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Although it is known that the human genome contains hundreds of
microRNA (miRNA) genes and that each miRNA can regulate a large
number of mRNA targets, the overall effect of miRNAs on mRNA
tissue profiles has not been systematically elucidated. Here, we show
that predicted human mRNA targets of several highly tissue-specific
miRNAs are typically expressed in the same tissue as the miRNA but
at significantly lower levels than in tissues where the miRNA is not
present. Conversely, highly expressed genes are often enriched in
mRNAs that do not have the recognition motifs for the miRNAs
expressed in these tissues. Together, our data support the hypothesis
that miRNA expression broadly contributes to tissue specificity of
mRNA expression in many human tissues. Based on these insights, we
apply a computational tool to directly correlate 3� UTR motifs with
changes in mRNA levels upon miRNA overexpression or knockdown.
We show that this tool can identify functionally important 3� UTR
motifs without cross-species comparison.

gene expression � microarray � posttranscriptional control

Mature microRNAs (miRNAs) are short noncoding single-
stranded RNAs that can posttranscriptionally regulate

gene expression in plants and animals. Hundreds of distinct
miRNA genes are now known to exist and to be differentially
expressed during development and across tissue types. Overall,
little is known about the biological function of animal miRNAs,
but recent studies have suggested important regulatory roles for
miRNAs in a broad range of biological processes including
developmental timing, cellular differentiation, proliferation, apo-
ptosis, oncogenesis, insulin secretion, and cholesterol biosynthe-
sis (1–5). Even less is known about the specific role of miRNAs
in gene regulation because only a few miRNA targets have been
thoroughly analyzed experimentally. In animals, miRNAs usu-
ally inhibit gene expression through partially complementary
elements in the 3� UTRs of their target mRNAs. Although it has
been suggested that animal miRNAs could play important roles
in specifically modulating translational gene regulation (1, 2),
there is also increasing evidence that miRNAs can directly
induce mostly weak but significant negative effects on the
steady-state mRNA levels of their targets. Evidence for these
effects comes from a series of studies that used siRNA trans-
fection, miRNA overexpression, or miRNA knockdown in cul-
tured cell lines or entire organisms (5–8). It has been demon-
strated that transfection of exogenous miRNA duplexes into
HeLa cells can cause moderate down-regulation of hundreds of
mRNAs, many of which contain the recognition motif of the
overexpressed miRNA in their 3� UTR (7). In Caenorhabditis
elegans, the let-7 miRNA induces the degradation of lin-41 target
mRNA. Furthermore, lin-14 and lin-28 mRNA levels decrease in
response to lin-4 miRNA (8). Finally, in vivo knock-down of a
liver-specific miRNA (miR-122) has shown that hundreds of
mRNAs, many of them likely to be direct targets of this miRNA,
were moderately up-regulated (5). In summary, these studies
suggest that mRNAs containing partial miRNA complementary
sites can be targeted for degradation in vivo, that miRNA-
dependent regulation of mRNA stability may be more common

than previously appreciated, and that this mode of gene regu-
lation could be an important part of the biological function of
miRNAs. However, all of these experiments involved only a few
miRNAs, and the miRNA concentrations were changed dra-
matically, often in unnatural settings.

Here, we used computational methods to explore the effects
of endogenous miRNA expression on endogenous steady-state
mRNA levels. Using published microarray data (9, 10), we
analyzed the expression of �7,000 human miRNA targets that
were predicted by the algorithm PicTar (termed PicTar targets)
(11) among �18,000 mRNAs whose expression was determined
in �80 human tissues, cell types, and cancer lines. We then
related the expression of miRNA targets to that of the miRNAs
(12, 13) (P. Landgraf and T. Tuschl, personal communication).

Previously, miRNA targets have been mainly predicted compu-
tationally based on pure sequence analysis of 3� UTRs. These
algorithms suggested that conserved human miRNAs target at least
30% of all human genes (11, 14, 15) and that, on average, each
miRNA targets �200 transcripts. Because these algorithms relied
on cross-species comparisons, they almost certainly underestimated
the number of miRNA targets. With the discovery of species-
specific miRNAs (16–18) that may contribute to molding differ-
ences in the mRNA expression in closely related animal species,
there is also a need to develop computational methods for identi-
fying miRNA targets without relying on cross-species comparisons.
In this article, we show that directly correlating mRNA expression
levels with the 3� UTR motif composition can improve the sensi-
tivity problems of current target prediction algorithms and also
indicates that the number of vertebrate miRNA targets seems to be
larger than previously estimated.

Results
We extracted a set of altogether 12 miRNAs that seemed highly
tissue-specifically expressed (12) (P. Landgraf and T. Tuschl, per-
sonal communication) or up-regulated in cancer (13) from miRNA
expression profiles and analyzed, for each miRNA, the mRNA
expression of its predicted targets across 79 human tissues (see
Methods and Table 1). To assess the significance of tissue-specific
up- or down-regulation of targets, we followed Lim and colleagues
(7). In this analysis, the expression of each mRNA is compared
across tissues against a background gene set. We termed this
analysis ‘‘gene-centric.’’ The terms ‘‘down-regulation’’ and ‘‘up-
regulation’’ in this analysis refer to the relative difference in
expression levels of an mRNA across tissues. Fig. 1 shows the
significance of tissue-specific up- or down-regulation of PicTar
targets for three miRNAs: miR-122, miR-1, and miR-7. These
miRNAs are highly specifically expressed in liver, heart�skeletal
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muscle, and pituitary, respectively. We found that for each of these
miRNAs, the tissues in which their predicted targets were most
highly significantly down-regulated (relative to all other tissues)
matched precisely the tissues in which the miRNAs are specifically
expressed. Significance scores for these results ranged between �8
and �17.5, corresponding to p values between 3 � 10�4 and 3 �
10�8. We next asked whether the expression of these miRNA
targets was also significantly down-regulated compared with a
background set of genes within each tissue (Fig. 4, which is
published as supporting information on the PNAS web site). We
termed this analysis ‘‘tissue-centric’’ (see Methods). We found that
in all three cases, the expression levels of miRNA targets were not
significantly lower compared with the background genes (compris-
ing all PicTar targets) in the tissue where the cognate miRNA is
expressed (p values of �0.5). Together, our results demonstrate that
conserved miRNA targets for three highly specifically expressed
miRNAs tend to have average expression levels in the tissue where
the miRNA is expressed, but that compared with all other �78
tissues, their expression is significantly lower in the tissue where the
cognate miRNA is expressed. We found similar results for other
miRNAs whose expression seems specific to certain tissues, such as
testis, heart, and brain, or are up-regulated in cancer (summarized
in Table 1). We conclude that a number of highly tissue-specific
human miRNAs seem to induce tissue-specific ‘‘signatures’’ of
target mRNA expression. In these cases, the signatures are signif-
icant enough to computationally predict the tissue of cognate
miRNA expression.

We then performed the gene-centric analysis separately for all
human miRNAs in the PicTar data set and clustered miRNAs and
tissues based on the significance scores (see Methods). The resulting
heat map is shown in Fig. 5, which is published as supporting
information on the PNAS web site. We observed that for many
miRNAs, their predicted targets are up-regulated in neuronal
tissues and blood cells compared with most other tissue types. The
same overall effect was obtained by using the expression data by
Johnson and colleagues (10) (data not shown). This effect can also
be seen when plotting the number of PicTar targets amongst the top
n specifically expressed mRNAs in a given tissue as a function of n
(Fig. 2A). In neuronal tissues, 50–70% of the highly specifically

expressed genes are PicTar targets, whereas in lung, heart, liver, and
kidney, �25% are PicTar targets. The converse effect holds true for
specifically down-regulated genes (Fig. 2B). This general pattern of
miRNA target expression correlates with the pattern of 3� UTR
length distribution of specifically expressed genes in these tissues
(Fig. 3). On average, a human 3� UTR is �950 nt long. The average
3� UTR length is �1,300 nt for highly expressed neuronal genes but
only �700 nt for genes specific for a nonneuronal tissue. Again, the
converse trend is seen for genes whose expression is specifically low
(data not shown). Because fluctuations in 3� UTR lengths are
substantial, we performed a significance test of these trends in 3�
UTR lengths (Fig. 6, which is published as supporting information
on the PNAS web site) and found that they are highly statistically
significant. Using the data of Johnson and colleagues (10) produced
similar results (data not shown), arguing that the observed effects
are not artifacts of a particular expression data set.

We then asked whether the mere presence of the central recog-
nition motif, referred to as ‘‘nucleus’’ or ‘‘seed’’ sequence (11, 14,
19, 20), for each of these specific miRNAs in human 3� UTRs,
without any cross-species analysis, was sufficient for observing the
tissue-specific ‘‘signature’’ of miRNAs. We note that for each
miRNA, the number of 3� UTRs with at least one nucleus for that
miRNA (termed ‘‘nucleus 3� UTR’’) is typically a few thousand and
thus larger by a factor of 5–20 compared with the number of
predicted PicTar targets (i.e., 3� UTRs with a conserved nucleus)
for the miRNA. Similar to the results in Fig. 1, we found that mRNA
levels of nucleus 3� UTRs were significantly lower in the tissue of
cognate miRNA expression compared with a background set
simply comprising all genes. However, when removing PicTar
targets from the set of nucleus 3� UTRs, the significance of
correlations between mRNA expression of nucleus 3� UTRs and
miRNA expression was weakened. For example, for miR-1, the p
value dropped from 10�20 to 10�2. These data suggest that PicTar
targets, compared with the entire pool of nucleus 3� UTRs, make
a strong contribution to the tissue-specific down-regulation of
mRNA levels. However, many nonconserved targets, which are
missed by PicTar and other algorithms (14, 21), can be functional
[as also noticed in plants (22)] and appear to contribute to these
miRNA ‘‘signatures.’’

The result that nucleus 3� UTRs correlate with tissue-specific
down-regulation logically suggests that transcripts whose 3� UTRs
do not contain the nucleus of a miRNA (termed ‘‘nonnucleus 3�
UTRs’’) tend to be more highly expressed in the tissues where the
miRNA is expressed. We thus assessed the abundance of mRNAs
with nonnucleus 3� UTRs for genes that were highly and tissue-
specifically expressed (see Methods). Indeed, for miR-1, miR-122,
and miR-7, we found that the top 1,000 genes that were specifically
expressed in the tissue where the miRNA is expressed were
significantly enriched for genes with nonnucleus 3� UTRs (p values
in the range of 10�8 to 10�3). Even lower p values (10�20 to 10�9)
were obtained when repeating the analysis simply on the top 1,000
genes expressed in each tissue.

Further insights into why miRNA targets have been missed by
target prediction algorithms became apparent after more closely
analyzing the 3� UTR sequences of genes that had increased
mRNA levels after in vivo knockdown of the liver-specific
miR-122 in mice (5). In these murine 3� UTRs, we had previously
observed a significantly enhanced number of miR-122 nuclei (5).
However, although an overall comparable number of miR-122
nuclei were present in the orthologous human 3� UTRs, many of
them were not aligned to the corresponding mouse nuclei in the
available genome alignments, and thus these targets were not
predicted by PicTar or other current miRNA target detection
programs (14, 20, 21). Analysis of the miR-122 knockdown data
(5) suggested that current algorithms (14, 20, 21) miss crudely
50% of likely miR-122 targets. Technical problems such as
incomplete mRNA sequences and erroneous alignments, but

Table 1. Targets of eight highly tissue-specific miRNAs and four
miRNAs up-regulated in cancer are expressed at significantly
lower levels in the tissue of miRNA expression compared with
other tissues

miRNA (ref.) Tissue expression Rank

miR-122a (12) Liver 1
miR-1 (12) Heart�skeletal muscle 1, 2
miR-133a (12) Heart�skeletal muscle 1, 2
miR-9 (12) Brain 1, 4
miR-7 Pituitary 1
miR-216 (12) Pancreas 4
miR-204 (12) Testis 1, 5
miR-223 (12) Bone marrow�lung 6, 4
miR-17-5p (13) Cancer 1, 2, 5
miR-19a�b (13) Cancer 1, 2, 3
miR-18a�b (13) Cancer 2, 5
miR-25 (13) Cancer 1, 5

The second column shows the tissues where the miRNAs (first column) are
expressed. The third column reports the rank of the tissues of miRNA expres-
sion when sorting all 79 tissues by the significance of how predicted miRNA
targets were expressed at lower levels relative to other tissues compared with
a background set of mRNAs (gene-centric analysis; see Methods). The last four
miRNAs represent all unique families of miRNAs present in the mir-17–92
cluster (13) and in the PicTar data set. Expression data for miR-122a, miR-1,
miR-133a, miR-9, miR-7, and miR-216 were provided by P. Landgraf and T.
Tuschl (personal communication).
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Fig. 1. Cell-type-specific signatures of miRNAs on target mRNA expression. Shown is analysis of the mRNA expression of predicted targets for three highly
tissue-specific miRNAs across 79 human tissues (miR-122, miR-1, and miR-7). Negative values (‘‘scores’’; y axis) indicate the significance of predicted miRNA targets
to be expressed at lower levels in a tissue relative to all other tissues, compared with a background set of mRNAs (gene-centric analysis; see Methods).
Analogously, positive values reflect the significance of miRNA targets to be expressed at high levels compared with other tissues. Tissues are sorted by these
scores. Arrows indicate the tissue in which the miRNA is expressed.
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possibly also compensatory mutations and species-specific gene
regulation, are likely responsible for this false negative rate.

Whatever the problems are, the result that the mere presence
(absence) of a nucleus sequence in a 3� UTR seemed to be
correlated with relative down-regulation (up-regulation) in the
tissue where the miRNA is present led us to propose a simple
quantitative model that exploits this correlation and attempts to
explain changes in the mRNA levels in miRNA overexpression
or knockdown experiments based on 3� UTR motifs without any
cross-species comparisons. In this model, changes in mRNA
levels of a given gene (measured by the microarray experiment)
are written as a sum over contributions from all sequence motifs
in the 3� UTR of that gene (for example, all possible 4,096
hexamer nucleotide motifs). The contribution of each motif to
changes in expression of a gene is modeled as the raw count of
the motif in the 3� UTR multiplied by a fixed coefficient for that
motif. Thus, both the presence and absence of all motifs in all 3�
UTRs are correlated with changes in mRNA levels. The motif

coefficients are determined by fitting the model simultaneously
to all mRNA data for all genes (see Methods). This algorithm is
technically equivalent to REDUCE (23), an algorithm that has
been previously used to detect functional transcriptional cis-
regulatory motifs by correlating motifs in promoter sequences
with microarray expression data. We tested this model by
analyzing the mRNA microarray data from the miRNA over-
expression experiments for miR-1 and miR-124 (7) and the in
vivo miR-122 knockdown experiments (5) (Table 2, which is
published as supporting information on the PNAS web site). In
all three cases, the top-scoring hexamer of all 4,096 hexamers was
the nucleus of the miRNA with a p value of 0. Interestingly, the
second top scoring hexamer in both overexpression experiments
was UAUUUA (p value of 0), which is part of a key AU rich
mRNA degradation motif (24) that recently has been linked to
miRNA function (25). Notably, three other highly significant
hexamers precisely matched the recognition motifs (nucleus) of
other known human miRNAs (miR-19a, let-7 family, and miR-

Fig. 2. The enrichment�depletion of predicted miRNA targets in highly�lowly expressed mRNAs is tissue-specific. (A) Number of transcripts predicted to be targeted
by miRNAs (y axis) as a function of the top n specifically highly expressed genes (x axis) for three neuronal and four nonneuronal tissues. (B) Analogously, number of
transcripts predicted to be targeted by miRNAs as a function of the top n specifically lowly expressed genes for three neuronal and four nonneuronal tissues.

Fig. 3. The average 3� UTR length of highly specifically expressed mRNAs is tissue-specific. Shown, for each tissue, is the average 3� UTR length in nucleotides
of the top 200 most highly specifically expressed mRNAs (blue curve). Tissues are sorted by these average 3� UTR lengths. As a control, the average 3� UTR lengths
of 200 genes that were expressed at average levels in each tissue are also shown (red curve).
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27). However, our analysis of all three experiments also discov-
ered several new hexamer motifs that were highly significant but
did not match to the nucleus sequence of any currently known
vertebrate miRNA. Finally, we estimated that the model can
roughly explain changes in mRNA levels for 50% of all genes
(see Methods). Because the expression of miRNAs in general can
change dramatically during development, these data provide
further evidence that miRNAs have a broad and functionally
important impact on mRNA levels.

Discussion
By using a purely computational approach that analyzed corre-
lations between existing mRNA expression data, 3� UTR se-
quences, and miRNA expression data, we have shown that in
natural conditions, several highly tissue-specific human miRNAs
appear to specifically down-regulate a large number of mRNA
targets. This down-regulation was correlated to previously pre-
dicted conserved mammalian miRNA targets, but also (although
less significantly) more generally to the mere presence of the
recognition motif of the miRNA, the nucleus (or ‘‘seed’’)
sequence in the human 3� UTRs of target mRNAs. Absence of
the nucleus, on the other hand, was positively correlated with
expression of miRNAs. This phenomenon can be explained by
simple evolutionary arguments: if miRNAs negatively regulate
mRNA levels of targets, the mRNAs that should be highly
expressed in the presence of the miRNA are under selection
pressure to avoid binding sites for this miRNA. We found that
although the down-regulation of any specific mRNA that is
predicted to be a target of a miRNA is typically weak, the class
of all predicted targets of a miRNA can be used to predict the
tissue where the miRNA is expressed. We caution that we do not
detect these tissue-specific signatures for all highly specific
miRNAs. For example, we failed to detect signatures for miR-
363 and miR-124 that seem to be highly specifically expressed in
the adrenal gland and neuronal cells, respectively (P. Landgraf
and T. Tuschl, personal communication) (12). Furthermore, the
detection of such signatures becomes extremely complicated in
cases where miRNAs are expressed in many tissues (i.e., for the
majority of miRNAs) and in cases where different miRNAs
could interact with each other. A topic of great interest will be
to use refined computational analyses to analyze these cases. We
also remark that our finding that many miRNA targets seem to
be down-regulated in many nonneuronal tissues compared with
neuronal tissues might hint at different modes of miRNA
function in neuronal tissues, for example due to differences in
Argonaute expression. In fact, it is even possible that this finding
could be largely unrelated to miRNAs because we found that
highly specifically expressed mRNAs tend to have much longer
3� UTRs in neuronal tissues compared with most other tissues,
and it is impossible for us to decide whether long 3� UTRs are
long because they contain many miRNA target sites or whether
they are long for other reasons. We also caution that our analysis
only considered mRNA levels of miRNA targets, and we cannot
draw any conclusions about translational regulation of miRNA
targets. Nevertheless, even just considering mRNA levels, our
data suggest the existence of cell-type-specific ‘‘signatures’’ of
miRNAs on gene expression. Moreover, although existing target
predictions make a strong contribution to these signatures, the
number of miRNA targets is larger than previously estimated,
and we have shown that by exploiting correlations between
mRNA levels of targets and changes in miRNA expression levels,
a novel application of REDUCE (23) can successfully identify
likely functional posttranscriptional 3� UTR motifs. This tool
does not rely on cross-species comparisons and thus has high
sensitivity. Because experimental methods for stable and specific
in vivo knockdown of miRNAs have recently become available
(5), we envision that our results and methods will help to shed
more light on the exciting universe of miRNA function.

Methods
Data Set of miRNA Targets. We used human PicTar target tran-
scripts as published by Krek and colleagues (11). These targets
were predicted by using the RefSeq data set of mRNA se-
quences. We chose targets that were conserved between human,
chimpanzee, mouse, rat, and dog. Multiple transcripts for the
same gene were as best as possible removed, resulting in a set of
�7,000 unique 3� UTRs predicted to be targeted by at least one
human miRNA.

Microarray Data. To ensure that our results are not an artifact of
how the microarray experiments were carried out, we used two
independent datasets [retrieved from the Gene Expression
Omnibus (www.ncbi.nih.gov�geo) and the SymAtlas web site
(http:��symatlas.gnf.org), Gene Expression Omnibus accession
numbers GDS594, GDS596, and GSE740]. The first is a set of
microarray experiments from Su and colleagues (9). The exper-
iments are performed on custom chips (HG-U133A and
GNF1H) that interrogate 44,775 probe sets. Of these, we could
map �18,711 to the set of transcripts used for PicTar target
predictions. The expression of the transcripts was measured
across 79 human tissues. Each tissue was assayed twice. In our
analysis, we averaged the logarithm of the expression values for
probes of the same transcript and then averaged across tissue
replicates. The second data set used was from microarray
experiments performed by Johnson and colleagues (10). In this
case, the probe set targeted exon–exon junctions for all human
RefSeq mRNA sequences that have at least one exon–exon
junction and have a genomic contig in the LocusLink database.
Approximately 125,000 different 36-nt probes targeting exon–
exon junctions were used. This data set described expression of
�10,000 RefSeq transcripts across 52 tissues. The expression
level of every transcript was measured by two replicates from
each exon–exon junction. A gene’s expression level was given by
the median intensity of its exon–exon junction probes. In our
analysis, we removed three tissues, two in which 50% of the data
were missing (heart interventricular septum and thymus normal)
and one that was mislabeled. Furthermore, we removed 248
transcripts in which 25% of the values were missing, leaving
10,160 transcripts. To compute the expression level per tran-
script, we averaged the logarithm of the expression values, and
then averaged across tissue replicates.

Statistical Methods for Analyzing the Expression of PicTar Targets
Across Tissues. We used two complementary ways of analyzing the
expression of miRNA targets across mRNA microarray data. In
the gene-centric method, the expression of miRNA targets was
analyzed, gene by gene, across all tissues and compared with a
background set of genes treated identically. In the tissue-centric
method, the expression of miRNA targets in a particular tissue
was compared only with expression values for a background set
of genes in the same tissue. A nonparametric test, described in
Nonparametric Statistical Test and Scores, was used to quantify
the significance of the comparisons. To define background sets
of genes, we experimented with three different large sets of
genes. One contained all PicTar targets, another contained all
genes, and the last comprised all genes after removing PicTar
targets. We used the set of all PicTar targets as background
because it gave the best results (Fig. 1 and Tables 1 and 2).

Nonparametric Statistical Test and Scores. Tissue-centric application of
the Wilcoxon rank sum test. For each tissue, a vector of expression
values was compared with a vector of expression values obtained
from the background gene set. The nonparametric one-sided
Wilcoxon rank sum test was used to assess the significance of the
difference in the median distribution of values in the two vectors.
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Gene-centric application of the Wilcoxon rank sum test. Following Lim
and colleagues (7), for each target gene, expression levels are
ranked among tissues, resulting in a vector for each tissue that
contains the tissue’s rank for every gene in the set. The significance
of the difference in the median distribution in this tissue vector with
that of a similarly generated vector obtained from the background
set was assessed by using the Wilcoxon one-sided test.

The score was defined as the negative natural logarithm of the
p value of the test. When the p value of the ‘‘less than’’ one-sided
test was the smallest, the score was reported as a negative score.
Thus, positive (negative) scores quantify the significance of a
higher (lower) median mRNA expression of a given set of
miRNAs targets compared with background. All statistical tests
were carried out as implemented in R with default settings.

Clustering and Heat Map Generation. Two-way clustering was per-
formed based on the linear correlation between scores and
displayed as a heat map by using default implementations in R.
To make the heat map more readable, for each miRNA, scores
within 1 SD from the median were removed after clustering.

3� UTR Sequence Extraction and Length Analysis. Human and mouse
3� UTRs were extracted from the RefSeq database as described
by Krek and colleagues (11) (human) and Krutzfeldt and
colleagues (5) (mouse). The number of genes we could map to
the probe tags of Johnson and colleagues (10) was 9,318, and
18,029 for the data of Su and colleagues (9). The Wilcoxon rank
sum test was always performed against the background of all
genes that could be mapped to a particular data set. The p values
with the settings ‘‘less than’’ and ‘‘greater than’’ were calculated,
and the smaller p value was chosen. Scores, based on p values,
were determined as previously described.

Correlating mRNA Levels of 3� UTRs with miRNA Recognition Motifs
(Nucleus 3� UTRs) to Expression Data. For each gene, the median
expression was calculated over all tissues, and each expression
value associated with the gene was normalized by this median.
For every tissue, the Wilcoxon test (see above) was used to assess
the significance of the difference in the median of the expression
levels of genes containing the nucleus for a given miRNA
compared with that of all genes.

Correlating mRNA Levels of 3� UTRs Without miRNA Recognition
Motifs (Nonnucleus 3� UTRs) to Expression Data. Separately for
miR-1, miR-122, and miR-7, we recorded the number of mRNAs

that did not contain a single nucleus in 3� UTRs (nonnucleus 3�
UTRs) among (i) the 1,000 genes most highly and specifically
expressed in the tissues where these miRNAs are present and (ii)
the 1,000 most highly expressed genes in the tissues where these
miRNAs are present. The probability of observing these counts
(or more) by chance was assessed by using the binomial distri-
bution. The parameter p of this distribution (single-event prob-
ability) was the total number of nonnucleus 3� UTRs divided by
the number of all 3� UTRs.

A Model for Correlating 3� UTR Motifs with Changes in mRNA Levels
in miRNA Knockdown or Overexpression Experiments. The model is
that motifs within 3� UTRs make a linear contribution (either
enhancing or inhibitory) to mRNA levels. The significant motifs
are chosen one by one, by determining, in every iteration, which
motif’s contribution brings about the greatest reduction in the
difference between the model and the expression data. Motifs
reported in Table 2 are ordered by these iteration rounds. Each
of these motifs can be assigned a p value, and the procedure
continues as long as the p value is lower than some chosen
threshold. This iterative procedure for finding significant se-
quence motifs that correlate with changes in mRNA expression
is entirely equivalent to the REDUCE algorithm as described by
Bussemaker and colleagues (23) and was implemented in Perl.
The occurrences of motifs of length 6 best modeled the data. The
p-value cutoff used was 0.01. To estimate the extent to which
changes in mRNA levels can be explained by the model, we
calculated for each gene the difference between the logarithm of
the ratio of the changes in mRNA expression values as measured
in the experiment and the log ratio predicted by the model. We
flagged the mRNA change of this gene as ‘‘explained’’ when this
difference had the correct sign and was, by absolute value,
smaller than 0.5 in logarithm base two units, corresponding to a
fold-change error of 1.4. In all three experiments, �50% of all
genes and 50–70% of up- or down-regulated genes were ex-
plained by these criteria.
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