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Small noncoding microRNAs (miRNAs) can contribute to cancer
development and progression and are differentially expressed in
normal tissues and cancers. From a large-scale miRnome analysis
on 540 samples including lung, breast, stomach, prostate, colon,
and pancreatic tumors, we identified a solid cancer miRNA signa-
ture composed by a large portion of overexpressed miRNAs.
Among these miRNAs are some with well characterized cancer
association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a,
and miR-155. The predicted targets for the differentially expressed
miRNAs are significantly enriched for protein-coding tumor sup-
pressors and oncogenes (P < 0.0001). A number of the predicted
targets, including the tumor suppressors RB1 (Retinoblastoma 1)
and TGFBR2 (transforming growth factor, beta receptor II) genes
were confirmed experimentally. Our results indicate that miRNAs
are extensively involved in cancer pathogenesis of solid tumors
and support their function as either dominant or recessive cancer
genes.

microarray � transcriptome � tumorigenesis

M icroRNAs (miRNAs) are a recently discovered class of
small noncoding RNAs that regulate gene expression (1).

Mature miRNAs are the results of sequential processing of
primary transcripts (pri-miRNAs) mediated by two RNase III
enzymes, Drosha and Dicer (2). Mature 18- to 24-nt-long
miRNAs negatively regulate protein expression of specific
mRNA by either translational inhibition or mRNAs degradation
(3). miRNAs are differentially expressed in human cancers. We
have previously reported that miR-15a and miR-16-1 are located
within a 30-kb region of minimal loss in chronic lymphocytic
leukaemia (CLL) and that both genes are often deleted or
down-regulated (4). Later, other groups reported changes of
miRNA expression in colorectal neoplasia (5), paediatric Burkitt
lymphoma (6), lung cancer (7), large cell lymphoma (8), glio-
blastoma (9), and B cell lymphomas (10). miRNAs can also
contribute to tumor development (11). The miR-17�92 cluster
cooperates with c-MYC to accelerate tumor development (12,
13). We described and validated a microarray platform to
evaluate the global expression of miRNA (14). Bead-based flow
cytometry was also recently used to classify human cancers, and
a general down-regulation of miRNAs was observed, with 129 of
131 differentially regulated miRNAs underexpressed in cancer
(15). We used a microarray platform containing probes specific
for active as well as precursor molecules to investigate the
miRNA profile in B-CLL (16, 17) as well as other cancer specific
miRNA profiles, including breast carcinomas (18). Because of
the many evidences that miRNAs are involved in cancer, it is of
high importance to elucidate their roles in solid tumors and to
further reveal common miRNA-driven pathways.

Results and Discussion
For further details, see Fig. 4 and Tables 3–14, which are
published as supporting information on the PNAS web site.

We describe here a large-scale detailed analysis of the miRNA
profiles in 540 samples from six solid tumors (see Table 3). The
clustering of miRNA expression profiles derived from 228 miRs
in 363 solid cancer and 177 normal samples is shown in Fig. 1.
The tree was constructed by using 137 different miRNAs, which
are expressed in at least 90% of the samples and shows a very
good separation between the different tissues. We initially
compared all tumors against all normal tissues to identify 26
overexpressed and 17 underexpressed miRNAs (Table 4). These
results indicated that, in solid cancers, the spectrum of expressed
miRNAs is very different from that of normal cells (43 of 137
miRNAs, 31%). This analysis was performed to evaluate the
results by using the same method as Lu et al. (15). The cancer
versus normal tissue comparison was performed by using a
reduced subset of lung samples (80 cancers and 40 normal
samples), and thus numerically balance the different tissues, for
a total of 404 samples. For statistical analysis, 137 miRs were
retained from 228 measured, where expression values were
above 256 (thresholded value) in at least 90% of samples. A t test
was used to identify differentially expressed miRNAs (Table 11).
The P values of the t test were corrected for multiple testing
procedures and to control type I error rates. Adjusted P values
were obtained by performing resampling with 500,000 permu-
tations (19). We obtained 43 miRs with an adjusted P value
�0.05. Twenty-six miRs are overexpressed and 17 underregu-
lated when the six solid cancers (breast, colon, lung, pancreas,
prostate, and stomach) are grouped together. As an alternative
to t test, we used significance analysis of microarrays (SAM) for
identification of differentially expressed miRNAs. This proce-
dure allows the control of false detection rate (FDR). The delta
was chosen as to result in an FDR � 0.01, and 49 miRs were
detected as differentially expressed, of which 34 were up-
regulated (Table 12). We then identified the miRNA subset that
results in the best tumor classification across all of the tissues,
i.e., which best predicts the two classes (cancer and normal), by
using the method of the nearest shrunken centroids, as imple-
mented in prediction analysis of microarray. The prediction
error was calculated by means of 10-fold cross-validation. The
miRNAs were selected yielding the minimum misclassification
error after cross-validation. Thirty six overexpressed miRNAs in
cancer are associated to positive cancer scores, and 21 down-
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regulated miRNAs are associated to negative cancer scores
(Table 13).

This overall classification might not be tailored to identify
tissue-specific miRNA alterations that are consistently resulting
in transformation, because miRNA expression is heavily tissue
specific, as shown in Fig. 1. Thus, to identify the miRNAs that
are really prognostic for cancer status, without incurring in the
bias due to tissue specificity, we used an alternative approach.
We first identified the six tissue-specific cancer signatures by
performing independent prediction analysis of microarray tests
(summarized in Tables 1 and 5–10), and then selected the
miRNAs shared among the different histotypes miRNA signa-
tures (Table 2). To compute the P values for this multitissue
combined analysis, we performed a resampling test with
1,000,000 random permutations on the miRNA identities. A
score was defined as the sum of the frequencies of the miRNAs
reaching the sharing threshold (three tumors). The P value was
defined as the relative frequency of simulation scores exceeding
the real score. Table 2 includes 21 dysregulated miRNAs com-
mon to at least three types of solid cancers (P value � 2.5 � 10�3)
and shows the frequency of each miRNA in the six solid cancers
signatures.

To maximize concision, we then computed the mean of the
miRNA absolute expression levels for the six cancer�normal
pairs. These miRNAs correctly cluster the different tissues,
irrespective of the disease status (Fig. 2A). Fig. 2B shows the

differential expression of the common miRNAs across the
different tumors, in relation to the normal tissues. The tree
displays the different cancer types according to the fold changes
in the miRNA subset. Prostate, colon, stomach, and pancreas are
most similar among them, whereas lung and breast are repre-
sented by a fairly different signature (Fig. 2B). Fig. 2 clearly
shows which miRNAs are associated to a particular type of
cancer. Strikingly, miR-21, miR-191, and miR-17-5p are signifi-
cantly overexpressed in all of the tumor types we considered, or
in five of six, respectively. miR-21 was reported to be overex-
pressed in glioblastoma and to have antiapoptotic properties (9).
Lung cancer shares a portion of its signature with breast cancer
and a portion with the other solid tumors, including miR-17�

Fig. 1. Clustering analysis of 540 samples representing six solid cancers and the respective normal tissues. MiRNAs were included in the tree when their
expression level (background-subtracted intensity) was higher than the threshold value (256) in at least 90% of the samples. One hundred thirty-seven miRNAs
were retained for clustering. Arrays were median-centered and normalized by using GENE CLUSTER 2.0. Average linkage clustering was performed by using
uncentered correlation metric.

Table 1. miRNAs used to classify human cancers and
normal tissues

Cancer

Up-
regulated

miRs

Down-
regulated

miRs

Misclassification error
after 10-fold cross

validation

Breast 15 12 0.08
Colon 21 1 0.09
Lung 35 3 0.31
Pancreas 55 2 0.02
Prostate 39 6 0.11
Stomach 22 6 0.19

Median normalization was performed, and the method of the nearest
shrunken centroids was used to select predictive miRNAs (28).

Table 2. The miRNAs shared by the signatures of the six
solid cancers

miR N Tumor type

miR-21 6 Breast, colon, lung, pancreas, prostate, stomach
miR-17-5p 5 Breast, colon, lung, pancreas, prostate
miR-191 5 Colon, lung, pancreas, prostate, stomach
miR-29b-2 4 Breast, colon, pancreas, prostate
miR-223 4 Colon, pancreas, prostate, stomach
miR-128b 3 Colon, lung, pancreas
miR-199a-1 3 Lung, pancreas, prostate
miR-24-1 3 Colon, pancreas, stomach
miR-24-2 3 Colon, pancreas, stomach
miR-146 3 Breast, pancreas, prostate
miR-155 3 Breast, colon, lung
miR-181b-1 3 Breast, pancreas, prostate
miR-20a 3 Colon, pancreas, prostate
miR-107 3 Colon, pancreas, stomach
miR-32 3 Colon, pancreas, prostate
miR-92-2 3 Pancreas, prostate, stomach
miR-214 3 Pancreas, prostate, stomach
miR-30c 3 Colon, pancreas, prostate
miR-25 3 Pancreas, prostate, stomach
miR-221 3 Colon, pancreas, stomach
miR-106a 3 Colon, pancreas, prostate

The list includes 21 commonly up-regulated microRNAs in 3 or more (N)
types of solid cancers (P value � 2.5 � 10�3).
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20�92, all three members of the miRNA cluster that actively
cooperates with c-Myc to accelerate lymphomagenesis (12). The
presence of these miRNAs as overexpressed is an excellent
confirmation of our approach. A second miRNA group that is
activated includes miR-210 and miR-213; together with miR-155,
which was already reported to be amplified in large cell lym-
phomas (8), children with Burkitt lymphomas (6), and various B
cell lymphomas (10), these miRNAs are the only ones up-
regulated in breast and lung cancer. miR-218-2 is consistently
down-regulated in colon, stomach, prostate, and pancreas can-
cers, but not in lung and breast carcinomas.

Several observations further strengthen our results. First, in
this study, we determined the expression levels of both the
precursor pre-miRNA and the mature miRNA for the majority
of genes. Of note, with the exception of miR-212 and miR-128a,
in all other instances the abnormally expressed region was that
corresponding to the active part, the only one interacting with
the target mRNA. Second, as shown in Fig. 2C, the expression
variation of the solid cancer miRNA signature is often univocal
(namely down- or up-regulation) across the different types of
cancers, suggesting a common mechanism of involvement in
human tumorigenesis. Third, the microarray data were validated

by solution hybridization for 12 breast samples (18) (miR-125b,
miR-145, and miR-21) and 17 endocrine pancreatic cancers and
normals (miR-103, miR-155, and miR-204) (C.R. and C.M.C.,
unpublished data), strongly confirming the accuracy of our
microarray data.

We did not observe the almost exclusively down-regulation of
miRNA (129 of 131) in cancer that has been reported recently
by Lu et al. (15). The difference between our work and that of
Lu et al. might be due either to the difference in samples number
(Lu et al. used �100 biopsies collectively derived from �10
different solid cancer types) or to the different technical plat-
form. It is noteworthy to underline that proven oncogenic
miRNAs, such as miR-155, miR-17-5p, miR-92-1, and miR-21
were not identified in Lu et al.’s paper as overexpressed. On the
contrary and rather surprisingly, miR-17-5p, miR-20, and miR-92
were described as underregulated in tumors. Different analytical
approaches were used; Lu et al. analyzed all of the tumor profiles
versus all of the normal profiles, rather then performing separate
tissue-matched analyses as we also did. In the all tumors vs. all
normals comparison, we correctly detected miR-21 and miR-
17-5p as overexpressed in cancer, in agreement with the pub-
lished literature (9, 13).There is also a general agreement

Fig. 2. miRNA expression signature in six solid cancers. (A) Expression of the differentially regulated miRNAs across solid cancers. Sixty-one miRNAs are present
in at least 90% of the tissues. The tree displays their average absolute expression values after log2 transformation. The mean was computed over all samples
from the same tissue or tumor histotype. Genes and arrays were mean-centered and normalized by using GENE CLUSTER 2.0. Average linkage clustering was performed
by using Euclidean distance. (B) Fold changes (cancer vs. normal) of the miRNAs present in at least 75% of the solid tumors with at least one tumor absolute value
higher than 2. The tree displays the log2 transformation of the average fold changes (cancer over normal). The mean was computed over all samples from the
same tissue or tumor histotype. Arrays were mean centered and normalized by using GENE CLUSTER 2.0. Average linkage clustering was performed by using
uncentered correlation metric. (C) Fold changes (cancer vs. normal) of the miRNAs present in the signatures of at least 50% of the solid tumors. The tree displays
the log2 transformation of the average fold changes (cancer over normal). The mean was computed over all samples from the same tissue or tumor histotype.
Arrays were mean centered and normalized by using GENE CLUSTER 2.0. Average linkage clustering was performed by using uncentered correlation metric.
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between the overall t test analysis and the tissue-specific cancer
expression of the selected miRNAs. Nevertheless, occasionally
this procedure can be misleading: for example, in our set of
samples, miR-155 is overexpressed in breast, lung, and colon
(Fig. 2C), but because it is strongly up-regulated in normal
pancreas, when an all tumors vs. all normals comparison is
performed, miR-155 appears as down-regulated in solid tumors,
albeit with a borderline significance (P value � 0.04).

The functional significance of miRNA dysregulation in cancer
we showed here needs to be understood. In solid tumors, it
appears as the most common miRNA event is gain of expression,
whereas loss of expression in cancer is a more limited event and
more tissue specific. We used a three-step consequential ap-
proach in the following order: first, in silico prediction of targets,
then luciferase assay for first validation of cancer relevant
targets, and finally, ex vivo tumor correlation between miRNA
expression (by microarray) and target protein expression (by
Western blotting) for a specific miRNA::mRNA interactor pair.
Relevant targets for cancer miRNAs can be either recessive
(tumor suppressor) or dominant (oncogene) cancer genes. To
test this hypothesis we first used an in silico approach to identify
the predicted miRNAs targets by using TargetScan, the database
of conserved 3� UTR miRNA targets (20). TargetScan con-
tained 5,121 predictions for 18 miRNAs (out of the differentially
expressed included in Table 2) of the dysregulated miRNAs, in
the total 22,402 (26.5%) predictions. A total of 115 (of 263, 44%)
of well known cancer genes were predicted as targets for these
18 miRNAs (Table 14). Such a high percentage of cancer genes
targeted by cancer miRNAs is very unlikely due to chance (P �
0.0001, Fisher’s exact test).

We then experimentally confirmed the in-silico predictions
for three different cancer genes, Retinoblastoma (RB1), TGF-
�-2 receptor (TGFBR2), and PLAG1. Three of four
miRNA::mRNA predicted interactions (75%) were found to be
positive in a luciferase assay by showing a significant reduction
of protein translation in respect to the scrambled control oli-
goRNAs (Fig. 3A). Retinoblastoma 3�UTR, for example, was
found to be functionally interacting strongly with miR-106a. The
biological significance of the proven miRNA::mRNA interac-
tions is reinforced by previous reports showing that Rb1 gene is
normally transcribed in colon cancers, whereas various fractions
of cells do not express RB1 protein (21). This finding suggests a
posttranscriptional mechanism for regulation of RB1 that could
be well explained by the concomitant miR-106a overexpression
we detected in colon carcinoma (Fig. 2B). Furthermore, miR-20a
is down-regulated in breast cancer (Fig. 2C) and, in fact,
TGFBR2 protein is expressed in the epithelium of breast cancer
(22). In addition, recently it has been shown that restoration of
TGF-� signaling by introduction of exogenous TGFBR2 in lung
cells lacking this protein reduces tumorigenicity in human lung
cancers (23). Interestingly, miR-20a, which we proved to interact
with TGFBR2 in vitro, is overexpressed in the lung cancer
samples that we analyzed.

Finally, we tested a set of patient samples to verify whether
RB1 protein expression correlates with miR-106a expression
(Fig. 3B). As expected, in gastric, prostate, and lung tumor
samples, RB1 was down-regulated (in respect to the paired
normal) and miR-106a was found to be overexpressed, whereas
in breast tumor samples, where miR-106a is slightly down-
regulated (Fig. 2C), RB1 is expressed at slightly higher levels
than in the paired normal control.

These experimental proofs reinforce the hypothesis that key
cancer genes are regulated by aberrant expression of miRNAs in
solid cancers (24). These data add examples to the list of miRNA
with important cancer gene targets as previously shown by
Johnson et al. (25) (let-7::Ras interaction), O’Donnell et al. (13)
(miR-17-5p::E2F1) and Cimmino et al. (26) (miR-16::Bcl2). Of
note, the last two mentioned miRNAs are members of the

described miRNA solid cancer signature we identified here. In
conclusion, our data indicate that miRNAs are involved in
cancer pathogenesis of solid tumors and support their function
in either dominant or recessive fashion, by controlling the
expression of protein-coding tumor suppressors and oncogenes.

Materials and Methods
Samples. Five hundred and forty samples, including a total of 363
primary tumors and 177 normal tissues, were used in this study
(Table 3). The solid cancers represented were lung carcinoma,
breast carcinoma, prostate carcinoma, stomach carcinoma, and
pancreatic endocrine tumor. All of the samples were obtained
with patient’s informed consent and were histologically con-
firmed. The prostate samples have been received from The
National Cancer Institute (NCI) Cooperative Prostate Cancer
Tissue Resource (CPCTR). The normal samples were paired
from the affected individual for lung and stomach and from
noncancer individuals for the remaining tissues. All normal
breast samples were obtained by pooling five unrelated normal
tissues each. Total RNA from tissues was isolated by TRIzol
(Invitrogen) according to manufacturer’s instructions.

MiRNA Microarrays. Microarray analysis was performed as de-
scribed (14). Briefly, 5 �g of total RNA was used for hybrid-
ization on miRNA microarray chips. These chips contain gene-
specific 40-mer oligonucleotide probes, spotted by contacting
technologies and covalently attached to a polymeric matrix. The
microarrays were hybridized in 6� SSPE (0.9 M NaCl�60 mM
NaH2PO4�H2O�8 mM EDTA, pH 7.4)�30% formamide at 25°C
for 18 h, washed in 0.75� TNT (Tris�HCl�NaCl�Tween 20) at
37°C for 40 min, and processed by using a method of direct
detection of the biotin-containing transcripts by streptavidin-
Alexa Fluor 647 conjugate. Processed slides were scanned by

Fig. 3. Protein-coding cancer genes as targets of solid cancer miRNA signa-
ture components. (A) The 3� UTR of different cancer protein coding genes
enable cancer miRNA regulation. The data present the relative repression of
firefly luciferase expression standardized to a transfection control, renilla
luciferase. The miRNAs were selected from those differentially regulated in
solid cancers as shown in Fig. 2 and Table 2. PLAG1, pleiomorphic adenoma
gene 1; TGFBR2, transforming growth factor, beta receptor II, Rb, retinoblas-
toma gene. pGL-3 (Promega) was used as the empty vector. miR-20a, miR-
26a-1, and miR-106 oligoRNAs (sense and scrambled) were used for transfec-
tions. A second experiment using as control a mutated version of each target
mRNA lacking the 5� miRNA-end complementarity site (MUT) is shown at
Right. All of the experiments were performed twice in triplicate (n � 6). (B) In
cancer patients, the levels of RB1 protein correspond to an inversely correla-
tion with miR-106a expression. For normalization, we used � actin.
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using a microarray scanner, with the laser set to 635 nm, at fixed
PMT setting, and a scan resolution of 10 mm. The data were
confirmed by Northern blotting as described in refs. 16, 18,
and 24.

Computational Analysis. Microarray images were analyzed by
using GENEPIX PRO. Average values of the replicate spots of each
miRNA were background subtracted, normalized, and subjected
to further analysis. Normalization was performed by using per
chip median normalization method and the median array as ref.
14. Finally, we selected the miRNAs measured as present in at
least the smallest of the two classes in a data set. Absent calls
were thresholded to 4.5 before statistical analysis. This level is
the average minimum intensity level detected in the experi-
ments. miRNA nomenclature was according to the Genome
Browser (http:��genome.ucsc.edu) and the miRNA database at
Sanger Center (27); in case of discrepancies we followed the
miRNA database. Differentially expressed miRNAs were iden-
tified by using the t test procedure within significance analysis of
microarrays (SAM) (28). SAM calculates a score for each gene
on the basis of the change in expression relative to the standard
deviation of all measurements. The miRNA signatures were
determined by applying nearest shrunken centroids (29). This
method identifies a subgroup of genes that best characterizes
each solid cancer from its respective normal counterpart. The
prediction error was calculated by means of 10-fold cross vali-
dation, and for each cancer we retained the miRNA signature
that resulted in the minimal prediction error. A resampling test
was performed by random permutation analysis to compute the
P value of the shared signature. All miRNAs identified by the
statistical analysis and the cancer signatures are listed in sup-
porting information.

Tumor Suppressor and Oncogene Target Predictions. The most re-
cent TargetScan predictions (April 2005) were used to identify
the putative miRNA targets. They include essentially the 3� UTR
targets reported by Lewis et al. (20) with a few changes arising
from updated gene boundary definitions from the April 2005

UCSC Genome Browser mapping of RefSeq mRNAs to the hg17
human genome assembly. Among the putative targets, we spec-
ified known cancer genes (tumor suppressors and oncogenes) as
identified in the Cancer Gene Census at www.sanger.ac.uk�
genetics�CGP�Census or reported by OMIM at www.ncbi.nlm.
nih.gov.

Target in Vitro Assays. For luciferase reporter experiments, the 3�
UTR segments of Rb1, TGFBR2, and Plag1 predicted to interact
with specific cancer miRNAs were amplified by PCR from
human genomic DNA and inserted into the pGL3 control vector
(Promega), using the XbaI site immediately downstream from
the stop codon of luciferase. The human megakaryocytic cell line
MEG-01 was grown in 10% FBS in RPMI medium 1640,
supplemented with 1x nonessential amino acid and 1 mmol
sodium pyruvate at 37°C in a humidified atmosphere of 5% CO2.
The cells were cotransfected in 12-well plates by using siPORT
neoFX (Ambion, Austin, TX) according to the manufacturer’s
protocol with 0.4 �g of the firefly luciferase report vector and
0.08 �g of the control vector containing Renilla luciferase,
pRL-TK (Promega). For each well, 10 nM miRNA oligonucle-
otides (Dharmacon Research, Lafayette, CO) or scrambled
oligonucleotides (Ambion) were used. Firefly and Renilla lucif-
erase activities were measured consecutively by using dual-
luciferase assays (Promega) 24 h after transfection.

Western Blotting for RB1. The levels of RB1 protein were quan-
tified by using the mouse monoclonal anti-RB1 antibody (Santa
Cruz Biotechnology) using standard procedures for Western
blotting. The normalization was performed with mouse mono-
clonal anti-actin antibody (Sigma).
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