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There is currently a debate as to whether event-related potentials
and fields measured by using electroencephalography or magne-
toencephalography are generated by ongoing oscillatory activity
becoming phase-reset in response to a given stimulus. We per-
formed a magnetoencephalography study measuring brain activity
in response to visual stimuli. Using a measure termed the phase-
preservation index we investigated the phase of oscillatory �
activity (8–13 Hz) before and after the stimulus. We found that in
single trials the � oscillations after visual stimuli preserve their
phase relationship with respect to the phase before the stimuli.
This finding argues against phase-resetting of ongoing oscillations
as being responsible for visually evoked responses. The event-
related field can be explained primarily by stimulus-locked activity
in the � band that is absent before the stimulus. These findings
suggest that different neuronal events are responsible for gener-
ating the ongoing oscillations and the visually evoked responses.

electroencephalography � magnetoencephalography � oscillations �
phase-resetting � visual evoked fields

Event-related fields (ERFs) measured by using magnetoen-
cephalography (MEG) [analogous to the event-related po-

tentials (ERPs) measured by using electroencephalography
(EEG)] reflect, with high temporal resolution, neuronal activity
associated with stimulus-processing in a time-locked way (1).
The event-related responses are produced by neuronal synchro-
nization over trials evoked by the stimuli. In addition to event-
related responses, spontaneous oscillations are also measured in
the ongoing signals (2). These oscillations are produced by
intrinsic synchronization of large groups of neurons.

There are two main views concerning the relationship between
ERPs�ERFs and spontaneous oscillatory activity (3–9). Accord-
ing to the first view, referred to as the additive model, ERPs�
ERFs are a consequence of a neuronal response adding to the
ongoing oscillations. When analyzing ERPs�ERFs, the sponta-
neous oscillatory activity is considered irrelevant, and, by stim-
ulus-locked averaging, the spontaneous oscillatory activity is
attenuated while leaving the ERF waveform. Because the ERF
should be seen in the frequency domain as a transient change in
amplitude, the additive model is also referred to as the ampli-
tude-modulation theory (6). In the additive model, the phase of
the oscillatory activity is largely unaffected by external stimuli.

According to the second view, referred to as the phase-
resetting model, the phases of the ongoing background oscilla-
tions are aligned (phase-reset or partially phase-reset) to the
stimulus (4–7). The resetting of the phases accounts for the
emergence of the ERP�ERF in the averaged traces. Given that
strong � oscillations are often present before the stimuli, it is
believed that phase-resetting of the � oscillations is particularly
important for producing the ERPs�ERFs. A fundamental pre-
diction of the phase-resetting model is that, at the time of the
ERF, the trial-to-trial phase coherence increases after the
stimuli. Typically, measures such as intertrial coherence (4) and
the phase-locking index (5, 7) have been applied to provide
support for phase-resetting. These techniques quantify the con-
sistency in phase of the single-trial-evoked signal with respect to
the stimulus. It should be noted that these measures do not speak

to whether there is an oscillatory signal before the stimulus. For
instance, an ERF�ERP with spectral power at 10 Hz emerging
from white noise will also result in a detectable phase-reset in the
10-Hz band (10). The phase-resetting model argues that the
phase of the oscillatory activity is permanently changed as a
result of the stimulus onset. Mäkinen et al. (11) have developed
a measure for poststimulus amplitude variance. They used this
measure to argue in favor of an additive model for ERP�ERF
generation. However, based on a model study, the conclusions
drawn from the amplitude-variance measure have recently been
brought into question (12).

Recently, Shah et al. (8) defined a set of criteria for distin-
guishing between the phase-resetting and additive models. With
respect to the phase-resetting model, they argued that, beyond an
increase in trial-to-trial coherence, oscillatory activity at the
dominant frequency of the ERF�ERP should also be present
before the stimulus. Furthermore, in contrast to what would be
expected in the additive model, no stimulus-induced increase in
oscillatory power would be expected. In addition to these
criteria, we will include arguments pertaining to the phase
relationship between pre- and poststimulus oscillatory activity. If
the stimulus is able to reset the phase of the oscillatory activity,
there should be no relationship between the pre- and poststimu-
lus phases. Thus, a fundamental prediction would be that the
phase after the stimulus bears no relation to the phase of the
oscillations before the stimulus. To quantify this phase relation-
ship over time, we have developed a tool that we term the
phase-preservation index (PPI). We have applied this measure to
visual evoked signals acquired by MEG.

Results
Visual stimuli constructed from wedge-shaped checkerboards
were presented in the lower left visual field (Fig. 1). Deviant
visual stimuli were similar to the standards, but the black
checkers were marked with red dots. Fig. 2A shows the visual
evoked field averaged over eight subjects in sensors over the right
hemisphere, where the evoked fields were strongest. A time–
frequency representation of the power, averaged over trials and
subjects, demonstrated strong � activity before and after the
stimulus (Fig. 2B). As seen in Fig. 2C, � activity was depressed
but still present after the stimuli. In the � band, we observed a
transient increase coinciding with the ERF at t � 0.1–0.2 s (see
arrow). The power in the � activity appeared to be depressed
after the transient increase; however, this depression coincided
with the depression in the � band. Given the frequency resolu-
tion of the wavelets, the � depression is most likely explained by
effects in the � band bleeding into the � band, supported by the
fact that the � depression becomes less when applying longer
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wavelets that decrease the spectral bleeding. Consistent with
other reports (4, 5, 7), strong phase-locking was observed in the
� band from 0–0.3 s after the stimulus, as measured by the
phase-locking factor (PLF) (Fig. 2D).

To investigate the phase stability between pre- and poststimu-
lus oscillatory activity, we have developed a tool termed the
phase-preservation index (PPI) (Fig. 3). This measure, yielding
a number between 0 and 1, quantifies the consistency in phase
stability over trials as a function of time (see Methods). Fig. 4A
shows the grand average of the PPI calculated at 0.1-s time steps
with respect to a reference phase estimated 0.25 s before the
stimuli. PPI values above the red line in the figures indicate a
significant relationship between pre- and poststimulus � phase.
The PPI remained significant up to 0.3 s after the stimulus. The
PPI for time-shuffled trials (temporally uncorrelated; Fig. 4,
dashed line) dropped faster than the PPI for the � activity. The
PPI for stimulated and unstimulated trials (Fig. 4B) could not be
differentiated statistically. Had the stimulus resulted in a phase
reset of the � activity, the phase differences from the pre- and
poststimulus intervals would have been random, i.e., the PPI

would have been reduced at the time of the ERF. Thus, our
findings show that prestimulus � phase is being preserved over
time, even after visual stimuli.

Given that phase-locking in response to the stimulus was
observed in the � band (Fig. 2D), we calculated the PPI in this
band as well. As seen in Fig. 5 A and B, the PPI for stimulated
and unstimulated trials dropped as fast as the PPI for time-
shuffled trials, indicating little phase stability in the � band. At
t � 0.05 s, the PPI values were already below significance, most
likely explained by little or no ongoing oscillatory � activity,
consistent with Fig. 2C, showing that the power in the prestimu-
lus � band is several magnitudes higher than that in the
prestimulus � band. Furthermore, there is an increase in � band
power at the time of the stimulus. We conclude that the ERF is
an additive effect not explained by phase resetting of ongoing �
oscillations.

To account for our experimental findings, we constructed a
simple model. Single-trials data were produced by � oscillations
of �10 Hz, white noise, and an evoked response. The evoked
response was an exponentially damped 6-Hz sinusoid. Examples
of individual trials are shown in Fig. 6A. The averaged evoked
responses can be seen in Fig. 6B. The time–frequency represen-
tations (TFRs) in Fig. 6C show the power of the signals over time
and reproduce the experimentally observed � activity being
attenuated at the time of the stimulus (Fig. 2B). The PLF in Fig.
6D shows strong phase-locking in the � band, which is explained
by the ‘‘evoked response.’’ The PPIs in the � and � bands are
shown in Fig. 6E. As in the experimental data, the PPI drops
rapidly in the � band but remains high in the � band during the
time of the evoked response.

Discussion
We have examined whether the phase of ongoing activity is
affected by visual stimuli. Here, we report that the phase of the
ongoing � oscillations is preserved up to 0.3 s after stimulus onset
with respect to the phase before the visual stimuli. Our finding
demonstrates that ongoing � activity is not phase-reset by visual
stimuli, ruling out phase-resetting of ongoing � oscillations as a
mechanism for generation of ERPs�ERFs in the visual system.
We did observe a power increase accompanied by a phase-
alignment in the � band after the stimulus; however, we found no
support for ongoing � oscillations before the stimulus. Our
findings argue strongly in favor of an additive model for the
generation of visual ERFs.

Fig. 1. The visual stimuli used in the paradigm. The stimuli were presented
in the lower left visual field for 0.7 s with a random intertrial interval (1.5–4.0
s). The standard (Left) and deviant (Right) stimuli were presented in 80% and
20%, respectively, of the trials.

Fig. 2. Temporal and spectral representations of the visual ERFs averaged
across eight subjects. (A) The ERF in a right occipital sensor in response to �200
lower left visual field checkerboard stimuli averaged over eight subjects. (B)
Grand average of TFRs of power calculated for the individual trials and
averaged. (C) The power for 7 and 10 Hz. The arrow marks the increase in �

power at the time of the stimulus (P � 0.05; pair-wise t test, t � �0.3 versus t �
0.1). (D) TFR of the PLF. Only significant PLF values (PLF � 0.088 for P � 0.01)
are shown.

Fig. 3. A schematic illustration of the PPI. The ongoing oscillations of three
trials have different phases before the stimulus as shown (Left) by the circles
representing the reference phases. The arrow marks the time of the stimulus.
Because of the following evoked response, the instantaneous phases become
aligned and, thus, become random with respect to the reference phase [circles
(Center)], yielding a small PPI. Later, if there is consistency in phase difference
between the reference and instantaneous phase [circles (Right)] over trials, a
high PPI will emerge.
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We have used MEG to investigate the relationship between �
oscillations and event-related responses, whereas other studies
have applied EEG (4, 5, 7). EEG measures the potential on the
scalp arising from the return currents of intracellular currents,
whereas MEG detects primarily the magnetic fields produced by
the intracellular postsynaptic currents (13). Even though EEG
and MEG have different sensitivities with respect to current
orientation, the two techniques essentially measure related
electrophysiological activation. Thus, we believe that our MEG
findings apply to EEG data as well.

Our results support the view that ERFs�ERPs and ongoing
oscillations are separate neuronal events. However, our findings
do not discount that prestimulus � oscillations can modulate the
generation of the ERFs�ERPs. A number of findings demon-
strate that phase (14) and amplitude (15) of prestimulus oscil-
latory activity can influence the ERP. Additionally, it has been
shown that prestimulus � activity can modulate somatosensory
detection (16). Even though our results speak against phase-
resetting of ongoing oscillations as being responsible for the
generation of ERFs, our findings pertain only to visual ERFs�
ERPs and do not exclude that phase-resetting is responsible for
evoked responses in other brain regions (9, 17).

How does the activity in the � band relate to the generation
of the ERF? Our findings show that there is no significant

ongoing � activity present before the stimulus and that the ERF
produces a transient increase in � power (Fig. 2C). Shah et al. (8)
have argued that the phase-resetting model requires that ongo-
ing oscillations be present before the stimulus. As seen in Fig. 2D,
we observe a strong intertrial phase-locking, along with a
transient power increase in the � band that is a consequence of
the ERF. In conclusion, the event-related response rather than
phase-resetting of ongoing � oscillations is a consequence of an
additive transient neuronal response.

We constructed a simple additive model that could account
for our experimental data. It was sufficient to assume (i) ongoing
� oscillations were not perturbed in phase by the stimulus, and
(ii) an additive evoked response with components in the � band.
We could find no simple model involving phase-resetting in
either the � or � bands that could account for our findings. The
phase-resetting models tested resulted in a decrease in the PPI
that was incompatible with our experimental data (see support-
ing information, which is published on the PNAS web site).

Two schemes have been proposed with regard to the relation-
ship between the ERF and the ongoing � oscillations: the
shared-generator and the dual-generator hypotheses (Fig. 7).
According to the shared-generator hypothesis, the generators of
the ERFs and the ongoing oscillations share the same neuronal
populations (8, 10). During the time of the evoked field, some of
the neurons initially generating the ongoing rhythm participate
in the production of the evoked field. An alternate view, also
consistent with our observation, is that two different neuronal
populations produce the ongoing oscillations and the ERF. The

Fig. 4. The PPI of the � oscillations. (A) The PPI across time averaged over
eight subjects for the � frequency identified in individual subjects. Error bars
indicate the SEM. The reference phase was determined at �0.25 s. The PPI
decays slowly, showing that the poststimulus phases are preserved with
respect to the prestimulus phase, up to �0.3 s poststimulus. PPI values above
the red line are considered statistically significant (P � 0.01; see Methods). The
dashed line indicates the PPI for trials shuffled in time (temporally uncorre-
lated). (B) The PPI for the unstimulated trials. The PPI values between the
stimulated and unstimulated trials were not significantly different across
time. (t test, P � 0.05).

Fig. 5. The PPI of the � oscillations. The analysis was done as described in Fig.
3. The PPI for stimulated (A) and unstimulated (B) trials decays as fast as the PPI
for the trials shuffled in time (dashed line).
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two generators might interact during and after the generation of
the ERF. The dual-generator model does not speak to whether
the neuronal ensembles are macroscopically separable or inter-
mixed. Distinguishing between these two models would require
intracranial single-cell measurements combined with local field-
potential recordings.

What is the role of ongoing � oscillations in visual processing?
Because our findings speak against phase-resetting of ongoing �
oscillations as being responsible for generating the ERF, we will
argue that the presence of � activity is not essential for gener-
ating visually evoked responses. Nevertheless, given the large
signal size of the � activity and the sources in parietooccipital
areas, it is highly conceivable that � activity plays a modulatory
role in perception and ERF�ERP generation. This hypothesis
has been supported by several studies (14–16). Future research
is required to determine how � phase and amplitude might
modulate the generation of visual evoked responses.

Methods
Participants. Eight normal young adults (three females) with a
mean age of 25 (range 20–29) years participated in the experi-
ment. All participants had normal or corrected-to-normal (bet-
ter than 6�8) vision. MEG signals were recorded with a 151-
sensor CTF Omega System (VSM MedTech, Coquitlam,
Canada) placed in a magnetically shielded room. In addition, the
electrooculogram (EOG) was recorded to later discard trials

contaminated by eye movements and blinks. The ongoing MEG
and EOG signals were low-pass filtered at 200 Hz, digitized at
600 Hz, and stored for off-line analyses.

Procedure. The standard visual stimuli were constructed from
wedge-shaped checkerboards presented in the lower left visual
field (Fig. 1). Deviant visual stimuli were similar to the standard,
but the black checkers were marked with red dots. The width of
the stimuli was 12°, and the screen was �60 cm away from the
subject. The fixation cross was constantly on. Each stimulus was
displayed for 0.7 s. The stimuli were presented in four blocks of
150 trials in the lower left visual field. The intertrial interval
varied randomly from 1.5 to 4.0 s. Deviants occurred randomly,
with a probability of 0.2. To ensure that participants were
attending, they had to respond to the deviant stimuli by pressing
a button with the right index finger. Given the length of the
interstimulus interval, we were also able to extract epochs in
which there was no stimulus (or motor response). We extracted
as many unstimulated as stimulated trials for each subject (�200
trials).

Data Analysis. In each subject, we used the data from the MEG
sensor with the largest ERF (characterized by the N1m–P2m
complex) (18) over the right visual cortex. TFRs were obtained
by using a wavelet transform according to the procedures of
Tallon-Baudry et al. (19). Single trials were convolved by a
complex Morlet wavelet w(t, f0) � Aexp(�t2�2�t

2)exp(2i�f0t),
where �t � m�2�f0, and i is the imaginary unit. The normal-
ization factor was A � (�t��)�1/2 The constant m, which
defines the compromise between time and frequency resolu-
tion, was set to 7. The wavelet transformation produces a
complex time series for the frequencies f0 of interest. The
TFRs of power were calculated by averaging the squared
absolute values of the convolutions over trials. The PLF was

Fig. 6. The model constructed to account for the experimental data. Each
trial was composed of white noise, an �10-Hz sinusoid, and a time-locked
component constructed from a damped 6-Hz sinusoid. The �10-Hz sinusoids
varied in phase and slightly in frequency. (A) An example of one trial. (B) The
evoked component generated from 500 trials. (C) The TFR of power of the
trials showing the oscillatory � activity. (D) The PLF, demonstrating the con-
tribution of the evoked component. (E) The PPI applied to the model data in
the � (blue) and � (red) bands.

Fig. 7. Two models relating ERF and � oscillations. (A) In the shared-
generator model, the generators of the ERF and � oscillations have the same
neuronal populations in common. During the time period of the ERF, some of
the neurons initially involved in generating the ongoing rhythm produce the
evoked field. (B) In the dual-generator model, the ERF and the � oscillations
have different generators. Before the stimulus, the ERF generators are qui-
escent and become active upon stimulus onset. The stimulus may modulate
the power of the ongoing � rhythm. Likewise, the phase and�or amplitude of
the � oscillations might modulate the ERF.
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defined as the modulus of the complex convolutions normal-
ized to length 1 and averaged over trials (19):

PLF�f0, t� �
1
N � �

k�1

N

ei�k� f0,t��, [1]

where �k( f0, t) represents the instantaneous phase resulting from
convolving the trials with the complex Morlet wavelet, and N is
the number of trials. A PLF close to 0 reflects a high phase
variability, whereas a PLF � 1 reflects all trials having the same
phase. The PLF measure is related to the intertrial coherence
(4), the intertrial phase-locking (9), and the phase-locking
index (7).

PPI. To investigate the phase stability of the oscillatory activity
over time, we quantified the relationship between phases before
and after the stimulus. Phases were calculated by discrete
Fourier transforms (DFTs) for the dominant � and � frequencies
identified in each subject. The � frequency (mean, 10.1 Hz; SD �
1.0) was identified in a 0.5-s time window before stimulus onset,
and the � frequency was identified in the poststimulus PLFs
(mean, 6.6 Hz; SD � 0.74). The DFTs were calculated by using
3-cycle-long data segments (e.g., 10 Hz resulted in a 0.3-s window
180-samples long). Each data segment was multiplied by a
Hanning taper before calculating the DFT. A reference phase
�k( f0, tref) was calculated for a 3-cycle segment 0.25 s before
stimulus onset for each trial k, resulting, for 10 Hz, in a reference
time window from �0.4 to �0.1 s (180 samples) and, for 6 Hz,
a time window from �0.5 to 0 s (300 samples), i.e., even for the
lowest analyzed frequency, the reference time window did not
overlap with the stimulus. In the poststimulus interval, the
instantaneous phase �k( f0, t) was calculated every 0.1 s until
0.7 s. For a given segment, we calculated the difference between
the instantaneous and the reference phase (Fig 3). The modulus
of the average of the complex representation of the phase
differences resulted in a measure we termed the PPI:

PPI�f0, t� �
1
N � �

k�1

N

ei��k�f0,tref���k�f0, t���. [2]

The PPI is related to the PLF; however, rather than quantifying
phase-locking over trials with respect to a stimulus, the PPI
quantifies the consistency in phase stability as a function of time
over trials. The measure yields a number between 0 and 1
quantifying the degree of phase stability. The statistical signif-
icance of the PPI can be tested by calculating Rayleigh’s Z value

(20), Z � nPPI2, where n is the number of trials. The Z value
provides a statistical measure with respect to the null hypothesis
that the phase differences across trials are randomly distributed.
Rejecting the null hypothesis establishes that the phase differ-
ences between pre- and poststimulus intervals are related.
Across subjects, the Z value was corrected to Zall � ¥Zsubject�
�M, where M is the number of subjects. The statistical signif-
icance of the Z value can be established according to P � e�Zall

for n � 60 (20). For �200 trials per subject and eight subjects,
PPI values �0.088 could be considered statistically significant
with respect to P � 0.01

To further characterize the PPI, we calculated the measure for
the data shuffled in time. The average PPI for the data shuffled
100 times is shown in the figures. This randomization procedure
provides an estimate for the change in PPI for data with no
temporal correlations.

The Model. To account for our experimental findings, we con-
structed a simple model. A single trial k was defined as

Sk�t� � SERF
k � t� � S�

k� t� � Snoise
k � t� . [3]

The ERF was modeled as using a sinusoid with frequency
fERF � 6 Hz, multiplied to an � function.

sERF
k � t� � AERF

t�t0

	
e1��t�t0��	sin(2�fERF(t 
 t0)), [4]

for t � t0, where t0 � 0.05 s reflects time of the effect of the
‘‘stimulus.’’ The amplitude of the ERF was set to AERF � �0.2,
and the linear rise and exponential decay time was 	 � 0.05 s. The
� activity in each trial k was created from sinusoidal function
with random phase �k and a frequency fk selected from a
Gaussian distribution with a 10-Hz mean and SD of 0.5 Hz.
Additionally, the oscillatory signals were multiple to an inverted
sigmoid function, representing the depression in � after the
stimulus

s�
k�t� � �1 


0.5
1 � e�30�t�t0���sin(2�fkt � �k). [5]

Finally, snoise
k (t) represented white noise, with an SD of 2.0. The

parameters were set to match the experimental data qualita-
tively. The model was used to create 500 trials, which were
subjected to the same analysis as the experimental data.
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