to be

complemented with prior physical information. Therefore,
structure determination amounts to the search for conforma-
tions that have a low physical energy and that, at the same time,
minimize a cost function Edata quantifying the disagreement
between a structural model X and the data. This approach is
implemented as minimization of a hybrid energy (1, 2)

Ehybrid�X� � Ephys�X� � wdata Edata�X� , [1]

where the force field Ephys compensates a lack of data by
imposing physical constraints on the structure. A target function
of this form is widely used in macromolecular structure deter-
mination, notably from NMR data (3, 4) and from homology-
derived restraints (5). The weight wdata controls the contribution
of the data relative to the force field. Its value can be critical: If
it is too large, the contribution of the force field might be too
small to avoid overfitting; if the weight is too small, the data
contribute too little to define the structure. The choice of the
weight also concerns the question of how to judge structural
quality. Overfitted structures reach a low R value (6, 7) but
exhibit a poor stereochemistry or an unlikely fold.

Usually, experimental data are weighted empirically: wdata is
set ad hoc and held constant during structure calculation.
However, already when introducing the hybrid energy concept,
Jack and Levitt (1) remarked that correct weighting of the data
‘‘is something of a problem.’’ They proposed to adjust the weight
to equalize Ephys and wdataEdata; this adjustment was later refined,
for example, in ref. 8. At present, the most rigorous quantitative
method to determine the optimal weight is complete cross-
validation (6, 7). However, cross-validation can become unstable
and time-consuming in the case of sparse and heterogeneous
data with several independent weights.

In this work, we introduce an objective and unique way to
weight experimental data. We show that a quantitative treatment
does not necessitate heuristics like cross-validation: everything
we need is contained in the rules of probability theory.

Theory
Inferential Structure Determination. We recently introduced a
probabilistic approach to structure determination (9, 10), which
permits the estimation of unknowns, such as theory parameters,
in addition to the conformational degrees of freedom. We
represent the unknown structure through a conditional proba-
bility p(X) � dP(X�D, I)�dX that quantifies the likelihood of X
being the true molecular structure in light of the data D and of
relevant prior knowledge I. The posterior distribution p(X)
spreads the uncertainty about the structure over the entire
conformational space and peaks in regions where conformations
are in accord with the data and the prior knowledge. Bayes’
theorem (11) states that the posterior distribution is proportional
to the product of the likelihood function L(X) and the prior
distribution �(X): p(X) � L(X)�(X). The likelihood function
derives from the probability of observing the measurements
given the molecular structure, i.e., L(X) � P(D�X, I). The
conformational prior distribution �(X) � dP(X�I)�dX represents
general knowledge about the unknown structure of the target
molecule. If the mean energy or likewise the temperature ��1 of
the system is known, the Boltzmann distribution �(X) �
exp{��Ephys(X)} is the least biasing prior distribution (12). The
most probable conformations minimize the negative logarithm
of the posterior distribution, and we can establish a formal
analogy to hybrid energy minimization: �log� corresponds to
the force field Ephys because it describes a priori meaningful
structures; �logL is similar to wdataEdata because it penalizes
structures that do not fit the data.

We model the data as independent measurements and use a
distance measure �(yi, yi(X)) to evaluate the discrepancy between
the ith observation yi and its prediction yi(X). Thus, the likeli-
hood of the data is

P�D�X, I� � �
i�1

n

P�yi�X, I� �
1

Z���
exp{�

1
2�2 �2�X�}. [2]

This likelihood function is of the least-squares type with �2(X) �
¥i[�(yi, yi(X))]2 evaluating the average disagreement between
backcalculated and observed data. The residual �2 is minimal if
the theory exactly matches the experiment; the factor Z(�)
normalizes the likelihood function with respect to the data (i.e.,
Z(�) � �i�dyie�(1/2�2)[�(yi, yi(X))]2

). In case of Gaussian data, for
example, we have �(yi, yi(X)) � yi � yi(X) and obtain Z(�) �
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(2��2)n/2, �2(X) � ¥i�1
n [yi � yi(X)]2; � is the standard deviation

of the measurements.

Joint Posterior Distribution. In general, the parameter � evaluates
to which extent the structure can be fit to the data and serves
as a ‘‘unit’’ of the distance measure �. It depends on both the
quality of the data and the precision of the theory used to
backcalculate the data. Therefore, � can be viewed as an
‘‘error’’ that includes experimental noise as well as systematic
contributions. In practice, this error is unknown, just like the
coordinates. When evaluating the likelihood function for a
conformation, we have to set � and are facing the same
dilemma as in the hybrid energy approach where wdata is
unknown. Consequently, we need to consider the likelihood
factor not only a function of the coordinates but also of the
error. We symbolize this dependence explicitly through
Ljoint(X, �) instead of L(X).

The essence of Bayesian inference is that probabilities can be
attributed to any statement, not only to those concerning
‘‘random variables.’’ Probabilities express ignorance. If both X
and � are unknown, the bearing of the data on them is quantified
by a joint posterior distribution pjoint(X, �); pjoint is a probability
distribution for the unknown coordinates and the unknown
error. Formally, this distribution is obtained by replacing X with
(X, �) in Bayes’ theorem. To this end, we introduce a joint prior
distribution �(X, �) � �(��X)�(X). Because knowledge of the
coordinates has no bearing on the error, we obtain

pjoint�X , �� � L joint�X , ����X����� , [3]

as joint posterior distribution for all unknowns, i.e., for X and �.
Usually, concrete prior knowledge about the error is lacking.
However, we know that � is positive and that its value has no
absolute meaning, because it depends on the units of the
distance measure �. Changes in the units of � can be compen-
sated by scaling the error appropriately. Therefore, �(�) should
be invariant under scaling, leading to �(�) � ��1 (13).

The joint posterior distribution pjoint summarizes our knowledge
about the structure and the error, and all inferences on these
unknowns can be derived from pjoint. Usually, one is primarily
interested in the coordinates and not in the error. The statistically
correct way to eliminate the error is to integrate over all possible
values of �. This so-called marginalization (11) projects the joint
posterior distribution to conformational space: The marginal pos-
terior distribution pmarginal(X) � �d�pjoint(X, �) no longer involves
an error parameter. We can either use pmarginal(X) or the
integrated likelihood function (14) Lmarginal(X) � �d�Ljoint(X,
�)�(�) to determine the structure. Often, marginalization inte-
grals can be solved analytically. Complicated models, however,
require the use of numerical integration techniques. Analytical
calculation of Lmarginal(X) avoids the problem of choosing an
appropriate weight from the start. The error is then only
introduced to devise the likelihood function and eliminated
afterward by marginalization.

Results
To demonstrate the outlined formalism, we analyzed NMR-
derived distance measurements for the protein ubiquitin (15)
(Protein Data Bank ID code 1d3z). We extracted from the
deposited 2,727 interproton distances 1,444 nonredundant en-
tries by retaining only the smallest distance in case multiple
measurements were available for the same pair of protons.
Because distances are nonnegative, we model deviations be-
tween n measured and calculated distances with a lognormal
distribution (16):

Ljoint�X , �� � �2��2��n�2 exp��
1

2�2 �
i

log2 �di�di�X�	� ;

[4]

for this choice �2(X) � ¥ilog2[di�di(X)] and Z(�) � (2��2)n/2. We
used posterior simulation techniques (17) to calculate structures
and to simultaneously estimate the error of the lognormal model.
Structures were parameterized in torsion angles; nonbonded
interactions were represented with a purely repulsive potential
(18). Simulations of the posterior distributions were carried out
with our software for inferential structure determination (ISD;
M.H. and W.R., unpublished results) using the random sampling
strategies outlined in refs. 9, 10, and 19.

Impact of the Weight on Structural Quality. We first calculated
structures for fixed weights by simulating the conditional con-
formational posterior distribution pjoint(X, � � 1�
wdata) �
exp{�wdata�2(X)�2 � �Ephys(X)}. These simulations correspond
to hybrid energy minimizations with a constant weight. We used
the hybrid Monte Carlo method (20) embedded in a Replica-
exchange Monte Carlo scheme (19) to generate conformational
samples. Fig. 1 shows the average values for several validation
criteria calculated for the 50 most likely conformations. The
Ramachandran statistics are almost independent of the weight.
The number of bumps tends to increase with the weight, because
structures become more compact, if the data contribute more.
The WHAT IF (22) quality index increases with the weight, an
almost constant value is reached for wdata � 50. An optimal
weight wdata � 40 exists for which the structures will be most
accurate, as measured by the root mean square difference (rmsd)
to the x-ray structure (23) for the atoms N, C	, C of the protein
backbone.

Probabilistic Interpretation. Because the logarithm is a monoton-
ically increasing function, maximization of the posterior proba-
bility can be achieved by minimizing its logarithm. Therefore,
the negative logarithm of the joint posterior distribution,
�logpjoint(X, �) � �log[Ljoint(X, �)�(X)�(�)], can be inter-
preted as a joint hybrid energy Ejoint(X, �) now depending not
only on the coordinates but also on the error. If we insert Ljoint
and our choices for the prior distributions �(X) (Boltzmann
factor) and �(�) and neglect constants that neither depend on
the structure nor on the error, we obtain

Ejoint�X , �� �
1

2�2 �2�X� � �Ephys�X� � log�Z��������	 ,

[5]

as an extended joint hybrid energy. The equivalences Edata(X) �
�2(X)�2 and wdata � 1��2 clarify the nature of the weight: It is not
merely a fudge factor but quantifies the quality of the data and the
reliability of the theoretical model used to predict them. If observed
and backcalculated data are in good agreement, � will be small and
wdata large. In case of disagreement, � will be big and wdata small.
By choosing the error appropriately, we balance the contribution of
experimental and prior information. The joint hybrid energy (Eq.
5) Ejoint(X, �) � Ehybrid(X) � log[Z(�)��(�)] contains a term,
log[Z(�)��(�)], not included in the standard target function Ehybrid
(Eq. 1). Only this additional term allows us to determine the error.
To derive this ‘‘regularizer’’ for �, the use of a probabilistic
framework for structure determination is indispensible: Z(�) orig-
inates in the normalization of P(D�X, I), �(�) is required by Bayes’
theorem: both terms are missing in purely optimization-based
approaches where normalization constants and prior probabilities
are usually not incorporated.
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Estimation of the Weight. For Model 4, it holds that Z(�)��(�)
� �n�1. In the joint target function Ejoint (Eq. 5), two contri-
butions counterbalance each other: �2��2 decreases when �
increases, thus preferring large values for the error when
Ehybrid is minimized with respect to the error. The additional
term log[Z(�)��(�)] � (n � 1)log� is monotonically increas-
ing and favors small errors (see Fig. 2). Thus, only when
log[Z(�)��(�)] is added to the standard hybrid energy, one
obtains a joint hybrid energy that exhibits a finite minimum in
� and can directly be used to determine the error or, likewise,
the weight from the data. Minimization of the resulting joint
hybrid energy Ejoint(X, �) yields the most probable structure

Xmax and the most probable error �max. In case of model 4, we
have �max � 
�2(Xmax)�(n � 1).

In our approach, we do not minimize Ejoint(X, �) but rather
draw random samples from the joint posterior distribution
pjoint(X, �) using a Gibbs sampling scheme (24). In this scheme,
samples of the coordinates and the error are drawn in an iterative
fashion by alternately setting � or X to the previous sample in the
joint posterior distribution. When the error is fixed in pjoint(X, �),
we again obtain a distribution that is proportional to
exp{�Ehybrid(X)} and that can be sampled using the hybrid
Monte Carlo method. If we fix the coordinates to the most recent
conformational sample, we obtain a probability distribution for
the error that is proportional to ��(n�1)exp{��2(X)�2�2}. By
substituting � with 1�
wdata, we notice that for fixed confor-
mational degrees of freedom the weight follows a gamma
distribution (10)

p�wdata�X� �
��2�X��2	n�2


�n�2�
wdata

n�2�1 exp{�wdata �2�X��2}.

[6]

We thus can sample the weight or, likewise, the error using a
random number generator for the gamma distribution. The
resulting histogram is shown in Fig. 1 and demonstrates that
the coordinates and the weight can be estimated simultaneously.
The optimal weights sampled by our algorithm lie within the
region where the WHAT IF quality scores reach their best values.
Moreover, the weights scatter around a most likely value (�40)
leading to conformations that are closest to the x-ray structure
when the weight is fixed during structure calculation. Thus, our
algorithm adapts the weight to yield optimal structures in terms
of accuracy (rmsd to the x-ray structure).

How is it possible to estimate the coordinates and the error
simultaneously? Intuitively, the true molecular structure mini-
mizes the deviations between observed and calculated data. If we
knew the correct structure, the weight would just reflect the
width of the distribution of deviations between observations and
predictions. Assuming no systematic errors, the distribution of
the discrepancies �i � log[di�di(X)] will ideally be a zero-

Fig. 1. Influence of weight on different aspects of structural quality. (A) Ramachandran statistics [calculated with PROCHECK (21)]. (B) Number of bumps as
calculated with WHAT IF (22). (C) WHAT IF quality index QUACHK. (D) Average rmsd to the crystal structure (23). The shaded histogram p(wdata) results from a Bayesian
calculation.

Fig. 2. Contributions in the joint hybrid energy Ejoint(X, �) that determine the
error. The black solid curve indicates the overall dependence on the error.
The dashed line shows the dependence on the term �2�2�2, which appears in
the standard hybrid energy; the dotted line is the contribution from the
regularizer log[Z(�)��(�)]. The shaded histogram is the result of a Bayesian
analysis (also shown in Fig. 1 for wdata � 1��2) and is peaked about the optimal
value (vertical dotted line).
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centered Gaussian with standard deviation �̂ � 
(1�n)¥i�i
2. Fig.

3 shows that this is indeed the case for the analyzed data set using
the log-ratio as distance measure and considering the NMR
structure 1d3z (15) the ‘‘true’’ structure.

This intuitive behavior of the weight is contained in our
formulation. As outlined before, the posterior distribution of the
weight given the structure is a gamma distribution (cf. Eq. 6).
Thus, we obtain �wdata� � n��2(X) as an estimate for the
unknown weight; this estimate is identical to the intuitive
estimate 1��̂2. Because we are working with probabilities, we can
further assess the estimate’s precision by its standard deviation
�wdata � 
2n��2 � 
2�n�wdata�. The residual �2 is approxi-
mately extensive, meaning that it increases if we add more data.
That is, our approach concurs with common sense: the average
weight quantifies, in good approximation, how well the structure
fits the data, independent of the size of the data set. In contrast,
the precision of the estimate, measured by the width of the
weight distribution, decreases rapidly as the number of data
grows, because �wdata � 1�
n. For typical NMR data, we thus
obtain sharp distributions, but even for sparse data these distri-
butions remain well defined (cf. ref. 9).

Elimination of the Weight. As mentioned in Theory, it is sometimes
possible to integrate out the error in the likelihood function. For
Model 4, this calculation is straightforward: The marginal like-
lihood is proportional to �d���(n�1)exp{��2(X)�2�2}; like in
the derivation of Eq. 6 we can substitute � with 1�
wdata and
observe that the required integral is just the normalization
constant of the gamma distribution. Therefore, Lmarginal(X) �
[�2(X)]�n/2 where the suppressed proportionality constant does
not depend on the coordinates. Lmarginal(X) cannot be written as
a product of probabilities that involve only a single measurement;
it is a composite probability for the whole data set. By taking the
negative logarithm of the marginal posterior distribution
pmarginal(X) � Lmarginal(X)�(X), we devise a target function for
the coordinates only

Emarginal�X� �
n
2

log�2�X� � �Ephys�X� . [7]

Because the weight is not completely determined by the data but
adopts different values for different structures, the marginal
hybrid energy is less pronounced than the standard hybrid
energy: The least-squares residual is transformed logarithmically
and weighted with the number of measurements. The marginal
hybrid energy (Eq. 7) is less biased than the hybrid energy (Eq.

1) because it relies on the data only and does not assume
knowledge of the weight.

There exists a close relation to the joint hybrid energy (Eq. 5).
We can turn the argument that led to our estimate �wdata� around
by stating that every conformation X requires its own weight
n��2(X). Therefore, one can eliminate the weight heuristically by
considering Ejoint(X, � � 
�2(X)�n) a target function that only
involves the coordinates. The resulting target function, (n � 1)�2
log�2(X) � �Ephys(X), is almost identical to Eq. 7.

Regarding the conformational degrees of freedom, the mar-
ginal posterior distribution pmarginal(X) and the joint posterior
distribution pjoint(X, �) contain the same information: Sampling
pjoint(X, �) can be viewed as numerically integrating out the
error. A simulation of pmarginal(X) confirms the equivalence of
the joint and the marginal posterior distribution also in practice
(Fig. 4). For both simulations, we obtain a rmsd of 0.63 � 0.06 Å
to the crystal structure (the optimal value wdata � 40 resulted in a
rmsd of 0.60 � 0.05 Å). The similarity of the distribution of rmsd,
radius of gyration, and �2 indicates the equivalence of both simu-
lations.

Comparison with Cross-Validation. Cross-validation (7) is based on
the idea that the weight should be chosen such that overfitting
is prevented. The data are divided into two nonoverlapping sets:
a working set A that is used for structure calculation and a test
set T for which the ‘‘free’’ R value is calculated to assess a certain
choice of the weight. Ideally, the optimal weight minimizes the
free R value. We randomly divided the 1,444 distances into 10
sets of approximately equal size and carried out a complete
10-fold cross-validation. We used a simulated annealing protocol
(25) implemented in CNS (26) to calculate structures for each
working set. Because the cost function resulting from the
lognormal distribution (4) is not implemented in CNS, we used a
Gaussian error distribution leading to harmonic terms. For
comparison, we simulated the joint posterior distribution for a
Gaussian likelihood, i.e., �i � di � di(X), using the ISD software.

The result of a complete cross-validation is shown in Fig. 5. By
increasing the weight, one can reduce the residual of the working
set to smaller and smaller values. In contrast, the fit of the test
set becomes slightly worse if the weight is too large (Fig. 5A). The
standard R value, �T

2�¥i�T di
2, is proportional to the residual �T

2 �
¥i�T[di � di(X)]2 of the test set. For NOESY data, Brünger et al.
(7) used R1/6 � ¥i�T�di

�1 � di
�1(X)��¥i�T di

�1. Neither of the two
free R value curves (Fig. 5B) exhibits a pronounced minimum.
Therefore, the choice of the weight by cross-validation remains
ambiguous. In contrast, the Bayesian result is very clear-cut. It
avoids overfitting by weighting the data as little as possible while

Fig. 3. Comparison between experimental distances and distances found in the structure 1d3z. (A) Scatter plot of the logarithm of the distances di(X) in 1d3z
vs. the logarithms of the experimental distances di. (B) The shaded histogram indicates the distribution of deviations �i � log[di�di(X)] between the measured
and predicted distances. The black solid line is a zero-centered Gaussian with width 1�
wdata, where wdata was set to the optimal value 40.
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maintaining structures of high quality. Fig. 5C again shows that
the Bayesian choice is also optimal in terms of accuracy. The
distribution of the rmsd to the crystal structure obtained with the
Bayesian calculation concentrates at low values and agrees well
with the result obtained with cross-validation. As can be seen
from the diagram, accuracy changes only little for different
weights. For reasons discussed above, we nevertheless obtain
sharp posterior histograms for the weight, which demonstrates
the high sensitivity of a Bayesian approach.

Further advantages of our approach over cross-validation for
the purpose of setting the weight are as follows. First, cross-
validation contains unspecified elements that still depend on the
choice of the user and are not solely determined by the data. The
data need to be partitioned, and the choice of a particular weight
has to be assessed by an appropriate R value. Because NMR data
are usually preprocessed, several R values have been proposed
(27), and there exists no consensus as to which R value performs
best. Second, cross-validation will be impractical for sparse data
because of the reduced size of the working set, whereas the
Bayesian algorithm is still stable. All operations such as analyt-
ical marginalization or posterior sampling are also valid for data
sets much smaller than the one used in the calculations shown
here. For example, in ref. 9 we report on a structure determi-
nation with only 10% of the data used here for a protein of
similar size. Finally, we expect the Bayesian approach to be
significantly more efficient than cross-validation. Currently, our
implementation relies on posterior sampling techniques that
require more computational resources than standard structure
calculation methods. However, our findings directly apply to
minimization approaches. Instead of minimizing Ehybrid with
wdata fixed by some empirical rule, we propose to minimize Ejoint

or likewise Emarginal using, for example, simulated annealing.
Minimization of Ejoint or Emarginal is of the same complexity as a
minimization of Ehybrid. Therefore, a single minimization of a
probabilistically motivated target function can produce the same
information as cross-validation calculations that require a whole
set of minimization runs.

Conclusions
By using Bayesian inference, we resolved the issue of weighting
experimental data in macromolecular structure determination
and demonstrated the method on a structure calculation from
NMR data. Probability calculus provides definite rules to de-
termine the unknown data weight: It can either be estimated
from the data or eliminated analytically by marginalization. Both
strategies are equivalent and also could be implemented in
minimization-based computer programs.

Our method is objective in the sense that both the weight and
the structures are uniquely determined by the experimental data
at hand and some additional, but required, assumptions such as
the choice of the force field and of the theory used to backcal-
culate the data.

The probabilistic model describing the data also provides a
clear interpretation of the weight as being related to the average
discrepancy between observed and calculated data. Thus, the
weight quantifies limitations both of the data and of the theory.

The formalism can be applied to a large class of structure
calculation problems that are based on hybrid energy minimi-
zation. The data term translates into the likelihood function;
its normalization constant is obtained by integrating
exp{�wdataEdata(X)} over the data. It is important to incorporate
this term into the hybrid energy. One can then use the joint

Fig. 4. Equivalence of the simulations of joint and marginal posterior distribution. The solid curves are the posterior histograms from a simulation of the
marginal posterior distribution pmarginal(X); the shaded histograms are the results for pjoint(X, �). (A) Distribution of rmsd values to the crystal structure; the dotted
line indicates the average rmsd obtained for wdata � 40 (see also Fig. 1D). (B) Distribution of the radii of gyration; the dotted line indicates the radius of gyration
of the x-ray structure. (C) Distribution of the least-squares residual �2.

Fig. 5. Comparison of cross-validation and Bayesian weighting. The shaded histogram in A and B is the weight distribution p(wdata) using a Gaussian likelihood
function. (A) Normalized average residual ��2��n of the working set (dotted line) and the test set (solid line). (B) Standard free R value curve (solid line) and free
R1/6 value curve (dotted line). (C) Histogram of rmsd values to the crystal structure for the conformations generated from a Gaussian likelihood function and a
corresponding rmsd curve for the structures generated during the cross-validation calculations.
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target function (Eq. 5) to determine the coordinates and the
optimal weight simultaneously. For example, the formalism is
directly applicable to homology modeling and to structure
calculation from restraints obtained from FRET or mutagenesis
experiments.

However, the proposed formalism does not necessitate the
application of posterior sampling techniques. Instead the nega-
tive log-posterior distributions could be used for minimization-
based structure calculation. In analogy to the Gibbs sampling
procedure, the joint hybrid energy Ejoint could be minimized by
periodically updating the weight with the estimate �2�n during a

simulated annealing run. Alternatively, one could eliminate the
weight analytically and minimize Emarginal.

A further advantage of our method is that multiple data sets
can be treated in the same way. The Bayesian result is similar to
that of a complete cross-validation but more clear-cut and stable.
In addition to an estimate of the weight, we obtain its reliability.
The estimated weight can be used to assess the quality of the data
and may serve as a figure of merit similar to the free R value.

This work was supported by European Union Grants QLG2-CT-2000-
01313 and QLG2-CT-2002-00988.
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