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Most analyses of single-molecule experiments consist of binning
experimental outcomes into a histogram and finding the param-
eters that optimize the fit of this histogram to a given data model.
Here we show that such an approach can introduce biases in the
estimation of the parameters, thus great care must be taken in
the estimation of model parameters from the experimental data.
The bias can be particularly large when the observations them-
selves are not statistically independent and are subjected to global
constraints, as, for example, when the iterated steps of a motor
protein acting on a single molecule must not exceed the total
molecule length. We have developed a maximum-likelihood anal-
ysis, respecting the experimental constraints, which allows for a
robust and unbiased estimation of the parameters, even when the
bias well exceeds 100%. We demonstrate the potential of the
method for a number of single-molecule experiments, focusing on
the removal of DNA supercoils by topoisomerase IB, and validate
the method by numerical simulation of the experiment.

constrained distribution | maximum-likelihood method | parameter
estimation | single-molecule techniques

Over the past few years, single-molecule techniques have
started to deliver on their promise as high-resolution tools
for the study of biological systems. The activity of single proteins
such as kinesin, myosin, and topoisomerases (1-3), among
others, has been monitored in real time. A hallmark of such
single-molecule experiments, in contrast to bulk experiments, is
their unparalleled ability to yield the functional form of the
distribution of experimental outcomes and not merely their
averages (4) or other statistics (5). Estimating the parameter
values that characterize these distributions often yields the
information required to construct detailed mechanical models of
the system under investigation.

To obtain these parameter values from an experiment, observ-
ables are typically binned into a histogram, and the histogram is
fitted to the predictions of a model. An alternative method to obtain
a distribution parameter is to use the maximum-likelihood method,
in which one calculates the value of an unknown parameter in a
distribution that maximizes the likelihood of the experimentally
observed data (6, 7). The maximum-likelihood method has the
advantage that one does not discard information, or introduce one’s
own biases, in the data through binning. Moreover, the histogram-
fitting approach, at least when squared loss is used, ignores the fact
that the errors induced in the construction of the histogram are
themselves a function of the model and the number of counts
represented in each bin of the histogram. Another important
advantage of using the maximum-likelihood method, which we
demonstrate below, is the possibility to build a model that is more
faithful to experimental reality. Particularly in biophysical experi-
ments where a multitude of factors, such as finite size or other
experimental or biological constraints, unavoidably thwart the
assumption that each individual observation is independent and
identically distributed (referred to as the “i.i.d.” assumption below),
the maximum-likelihood approach facilitates building a model that
is both more experimentally sound and more statistically robust.
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Frequently, constraints emerge because of experimental lim-
itations in detecting all values of experimental outcomes in a
distribution: one receives from the measurement a limited range
of values instead of the entire domain. In some experiments, for
example, the DNA translocation by the enzyme FtsK described
in ref. 8, the experimental outcomes are uncoupled from one
another and are i.i.d. However, in the scenario that experimental
outcomes are coupled to each other by a global constraint, the
range of values that can be detected varies with every new
measurement taken. As we demonstrate below, the presence of
global constraints is a factor that absolutely requires maximum-
likelihood analysis if the biological parameters of a system are to
be measured accurately.

In principle, the analysis of bulk experiments can be hampered
as much as the analysis of single-molecule experiments. How-
ever, in single-molecule measurements, one can evaluate each
experimental outcome with respect to the constraints. Armed
with this knowledge, one can apply the mathematical treatment
outlined here and counter the bias in the data accurately.

In this article, we illustrate the problem of global constraints
by showing how the measurement process in a single-molecule
study of DNA supercoil relaxation by the enzyme topoisomerase
IB imposes global constraints on the probability distribution
from which the experimental outcomes are drawn. Subsequently,
we generalize the maximum-likelihood method for parameter
estimation, enabling one to faithfully recover the unbiased
estimate of the distribution parameter from data subject to
global constraints. We also derive an expression for the standard
deviation of the recovered parameter as a function of the
available statistics. Numerical methods confirm our ability to
recover the unbiased distribution parameter within the error
estimation derived. Finally, we show that the method introduced
here can play an important role in the extraction of biological
parameters from several other single-molecule experiments.

Topoisomerase IB Steps Are Subjected to a Global Constraint

We first illustrate the concept of global constraints by using data
obtained from the single-molecule analysis of topoisomerase 1B
(9). Topoisomerase IB is an enzyme that removes supercoils
from a dsDNA molecule by transiently introducing a nick (10,
11). As long as the dsDNA molecule is nicked, torque present in
the molecule will swivel the DNA about its intact strand. After
a random number of supercoils are released, the enzyme reli-
gates the DNA, which terminates the removal of supercoils (9).

We can follow the action of the topoisomerase in real time by
using magnetic tweezers (1). The experimental strategy is de-
scribed elsewhere (12) and summarized in Fig. 1la. Each time the
topoisomerase removes supercoils from the DNA molecule, one
observes a discrete step in the height of a um-sized bead attached
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An example of a system that includes global constraints. (a) Topoisomerase IB removes DNA supercoils in steps. Each time the topoisomerase removes

anumber of supercoils, the DNA extension rises in a stepwise fashion. The final step that leads to the removal of the remaining supercoils in the DNA is artificially
constrained and should be removed from the analysis. (b) The size of the steps (in units of change in ALk) is distributed exponentially. In the text, this is referred
to as the measured distribution. This measured distribution may differ from an underlying true distribution because of the presence of global constraints.

to the molecule. The height of the bead is equal to the extension
of the DNA molecule and is directly related to its linking number
(Lk) and the number of supercoils present in the DNA. A small
extension of the DNA corresponds to a large number of super-
coils present, whereas a large extension corresponds to a few
supercoils present in the DNA. Thus, each time the topoisom-
erase removes supercoils from the DNA, we observe a discrete
step in the DNA extension, which is proportional to ALk. If the
probability of religation (per turn) is constant, the distribution of
ALk should be an exponential (Fig. 1b); the average of ALKk,
which is denoted (ALk), is the parametric description of topo-
isomerase activity we want to deduce from the experiment.

The setup of the experiment, in which the DNA molecule only
contains a limited number of supercoils, necessarily introduces
global constraints on the distribution. Consequently, at some
point the topoisomerase will inevitably remove the last few
supercoils that remain in the DNA (red arrow, Fig. 1a). This final
step toward the level of zero supercoils contains only limited
information in comparison to previous steps, because the final
step is artificially constrained by the fact that no more supercoils
remain in the DNA for the topoisomerase to remove. Therefore,
when drawing conclusions about the working of the enzyme, one
should discard this final step. For convenience, we will define
substeps as those steps that do not extend to the level of zero
supercoils. Effectively, steps so large that they become the final
step are discarded, whereas steps so small that they become
substeps are not discarded, which leads to an overrepresentation
of small steps. When one simply analyzes the surviving substeps,
one obtains a skewed distribution with an incorrect parameter,
which can hamper a proper interpretation of the system under
investigation. In an actual experiment, one cannot distinguish
between the “true” distribution and the distribution that is
skewed as a result of the measurement. After all, all one has is
the measured distribution (Fig. 1b), which is skewed. Fortu-
nately, in a single-molecule measurement this skewing can be
corrected for by the method we describe below.

Maximum-Likelihood and Domain Constraints

We briefly review the concept of parameter estimation by
using the maximum-likelihood method (7). Let P(slk) be a
properly normalized probability density function (pdf) for step
size s, with parameter k. The goal of the maximum-likelihood
method is to obtain an estimate for the parameter of the pdf,
which in this general case is k. Because the experimental
outcomes are assumed to be statistically independent, the
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combined probability to find, in » measurements, the data
S1, 82, - - . , Sy 1S given by:

L(k) = [Il P(silk), [1]

where L is the likelihood function. To avoid working with very
large or small numbers that can cause computational inaccura-
cies, and to facilitate the analysis, one often works with the
logarithmic likelihood

InL(k) = 2, In P(s,|k).
i=1

We now introduce k., the value of k that maximizes L, otherwise
known as the maximum-likelihood value. It is the best estimate
for k and we want to calculate its value. We obtain k. by solving

0 = a; In P(k|s) 2]

(see Supporting Text, which is published as supporting informa-
tion on the PNAS web site). Assuming that the shape of In P(kls)
near k. is a Gaussian distribution (see Supporting Text), we can
calculate the variance o? of k., using

—0 2= 97 1In P(kls) ) [3]
k=k,
In many experimental scenarios, constraints apply to the mea-
surable domain of P. In other words, it may not be experimentally
possible to sample all possible values of s. A proper analysis of
the data taken in this experimental scenario then requires P to
be renormalized by a weighting function g(k):

g(k) =J ds P(s|k), [4]

Smin

where Smin is the minimum value for s that can be detected, and
Smax 1S the maximum value for s that can be detected. In this
simplest case, Smin and smax are constant for each measurement
i of s. However, an alternative possibility is for a global constraint
to couple all observations (indexed by i) of the variable s to each
other. In this second case, one requires a weighting function that
varies with each measurement 7 of s:
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Smax,i

gilk) = ds P(s|k), [5]

Smin,i

where Smin; and Smax; are again the minimum and maximum
detectable values for s, respectively, but their values are not fixed
for all measurements of s. Instead, Smin,; represents the minimum
detectable value for s that is valid only for the ith measurement
of s. Similarly, smax; represents the maximum detectable value for
s that is valid only for the ith measurement of 5. Analogously to
the i.i.d. case, one can calculate the likelihood function for all of
the constrained data, maximize this function, and obtain k.. The
value for k. we obtain in this manner is then the unbiased
estimate of the parameter of the distribution.

To illustrate the method explicitly, we use an exponential
function as a pdf, the appropriate model for a topoisomerase that
removes supercoils from DNA with constant probability per turn
of religation. The normalized pdf for 0 <s < « is then given by

P(slk) = ke ™, [6]

where k = 1/(s). Here and in the following, brackets indicate
averages over the experimental observations. The corresponding
likelihood function is given by

L(s1, 52, -y 5.k) = [ PGsifk) = [ ] ke . [71
i=1 i=1

In the case of i.i.d. observations, we obtain

glk) = ds ke % = ¢ Hsmin —

Smin

¢ ~Homs, (8]

However, in the case of global constraints, we obtain:

Smax,i

gi(k) — ds ke —ks _— e*kSmin.z _ e*ksmax.i [9]
and the values for s are drawn from
ke i
P(Si|k) = o Komini _ o [10]

Having obtained a relation for P, we can calculate the corre-
sponding likelihood. The probability of the data in the presence
of global constraints is

N s
ke kesi

L(k) = H —kSmin,i

i=1 € - e

[11]

—kSmax,i®

where N is the number of experimental outcomes of s. The
logarithm of L is given by

N N

InL=Nlnk—k D s;— > In(e *mm — ¢ homa),
i=1 i=1

[12]

The parameter measured in the topoisomerase IB experiment is
the average change in (ALk), which is equal to (s) in the
terminology used above. Because (ALk) = 1/k, we take the
derivative of Eq. 12 with respect to 1/k:

1752 | www.pnas.org/cgi/doi/10.1073/pnas.0510509103

N
darey = dix = —kN + k? > s
i=1

N e —Kksmin,i

o kz Z S min, i ~ Smax,i
“~ e*kSmin,x _ e*kaux,,
i=

o ~ksmaxi

[13]

We find the maximum in the likelihood by setting Eq. 13 equal
to zero,

—k_Smin,i —k_ Smaxi
Smin€ " T Smax € i
0=1/k, —(s) + < e ksmini ok, smaxi , [14]

e

where k., is again the maximum-likelihood value for k, the value
that solves Eq. 14 (the summation signs in Eq. 13 have been
replaced by brackets in Eq. 14 to denote averages). Eq. 14 can
be evaluated numerically to yield (ALk)., the maximum-
likelihood value of (ALk). We deduce that the variance of (ALk)«
is given by

4
k*N (smin,i - Smax,i)2

[15]
4 \Sinhz(%k*(smin,i - Smax,i))>

(see also Supporting Text). Comparing Eqs. 14 and 15 to the case
in which no constraints apply, Or Smax = © and Smin = 0, we
recover

-2 _ 72
OALky = kiN —

(s) =1/k = (ALk) [16]
and
1 (ALK)
O(ALK)y = k\i]N = \/Ni’ [17]

as expected.

Eqgs. 14 and 15 can be directly applied to the single-molecule
data of DNA supercoil relaxation by topoisomerase IB (Fig. 1b)
to determine the true parameter of the underlying true distri-
bution and its associated standard deviation as a function of the
number of experimental outcomes N.

Numerical Simulation and the Consequences of Ignoring
Global Constraints

We simulate the measurement process in a single-molecule
experiment to quantify the biasing effect on a true distribution
as a result of the global constraints and the “sampling error”
inherent in the finite number of observations performed. The
applicability of Eqs. 14 and 15 to the determination of the value
and the standard deviation of the distribution parameter can
therefore be assessed.

We start by generating an exponential distribution character-
ized by a parameter that we define as the “true parameter” and
is denoted (ALk)yue. We arbitrarily set it to (ALk)yye = 60.
(ALk)rue represents the parameter of the distribution that would
be measured in the absence of constraints. We call this unbiased
distribution the true distribution. Because it is unbiased, we can
think of this distribution as representing the physics governing
the workings of the enzyme. We then simulate the process of
removing supercoils from a DNA molecule that has a maximum
of 130 supercoils present (the global constraint ALkY,,, Fig. 2a
Inset). We use these values for all simulations. The number of
supercoils that the topoisomerase removes each time from the
DNA is randomly drawn from our true distribution. As described
above, all final steps are subsequently discarded, and the sub-
steps that remain are displayed in a histogram. This histogram

Koster et al.
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Fig. 2.  Simulated step-size distributions for the enzymatic removal of su-
percoils from the DNA molecule. (a) The number of supercoils that the enzyme
removes each time from the DNA molecule is randomly drawn from a gener-
ated exponential distribution, called the true distribution (blue dots). The true
distribution is characterized by an average of 60 (units of ALk). After discard-
ing the final steps leading to the level of zero supercoils (ALKS,,, = 130, see
text), one obtains a measured distribution (red dots) whose parameter is
underestimated ((ALk) = 46). (Inset) Numerical simulation of the enzymatic
removal of supercoils. The size of each step is drawn from the true distribution.
As in reality, the DNA molecule simulated contains only a limited number of
supercoils. The level at which no supercoils are present is depicted as a
horizontal red line and acts as a constraint for the removal of supercoils by the
enzyme. Because the final step toward the level of zero supercoils (red arrow)
is artificially constrained, this final step is removed from the data analysis (see
text). (b) The degree to which the measured parameter is underestimated is a
function of the constraints (the initial maximum number of supercoils in the
DNA, denoted ALKY,,). As the constraints become more pronounced, the
underestimation grows. In some cases, the underestimation of (ALk) caused by
global constraints is severe (>100%). The true value for (ALk) is depicted as a
horizontal blue line, which the measured value for (ALk) (red dots) approaches
asymptotically (red line is a spline through the data points).

reflects what we would measure experimentally and we call it the
“measured distribution,” characterized by a “measured param-
eter,” which is biased and therefore denoted (ALk)piased. The
true distribution is shown in blue in Fig. 2a, and the measured
distribution is shown in red. As can be clearly seen from Fig. 24,
the two distributions are not identical. The true distribution
obviously yields an average of 60 (in units of ALk). We obtain
(ALK )piasea by fitting the measured distribution to an exponential
in the range between zero and ALKY, .. In fact, the functional
form is altered slightly because of the global constraints, as
discussed formally in Supporting Text and Fig. 5, which is
published as supporting information on the PNAS web site. Note
that the value for (ALk)pjaseq is thus biased because of a com-
bination of factors: (i) the presence of global constraints, (ii) the
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number of experimental outcomes N, and (iif) the analysis by
histogram fitting rather than maximum likelihood. For the
particular values for (ALk)ye and ALk?nax we used, (ALK )piased
was 46, which is an underestimate of ~23% in comparison to
(ALk)true. Indeed, the measurement process has biased small
steps over large steps, skewing the measured distribution toward
lower values. We now focus more closely on the relationship
between the magnitude of the constraint and the resulting
degree of bias. Fig. 2b plots (ALk)yiasea as a function of the
severity of the global constraint ALKY ... We plot (ALk)rye as a
blue horizontal line in Fig. 2b. The discrepancy between
(ALk)viasea and (ALk)ye caused by the global constraints is thus
reflected graphically as the distance between the red curve and
the blue line in Fig. 2b; in the absence of any biasing effect, all
values for (ALk)viasea Would fall on top of the blue line. We
describe three salient features of Fig. 2b. First, as the constraint
becomes less severe (ALY, increases), the magnitude of the
bias decreases. Conversely, as the constraint becomes more
severe (ALkY,. decreases), the magnitude of the bias increases.
Second, the discrepancy between (ALK)viased and (ALK)rye is Very
large (>100%) for small values of ALKY ... For example, for
ALk?nax = 20, (ALk)piasea = 27, which constitutes an underesti-
mation of (ALk) e by =~120%. Although this is an example that
might not generally be observed experimentally, we include it to
emphasize that our method can recover (ALk)ye robustly even
in the case of extreme bias, as we show below. The third feature
of Fig. 2b highlights that in a regime where one naively would
expect virtually no biasing effect because of the constraints, the
bias is significant nevertheless. Indeed, for ALKY,,. = 800, which
is well over an order of magnitude larger than (ALk)rye, one still
observes that (ALk)ye is underestimated by ~7%. This surpris-
ing behavior stems from the fact that the constraints on the
distribution vary from step to step and are on average smaller
than ALK",... We now describe how we can nonetheless obtain an
accurate value for (ALk) e, even in cases where (ALK)ye IS
severely underestimated.

By monitoring the DNA extension, either in a real experiment
or the simulation discussed here, we know the number of
supercoils that remain in the DNA molecule before the topo-
isomerase removes a number of supercoils; that is to say, we
know the constraints that apply to the measurement of each
substep. The important point is that although the constraints
vary for each step, they are known, and we can therefore
substitute their values for smay i in Eq. 10. We also know the value
Of Smin,i, Which is the minimum detectable number of supercoils
removed and is determined by the noise in the height of the bead.
This is beyond the scope of this work, and for all practical
purposes, we give Smin i the fixed value of zero. We now solve Eq.
14 and call the solution (ALK)catculated- In this calculation, we have
used N = 10° substeps. To get an idea of the reproducibility in
(ALK)catcutated, We Tepeat the calculation Q = 10° times and build
a histogram of the solutions (Fig. 3a). Importantly, we calculate
that the mean of the distribution of (ALk)cajcutated 1S 60, which is
identical to the value we have chosen as (ALk)ye, the true
parameter of the true distribution. Therefore, we conclude that
the analysis method accurately recovers the true parameter,
despite the biasing effect of the measurement.

In an experiment, it is not only important to recover the true
parameter of the distribution but also to know its associated
standard deviation as a function of the number of experimental
outcomes N. We have therefore calculated the standard devia-
tion of the (ALk)calculatea distribution (Fig. 3a) according to

Q
— 1 _ 2
Osimulation — _ E [ < ALk > calculated, j < < ALk > calculated)] .
Q 1 Jj=0
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Fig.3. Recovery and error calculation of the true distribution parameter by
using the maximum-likelihood method (see text). (a) The distribution of the
calculated distribution parameter is generated by solving Eq. 14 for (ALk) 106
times and binning the outcome of the calculation into bins. The distribution
is peaked at the value that characterizes the unbiased step-size distribution
((ALK)trye). Importantly, the method thus successfully recovers the unbiased
parameter despite the biasing effect of global constraints. The standard
deviation of the distribution, o, is numerically calculated. (b) The theoretical
standard deviation o, obtained by solving Eqg. 15, as a function of the number
of substeps per exponential distribution. The theoretical standard deviation is
calculated for constrained (maximum initial ALKS,, = 130, red points) and
unconstrained (maximum initial ALKS,,, = =, blue points) distributions. The
theoretical error in the case of the constrained distribution is compared with
the error as calculated from simulations as in a and is shown as black solid
circles. The theoretical error calculated by using Eq. 15 predicts the measured
error very well.

This procedure is repeated for nine different values of N and
their values are plotted as solid black circles in Fig. 3b. They can
be compared with the theoretically predicted values for o,
denoted as oyneory, calculated by using Eq. 15. Fig. 3b also plots
Otheory @s a function of N as red and blue dots. Red dots are
calculations of gineory With global constraints, and blue dots are
calculations of gyneory in the absence of constraints (ALk?nax = ),
As is evident from Fig. 3b, the solid circles fall on top of the
theoretical prediction otheory given by Eq. 15. Thus, we have
shown that Eq. 15 predicts the standard deviation associated
with (ALk)yue accurately. From this result, we can draw an
important conclusion, namely that in any given situation with
global constraints, an experimenter can assess whether enough
statistics have been obtained to determine the unbiased value of
the true distribution to the desired accuracy.

Application of the Method

The method outlined above deals with global constraints in the
domain of the distribution of experimental outcomes. Therefore,
the method should in principle be used in all experiments that
involve global constraints and whose experimental outcomes are
not distributed like (a series of) delta functions. An example of
outcomes distributed like a delta function is the fixed step size

1754 | www.pnas.org/cgi/doi/10.1073/pnas.0510509103
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Fig.4. Sketch of experiments in which global constraints can bias parameter
estimation. (a) Processivity of a biomolecule (beige circle) along a short
biopolymer such as a ssRNA or dsRNA molecule. When the biomolecule starts
its procession, it has the total length of the RNA molecule (the global con-
straint) at its disposal (Smax,0 = L). It then moves a distance x and stops. From
there, it can start moving again, but the biomolecule can now only travel a
length smaxo = L — x*, before falling off the RNA. The constraint on the
distance the biomolecule can travel along the RNA is different for the firstand
the second step. (b) Conformational changesin e.g., an RNA molecule studied
by using FRET. The FRET efficiency is defined between 0 and 1, which is the
global constraint for the experiment. E.g., at state 1, the FRET efficiency £ =
0. From this state, the FRET efficiency can only change by 1 at maximum
(Smax,0 = L). However, from an arbitrary intermediate state 2 (at £ = £*), it can
increase its E only by Smax.0 = AE = 1 — E*. The constraint on the change in FRET
efficiency is thus different for the first and the second state, as described in the
text.

of 37 nm with which a myosin protein walks over an actin
filament (3). Although experimentally it seems that one mea-
sures a Gaussian distribution of observables, the Gaussian shape
in fact arises from stochastic fluctuations around a fixed true
value. The function describing these processes is a delta function,
peaked at the fixed true value of the observable. Mathematically,
this process implies that the weight function [g;(k), Eq. 9] is
always equal to one, and consequently the pdf is unaltered by
constraints. Therefore, the likelihood function and the observ-
able that maximizes it remain unaffected, and one is not required
to use this method.

We expect that the analysis method outlined here could guide
the proper design and analysis of experiments including assays of
the processivity of helicases, polymerases, and other transloca-
tion enzymes, single-molecule Forster resonance energy transfer
(FRET) measurements, and real-time single-molecule tracking
of DNA condensation. For clarity, we describe a few of these
experiments in more detail below.

Processivity Measurements on Limited Substrate. Some substrates,
such as ssSRNA or dsRNA molecules, are practically hard to
prepare in lengths longer than a few kb if they are to be used in
single-molecule techniques (13). If one wants to measure the
distribution of the processivity of a biomolecule that tracks along
the RNA, one may find that the processivity exceeds the length
of the RNA. In such a case, one is required to discard the final

Koster et al.
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processive action, because it is artificially constrained by the fact
that there is no more dsRNA substrate for the biomolecule to
move on. The constraint is global, because the length of the RNA
molecule that is available for the biomolecule shrinks as it
proceeds. This dilemma is summarized in Fig. 4a. An example of
an enzyme translocating on RNA is the RNA-dependent RNA
polymerase P2 from ¢s bacteriophage (14). This polymerase can
perform an RNA synthesis reaction by using either dsSRNA or
sSRNA as a template. The processivity, which can be only
roughly estimated from experiments, is on the order of 10 kb or
more (D. Bamford, personal communication) and is comparable
to the length of the RNA substrate. In single-molecule proces-
sivity measurements for P2 polymerase and other enzymes, we
expect that our treatment would be instrumental in determining
the mean processivity correctly.

Transitions in FRET Efficiency. FRET efficiency depends on the
distance between a donor dye and acceptor dye and ranges
between zero (no FRET) and one (maximum FRET) (4, 15) (in
practice, the range in which meaningful FRET measurements
can be performed is even smaller because of the lack of
sensitivity close to both the no-FRET and the maximum-FRET
regimes). Changes in FRET efficiency can in theory be used to
quantify conformational changes in biomolecules (e.g., in the
folding of RNA molecules or in proteins). Future experiments
measuring distributions of changes in FRET efficiency could be
biased because of the global constraint imposed by the limited
meaningful range in FRET efficiency. For example, one could
measure a series of conformational changes in an RNA molecule
in which each conformational change is associated with a
transition in FRET efficiency between a donor and acceptor dye

—
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attached to two parts of the RNA molecule (e.g., refs. 16-18),
as schematically depicted in Fig. 4b. In such an experiment, one
would be required to discard those transitions that extend to or
exceed the limits of the FRET efficiency range. To correct for
the ensuing bias toward small FRET transitions and thus for a
correct analysis of the distribution, one needs to apply the
method described here.

Concluding Remarks

Experimental outcomes that are nonglobally constrained in that
they can be assumed to be i.i.d. can be relatively easily analyzed
in their measured range. However, when such analysis is per-
formed on outcomes that are coupled by global constraints,
severe bias in the parameter estimation can occur. We have
therefore generalized the maximum-likelihood method for pa-
rameter estimation to include distributions that have global
constraints. Using this method, we robustly recover the unbiased
distribution parameter from biased data, independent of the
severity of the bias. In addition, we have adapted the relation
describing errors in the estimation for distribution parameters
for the case of global constraints, which allows an experimenter
to assess whether enough data points have been accumulated to
predict the true parameter to the desired accuracy. Finally, we
show that global constraints can occur in a variety of experi-
ments, all of which would benefit from using this method.
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