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ABSTRACT A biochemical species is called producible in a constraints-based metabolic model if a feasible steady-state flux
configuration exists that sustains its nonzero concentration during growth. Extreme semipositive conservation relations (ESCRs)
are the simplest semipositive linear combinations of species concentrations that are invariant to all metabolic flux configurations. In
this article, we outline a fundamental relationship between the ESCRs of a metabolic network and the producibility of a biochemical
species under a nutrient media. We exploit this relationship in an algorithm that systematically enumerates all minimal nutrient sets
that render an objective species weakly producible (i.e., producible in the absence of thermodynamic constraints) through a simple
traversal of ESCRs. We apply our results to a recent genome scale model of Escherichia colimetabolism, in which we traverse the
51 anhydrous ESCRs of the metabolic network to determine all 928 minimal aqueous nutrient media that render biomass weakly
producible. Applying irreversibility constraints, we find 287 of these 928 nutrient sets to be thermodynamically feasible. We also
find that an additional 365 of these nutrient sets are thermodynamically feasible in the presence of oxygen. Since biomass pro-
ducibility is commonly used as a surrogate for growth in genome scale metabolic models, our results represent testable hypoth-
eses of alternate growth media derived from in silico analysis of the E. coli genome scale metabolic network.

INTRODUCTION

The metabolic network is the biochemical machinery with

which a cell transforms a limited set of nutrients in its envi-

ronment into the multitude of molecules required for growth

and survival. The advent of sequencing technology and

genomic annotation has allowed genome scale metabolic

models to be built for many microbial organisms, as well as

human red blood cells and mitochondria (5,9,14,19–21,

23,27).

Current approaches to the study of genome scale meta-

bolic models employ an analysis of feasible and optimal

behaviors subject to structural, quasi-steady state, thermo-

dynamic, and capacity constraints (18). Structural constraints

arise from the stoichiometry matrix, whose columns encode

the inputs and outputs of each reaction in the metabolic net-

work. Quasi steady-state constraints follow from the time-

scale separation between rapid metabolic reactions and slower

environmental and cellular regulatory changes. Thermody-

namic (or irreversibility) constraints arise from directionality

restrictions on reaction fluxes. Capacity constraints are de-

rived from the availability of nutrients, enzyme activities, and

gene/protein expression data. All of the above constraints

restrict feasible flux configurations through the network to a

polyhedral set (18).

The conservation relations of a metabolic network are

linear combinations of species concentrations that remain in-

variant to all flux configurations through the network (6,24,

25). In their vector representation, the conservation rela-

tions of a metabolic network form the left null space of the

stoichiometry matrix. As a result, they provide an alternative

and equivalent encoding of the structural constraints im-

posed by network stoichiometry upon the system dynamics.

Semipositive conservation relations have been of particular

interest because they are associated with the conservation of

chemical moieties, atomic elements, and mass (6,16,24,25).

The set of semipositive conservation relations associated

with a stoichiometry matrix is a polyhedral cone, which can

be generated by a unique set of extreme rays, also called

extreme semipositive conservation relations (ESCRs). ESCRs

have the special property of being the simplest semipositive

conservation relations obeyed by the system, i.e., there exists

no semipositive conservation relations obeyed by the network

that employ a strict subset of the species contributing to an

ESCR. ESCRs are closely associated with the distributions

of the largest chemical subunits whose structure is preserved

by all reactions in a metabolic network (24). ESCRs have

also been shown to correspond to biologically meaningful

metabolite pools (6,16,24).

Metabolite producibility is an in silico property that cap-

tures the feasibility of a given species attaining nonzero

steady-state concentration in the cell during growth (13). In

the context of the standard set of constraints afforded to

genome-scale metabolic models, this property corresponds

to the existence of a thermodynamically feasible flux config-

uration that compensates for the growth-mediated dilution of

a species at steady state. This property can be determined

computationally through the solution of a linear program thatSubmitted June 22, 2005, and accepted for publication December 12, 2005.
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implements stoichiometric, steady-state, and thermodynamic

constraints.

In this article, we employ a classic theorem of alternatives

from linear programming theory to demonstrate the duality

between producibility in the absence of thermodynamic

constraints (which we also term weak producibility) and the

existence of certain ESCRs. Specifically, we show that a

species is weakly producible if and only if every ESCR to

which it contributes also contains a species in the nutrient

media. This relationship allows the weak producibility of an

arbitrary metabolite in a given nutrient media to be deter-

mined through the evaluation of a simple criterion on the

ESCRs. We exploit this principle in an algorithm that iden-

tifies all minimal nutrient media that render an arbitrary

metabolite weakly producible with respect to a given meta-

bolic network.

We apply our algorithm to the ESCRs of the Escherichia
coli iJR904 metabolic network to determine minimal nutrient

sets for biomass production (20). Though current algorithms

and computing resources do not permit computation of the

full set of ESCRs for this network, we are able to obtain all of

the anhydrous (or non-water-containing) ESCRs of E. coli
iJR904. Employing a corollary of our main theoretical result,

we use these 51 anhydrous ESCRs to compute all 928 min-

imal aqueous (or water-containing) nutrient sets that render

biomass weakly producible. Each aqueous nutrient set gen-

erated by our analysis is minimal in the sense that any of its

water-containing subsets fail to render biomass producible.

We find 287 of these nutrient media sets to be feasible when

testing producibility in the context of thermodynamic con-

straints. Further analysis reveals that 365 additional nutrient

sets become thermodynamically feasible in the presence of

oxygen. Our results represent theoretical predictions regard-

ing alternate growth media for E. coli derived from in silico

network analysis.

THEORY

Mathematical preliminaries

In this section, we first state a theorem of alternatives from

linear programming known as Farkas’ Lemma and then for-

mulate and prove a variation of it, which we will apply to infer

producibility and conservation properties of metabolic networks.

In what follows, Rn
1 is the set of all n-dimensional vectors

with real and positive components, Rm3n is the set of all m 3

n matrices with real entries, and I is the identity matrix. If x 2
Rn, then xi denotes its ith component and the inequality x $ 0

is interpreted component-wise, i.e., xi $ 0, i ¼ 1, . . ., n, while

the inequality x . 0 is interpreted as x $ 0, x 6¼ 0. For m, n 2
N, m, n $ 1, let M ¼ f1, . . ., mg and N ¼ f1, . . ., ng. If x 2 Rn

and U 4 N, then xU 2 RjUj refers to the vector formed by

taking components with indices in set U. If A 2 Rm3n and U
4 N, then AU denotes the submatrix of A containing the

columns with indices in the set U. Given i 2 N, Ai denotes the

ith column of A. N(A) stands for the null space of A. Given a

set of vectors E � Rm, we refer to the set K formed by taking

positive combinations of vectors in E as the conic hull of E.

We also refer to the set K as a polyhedral cone. A ray is the

conic hull of a single vector. The ray r � K is extreme with

respect to K if and only if it does not belong to the conic hull

of E \ r.

Lemma 1

See Farkas (7). Given A 2 Rm3n and b 2 Rn, exactly one of

the following two sets is empty (nonempty):

fw 2 R
njAw$ 0; b

T
w, 0g; (1)

fy 2 R
mjAT

y ¼ b; y$ 0g: (2)

Lemma 2

Given A 2 Rm3n and arbitrary i ¼ 1, . . . , m, exactly one of

the following two sets is empty (nonempty):

fw 2 R
njAw$ 0; ðAwÞ

i
. 0g; (3)

fy 2 R
mjAT

y ¼ 0; y$ 0; yi . 0g: (4)

Proof. The proof is given in Appendix 1.

Producibility in flux balance analysis
models of metabolism

We represent a mass-balanced metabolic network of n chemical

reactions involving m metabolites in a stoichiometry matrix

S 2 Rm3n. Each entry Sij specifies the stoichiometric coefficient

for metabolite i in reaction j, which is negative for substrates

and positive for products. We represent the flux distribution

through the reactions of the network by v 2 Rn, where a com-

ponent vj corresponds to the flux of reaction complex passing

through reaction j. The concentrations of species in the system

at time t are denoted by xðtÞ 2 Rm
1:

In flux balance analysis models of metabolism, S includes

a reaction that consumes intracellular metabolites like amino

acids, nucleotides, and lipid precursors to form a pseudo-

species called biomass. This pseudo-species, which is

indexed as row b in the stoichiometry matrix, represents a

bulk combination of cellular macromolecules (i.e., proteins,

DNA, lipid polymers) and comprises the large majority of

cellular biomass.

In addition to the reactions in the stoichiometry matrix, a

set of exchange fluxes u 2 RjUj, U � M, bring nutrient

species xk, k 2 U across the system boundary. Each species

also undergoes dilution due to expansion of cellular volume

during growth, which occurs at a rate proportional to the

growth rate l . 0. Finally, thermodynamic constraints

restrict a subset of reactions T 4 N to be irreversible. Under

these assumptions, the rate of change in time of species

concentrations is given by
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_xx ¼ IUu1 Sv � lx; vT $ 0; (5)

where the variables l, u, and v can be assumed to have

implicit dependencies on x and time.

During balanced growth in a chemostat, culture contents

reach a steady state (i.e., when _xx ¼ 0), corresponding to some

constant concentration vector �xx 2 Rm
1 and constant growth

rate �ll.0: These additional constraints force steady-state flux

configurations �uu 2 RjUj and �vv 2 Rn to obey the relation

IU�uu1 S�vv ¼ �ll�xx $ 0; �vvT $ 0: (6)

The feasibility of a nonzero concentration of species i at

steady state (i.e., �xxi.0) corresponds to the existence of

steady-state flux configurations �uu and �vv that obeys the

constraints in Eq. 6 and renders the ith component of the left-

hand side of Eq. 6 strictly positive. A metabolite for which

such a configuration exists is called producible. Formally,

this can be written as follows.

Definition 1: producible species

Species i 2 M, is called producible by the metabolic network

S with irreversible reactions T � N and nutrient media

U � M, if the following set is nonempty,

u 2 R
jUj
; �vv 2 R

n j Ŝ
�uu
�vv

� �
$ 0; Ŝ

�uu
�vv

� �� �
i

. 0; �vvT $ 0

� �
;

(7)

where

Ŝ ¼ ½IU S� 2 R
m3ðjUj1nÞ

: (8)

Producibility thus corresponds to the existence of a thermo-

dynamically feasible steady-state flux configuration that re-

sults in the net production of species i through the metabolic

network S with irreversible reactions T and nutrient media U.

We also introduce the notion of producibility in the absence

of thermodynamic constraints (i.e., in a fully reversible

network), which we refer to as weak producibility.

Definition 2: weakly producible species

Species i 2 M, is called weakly producible if it is producible

in the absence of irreversibility constraints, i.e., T ¼ Ø in

Definition 1.

Clearly, weak producibility is a necessary condition for

producibility. We refer to a nutrient media U that renders i
(weakly) producible as a (weak) nutrient set for i.

Duality of producibility and conservation

Vectors g 2 Rm from the left null space of S (i.e., g for which

gTS ¼ 0) are called conservation relations. They correspond

to linear combinations of species concentrations that are held

invariant by all flux configurations v through the network S.

The set of semipositive conservation relations

G ¼ NðSTÞ \ IR
m

1
(9)

is a polyhedral cone. Vectors in G are associated with the

conservation of moieties such as carbon and mass (6).

Employing Lemma 2, we observe that the nonemptiness

of the set in Eq. 7 with T ¼ Ø,

u 2 R
jUj
; v 2 R

n j Ŝ
u
v

� �
$ 0; Ŝ

u
v

� �� �
i

. 0

� �
; (10)

is equivalent to the emptiness of the set

fg 2 R
m j g

T
Ŝ ¼ 0; g$ 0; gi . 0g; (11)

which, using Fong and Palsson (8) and Forster et al. (9), can

be written as

fg 2 Gjgi . 0; gU ¼ 0g: (12)

The set in Eq. 12 is the set of all semipositive conservation

relations containing species i and none of the species in the

nutrient media U. The duality of sets in Eqs. 10 and 12, and

Definition 2, lead to the following proposition.

Proposition 1

For arbitrary i 2 M and stoichiometry matrix S, species i is

weakly producible under nutrient media U if and only if all

semipositive conservation relations g positive in component i
are positive in at least one component from the set U.

Since G is a polyhedral cone, it may be expressed as the

conic hull of a unique set of extreme rays, E, also called

ESCRs (6,24,25). Using the following Lemma we will show

that the existence of a conservation relation that is positive in

an arbitrary species i and zero in components corresponding

to nutrient media U can be simply checked through a

condition on the ESCRs. We use the notation PU(E) to

denote the set of extreme rays with positive components in at

least one member of the set U, i.e.,

PUðEÞ ¼ fr 2 EjrU . 0g: (13)

From Eq. 13, it follows immediately that PU [ W(E) ¼
PU(E) [ PW(E) and PU(PW(E)) ¼ PU(E) \ PW(E).

Lemma 3

The set fg 2 G j gi . 0, gU ¼ 0g is empty if and only if Pi(E)

4 PU(E).

Proof. The proof is given in Appendix 1.

Lemma 3 and Proposition 1 lead to the main result of this

article, Theorem 1.

Theorem 1

For arbitrary i 2 M and stoichiometry matrix S, species i is

weakly producible under nutrient media U if and only if each

ESCR positive in component i is positive in at least one

component in set U, i.e., Pi(E) 4 PU(E).

Theorem 1 states that the weak producibility of a species in

a given nutrient media can be evaluated via a simple condition

on the ESCRs. Theorem 1 thus draws a direct relationship
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between the composition of ESCRs and the substrate-product

connectivity of sets of species in the metabolic network. The

following intuitive restatement of Theorem 1 arises from the

correspondence between ESCRs and maximal conserved

moiety pools (6,11,24): a species is weakly producible if and

only if every maximal conserved moiety pool to which it

contributes is supplied by at least one nutrient species.

As an aside, we note here a direct analogy between weak

nutrient sets and cut sets in a metabolic network (15). As

defined by Klamt and Gilles (15), a cut set C � N for a

reaction j 2 N is a set of reactions whose knockout renders

flux through j infeasible at steady state. A necessary and

sufficient condition for C to be a cut set for j is that C is a

hitting set for all j-containing elementary modes (i.e.,

C intersects the nonzero components of every j-containing

elementary modes). Applying the same terminology, we can

restate Theorem 1 as follows: U is a weak nutrient set for i if

and only if U is a hitting set for all of the i-containing ESCRs.

We also offer the following important corollaries of

Theorem 1.

Corollary 1: weak nutrient equivalence

For arbitrary nutrient media U � M and species i, j, k 2 M for

which Pj(Pi(E)) ¼ Pk(Pi(E)), i is weakly producible under

nutrient media U [ fjg if and only if it is weakly producible

under nutrient media U [ fkg.

Proof. The proof can be found in Appendix 1.

Corollary 1 states that species that contribute to identical sets

of i-containing ESCRs are equivalent as nutrients for i in a

fully reversible network. As a result, j and k can be swapped in

a nutrient media without affecting the weak producibility of i.

Corollary 2: weak producibility in W-containing media

Given stoichiometry matrix S, nutrient media U, W � M,

a species i 2 M is weakly producible under nutrient media

W [ U if and only if PiðÊÞ4PUðÊÞ, where Ê corresponds

to the ESCRs of [Iw S].

Proof. The proof can be found in Appendix 1.

Corollary 2 states that the ESCRs of [IW S] can be used to

determine weak producibility for all W-containing nutrient

media. It is simple to show that Ê represents the non-W
containing ESCRs of S, i.e., a partial set of ESCRs of S. As a

result, Corollary 2 allows one to obtain weak producibility

results from the computation of a partial set of ESCRs for S.

This corollary is useful for the analysis of genome scale

metabolic networks, for which the full set of ESCRs is

difficult or impossible to compute.

METHODS

Algorithm for determination of minimal
weak nutrient sets

Applying Theorem 1 to the ESCRs of a metabolic network, we can identify

minimal sets of nutrients compatible with the weak producibility of an

arbitrary species in a given metabolic network. A weak nutrient set U 4 M is

minimal for species i with respect to metabolic network S if there does not

exist a nutrient media U9 � U that renders i weakly producible under S.

According to Theorem 1, weak producibility of i is ensured by the choice of

a nutrient media U for which Pi(E) 4 PU(E). Given the set E, corresponding

to the ESCRs of S, a minimal weak nutrient set for i may be generated via a

straightforward recursive algorithm F ¼ MinNutrient(i, E) that traverses

through the i-containing ESCRs in E (Appendix 2, Algorithm 1). We also

allow an optional argument Z 4 M to MinNutrient (i,E), whose specification

limits the search for nutrient sets to subsets of Z, e.g., extracellular species.

Again, given the analogy between minimal weak nutrient sets and minimal

cut sets outlined above, this algorithm can be understood to enumerate all of

the minimal hitting sets for the collection of i-containing ESCRs. In this

manner, our MinNutrient algorithm can be considered a recursive-depth/

first-search alternative to the iterative-breadth/first-search minimal cut set

algorithm formulated by Klamt and Gilles (15).

Genome scale metabolic model

In this study, we use the iJR904 genome scale metabolic model, which

contains 762 species and 932 reactions (20). These reactions are compiled

into a 762 3 932 stoichiometry matrix S. Full names of species referenced in

this study and their corresponding abbreviations are listed in Table 1.

Extreme ray algorithm

We calculate ESCRs via a modified form of the algorithm previously

outlined in Schilling et al. (22) and Bell and Palsson (1) for the calculation

of extreme pathways. The procedure R ¼ extreme(A), implemented as a

MatLab script (The MathWorks, Natick, MA), returns the extreme rays R of

the cone N(A) \ Rm for an input matrix A 2 Rn3m. The algorithm proceeds

by computing extreme rays for a series of cones, beginning with Rm
1 and the

Euclidean basis in Rm
1: Successive cones are formed by intersecting the

current cone with the hyperplane orthogonal to the next pivot row of A,

which is chosen according to a local optimization strategy described in Bell

and Palsson (1). We compute Ê, corresponding to the anhydrous ESCRs

of S, by calling extreme([Iw S]T), where w is the index of the row of the S

corresponding to water.

Identifying minimal weak aqueous nutrient
sets for biomass

Biomass production serves as a model for growth in flux balance analysis of

metabolism (2,4,5,8,12). This process is modeled as flux through a reaction

that consumes 49 species and produces biomass, which is represented as a

pseudo-species in the network corresponding to row b 2 M of S. Note that

since biomass is involved in a single reaction, the existence of a nonzero

biomass flux and the producibility of biomass is equivalent with respect to

the system formulation in Eq. 6.

We employ Ê, the set of anhydrous ESCRs of S, to generate minimal

weak aqueous nutrient sets for the weak producibility of biomass. Naturally,

we limit candidate nutrient sets to subsets of extracellular species, whose

indices are represented by the set X� M. In this case, F̂ ¼ MinNutrientðb; ÊÞ;X
outputs the family of minimal weak nutrient sets for biomass with respect to

metabolic network [Iw S]. Each nutrient set U 2 F̂ to [Iw S] is equivalent to a

nutrient set U [ fwg for S. The nutrient set U [ fwg is not necessarily

minimal for biomass with respect to S, since removal of water from this set

may still render biomass producible under S. However, since water cannot

be removed from any biologically feasible growth media, these nutrient sets

are physiologically minimal. We refer to each U [ fwg as a minimal weak

aqueous nutrient set for biomass.

We also perform an alternate computation that allows for compact pre-

sentation of minimal nutrient set results. In this computation, we group extra-

cellular species into equivalence classes according to membership in biomass
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containing ESCRs, i.e., species j and k for which PjðPbðÊÞÞ ¼ PkðPbðÊÞÞ.
We then form the set Q � X by choosing one species from each equivalence

class. According to Corollary 1, if species j and k contribute to the same b-

containing ESCRs, then the producibility of b is invariant to the replacement

of j with k in the media. This means any species belonging to a minimal

weak nutrient set in F̃ ¼ MinNutrientði; Ê;QÞ can be swapped with any

other species from its corresponding equivalence class. Each nutrient set in �FF

can thus be interpreted as a conjunction of species equivalence classes (i.e.,

Class 1, Class 2, and Class 3), each of which can be expanded to represent

multiple nutrient sets in F̃ (i.e., Class 1 ¼ species 1 or species 2). Expressed

in this manner, F̃ provides a compact but equivalent representation of F̂.

Producibility test

We test the producibility of a metabolite i in the context of nutrient media U

and irreversible reactions T by solving the optimization problem

TABLE 1 Metabolite abbreviations used in this study

Species Abbrev. Species Abbrev. Species Abbrev.

12ppd-S* (S)-propane 1,2-diol fum* Fumarate met-L L-methionine

15dapy 1,5-Diaminopentane g6p D-glucose 6-phosphate mnl* D-mannitol

26dap-My Meso-2,6-diaminoheptanediote gal* D-galactose na1z Sodium

2ddglcn* 2-Dehydro-3-deoxy-D-gluconate galct-D* D-galactarate nacy Nicotinate

3hcinnm* 3-Hydroxycinnamic acid galctn-D* D-galactonate nad NAD

3hpppn* 3-(3-Hydroxy-phenyl)propionate galt* Galactitol nh4 Ammoniun

4abuty 4-Aminobutanoate galur* D-galacturonate nmn NMN

ac* Acetate gamy D-glucosamine no2 Nitrite

acac* Acetoacetate gbbtnz g-Butyrobetaine no3 Nitrate

acald* Acetaldehyde glc-D* D-glucose o2z O2

acgamy N-acetyl-D-glucosamine glcn* D-gluconate ocdca* Octadecanoate (n-C18:0)

acmanay N-acetyl-D-mannosamine glcr* D-glucarate omy Omithine

acnamy N-acetylneuraminate glcur* D-glucuronate phe-Ly L-phenylalanine

adey Adenine gln-Ly L-glutamine pi Phosphate

adny Adenosine glu-Ly L-glutamate pnto-Ry (R)-pantothenate

akg* 2-Oxoglutarate glyy Glycine pppn* Phenylpropanoate

ala-Dy D-alanine glyald* D-glyceraldehyde pro-Ly L-proline

ala-Ly L-alanine glybz Glycine betaine ptrcy Putrescine

alltny Allantoin glyc3p Glycerol 3-phosphate pyr* Pyruvate

ampz AMP glyc* Glycerol rib-D* D-ribose

arab-L* L-arabinose glyclt* Glycolate rmn* L-rhamnose

arg-Ly L-arginine gsny Guanosine sbt-D* D-sorbitol

asn-Ly L-asparagine guay Guanine ser-Dy D-serine

asp-Ly L-aspartate h2o H2O ser-Ly L-serine

but* Butyrate (n-C4:0) hz H1 so4 Sulfate

cbl1 Cob(I)alamin hdca* Hexadecanoate (n-C16:0) spmdy Spermidine

cholz Choline his-Ly L-histidine succ* Succinate

cit* Citrate hxany Hypoxanthine sucr* Sucrose

co2* CO2 idon-L* L-idonate tartr-L* L-tartrate

cmz L-carnitine ile-Ly L-isoleucine taur Taurine

csny Cytosine1C68 indoley Indole thm Thiamin

cynty Cyanate insy Inosine thr-Ly L-threonine

cys-L L-cysteine kz K1 thymdy Thymidine

cytdy Cytidine lac-D* D-lactate tmaz Trimethylamine

dad-2y Deoxyadenosine lac-L* L-lactate tmaoz Trimethylamine N-oxide

dcyty Deoxycytidine lcts* Lactose tre* Trehalose

dgsny Deoxyguanosine leu-Ly L-leucine trp-Ly L-tryptophan

dha* Dihydroxyacetone lys-Ly L-lysine tsul Thiosulfate

diny Deoxyinosine mal-L* L-malate ttdca* Tetradecanoate (n-C14:0)

dmsz Dimethyl sulfide malt* Maltose tyr-Ly L-tyrosine

dmsoz Dimethyl sulfoxide malthx* Maltohexaose uray Uracil

duriy Deoxyuridine maltpt* Maltopentaose ureay Urea

etch* Ethanol malttr* Maltotriose uriy Uridine

fe2z Fe21 maltttr* Maltotetraose val-Ly L-valine

for* Formate man6p D-mannose 6-phosphate xany Xanthine

fru* D-fructose man* D-mannose xstny Xanthosine

fuc-L* L-fucose melib* Melibiose xyl-D* D-xylose

fuc1p-Lz L-fucose 1-phosphate met-Dz D-methionine

Adapted from the E. coli iJR904 model annotation of Reed et al. (20).

*Belongs to Class 1.
yBelongs to Class 2.
zBelongs to Class 3 in Figs. 1 and 2.
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maximize ½IU S�
�uu

�vv

� �� �
i

; such that �uu 2 R
jUj
; �vv 2 R

n
;

½IU S�
�uu

�vv

� �
$ 0; �vvT $ 0: (14)

A nonzero optimum in Eq. 14 corresponds to the nonemptiness of the set

in Eq. 7. We can also test the producibility of a metabolite i in the context of

one or more reaction knockouts C � N by applying the additional constraints

�vvC ¼ 0 to Eq. 14) We solve the linear program in Eq. 14 using the

semidefinite programming package SeDuMi (http://sedumi.mcmaster.ca/).

RESULTS

Escherichia coli iJR904 is associated with
only 51 anhydrous ESCRs

Computation of minimal weak nutrient sets via the MinNu-
trient algorithm requires knowledge of the ESCRs of a meta-

bolic network. However, a metabolic network of the size of

E. coli iJR904 can potentially be associated with thousands of

millions of ESCRs, which are buried in a search space whose

size is orders-of-magnitude higher. Indeed, the full set of

ESCRs is not obtainable for E. coli iJR904 given current

algorithms and computing resources.

We do not, however, need to know all of the ESCRs of a

metabolic network to compute minimal weak nutrient sets:

Corollary 2 states that predicting weak producibility in a

W-containing nutrient media only requires knowledge of

non-W-containing ESCRs, where W is a subset of species

indices. Using this result, we can apply the MinNutrient algo-

rithm (Algorithm 1) to the set of non-W-containing ESCRs

to compute all W-containing nutrient sets for an objective

species.

Water stands out in the E. coli iJR904 (and most other

metabolic networks) due to its promiscuity in the network,

which suggests it may contribute to a large number of ESCRs.

(This may be counterintuitive to those who interpret ESCRs

as having strict correspondence to maximally conserved moiety

pools, since water is a simple molecule that can belong to

only a limited set of moiety pools. However, as pointed out

by Schuster and Hilgetag (24), the mapping of ESCRs to

maximally conserved moieties is not 1:1, and in many cases

the distribution of a maximally conserved moiety pool can lie

in-between multiple ESCRs. Indeed, a separate calculation

identifies at least 32 water-containing ESCRs in the E. coli
iJR904 metabolic network.) Furthermore, water is a neces-

sary solvent in nutrient media and in biological systems, and

thus it is reasonable to assume that any minimal nutrient media

supporting growth in E. coli is aqueous. Finally, inclusion

of extracellular water in the nutrient media renders only

nine species weakly producible (including intracellular water,

intracellular/extracellular oxygen, intracellular/extracellular

proton, and intracellular hydrogen peroxide), when testing

weak producibility via solution of the linear program in

Eq. 14. According to Theorem 1, this means that non-water-

containing ESCRs in the E. coli iJR904 network have

positive components in 753 of the 762 species in the system,

and can thus yield informative weak producibility results for

many nutrient media combinations. Motivated by the above

observations, we compute the non-water-containing (i.e.,

anhydrous) ESCRs with the goal of determining minimal

weak aqueous nutrient sets for biomass.

Successfully completing the above computation, we find

that E. coli iJR904 is associated with only 51 anhydrous ESCRs.

These ESCRs are provided as Supplementary Material, Table 1.

As predicted by Theorem 1, these 51 vectors span 753 positive

species directions, which correspond to all species that fail to be

weakly producible in a water-only media. As asserted by

Corollary 2, we are able to apply a simple criterion to these anhy-

drous ESCRs to determine weak producibility in all aqueous

nutrient media. Indeed, all such predictions are corroborated

through an independent computation of weak producibility via

solution of the optimization problem in Eq. 14.

The small number of anhydrous ESCRs for a model of this

size is remarkable. Though a full discussion of this result is

beyond the scope of this article, we note two implications of

this finding: Firstly, given the intuitive association of ESCRs

with maximal conserved moiety pools, it suggests that E. coli
iJR904 metabolic model is associated with a remarkably

small number of anhydrous metabolic pools. Results allud-

ing to a similar conclusion have been obtained by Nikolaev

et al. (16), who apply an optimization approach to determine

the properties of conserved pools in E. coli. Secondly, if the

full set of ESCRs E is large, our results suggest that most

ESCRs associated with the E. coli genome scale metabolic

network involve water. However, we note that, according

to Corollary 2, this potentially large set of water-containing

ESCRs is functionally irrelevant, unless one is analyzing weak

producibility in a physiologically infeasible anhydrous nu-

trient media. We defer further discussion of this and related

results to another study.

Biomass is weakly producible under 928
minimal aqueous nutrient sets

Application of Corollary 2 shows that biomass is rendered

weakly producible by an aqueous nutrient media U if and

only if every biomass-containing anhydrous ESCR contains

a species in U. We find 17 biomass-containing anhydrous

ESCRs in Ê. Grouping of the 142 (nonwater) extracellular

species with respect to membership in these 17 ESCRs

results in 11 equivalence classes, each containing between

1 and 56 species. The membership pattern of species equiva-

lence classes among the biomass-containing anhydrous ESCRs

is depicted in Fig. 1.

Each equivalence class can be associated, with a given

anhydrous chemical moiety that all members of that class

share with biomass. By inspection, Class 1 contains 56 central

carbon sources (i.e., citrate, pyruvate, fructose, L-lactose,

D-glucose), while Class 2 corresponds to 54 nitrogen/carbon

sources, including amino acids, purines, pyrimidines, and
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nucleotides among its members. Class 3, on the other hand,

corresponds to species that do not share any anhydrous

ESCRs with biomass. Among the 16 species in this class

are extracellular proton and oxygen, which do not contribute

to any anhydrous ESCRs since they are producible in a

water-only media. Class 3 also includes metal ions such as

sodium, iron, and potassium and larger molecules such as

g-butyrobetaine and AMP. The remaining eight species

equivalence classes are small and represented in Figs. 1 and

2 as disjunctions of their members.

To compute the family of all possible minimal weak

aqueous nutrient sets F̂, we apply Algorithm 1 to Ê. These

results are represented in compact form as 10 conjunctions of

the 11 species equivalence classes mentioned above (e.g.,

Conjunction 1 is (met-L[e] or cys-L[e]) and (nad[e] or

nmn[e]) in Fig. 2. Each of these conjunctions corresponds to

a family of nutrient sets (e.g., Conjunction 1 can be expanded

to fmet-L[e], nad[e]g, fmet-L[e], nmn[e]g, fcys-L[e], nad[e]g,

and fcys-L[e], nmn[e]g. In sum, F̂ contains 928 unique min-

imal weak aqueous nutrient sets for biomass (Supplementary

Material, Table 2). These nutrient sets involve 126 of 143

extracellular species of E. coli iJR904 and nine of the 11

species equivalence classes described above.

Inspection of Figs.1 and 2 shows howminimalweak aqueous

nutrient sets are constructed from biomass-containing ESCRs.

For example, NAD (nad[e]) and sulfate (so4[e]) is a minimal

weak nutrient set because nad[e] contributes to ESCRs 1, 6–9,

and 14–17 while sulfate (so4[e]) corresponds to ESCRs 2–5 and

10–13 in Fig. 1. Together they span all 17 biomass-containing

ESCRs. L-methionine contributes to ESCRs 2–17 in Fig. 1.

Combining L-methionine with any species that contributes to

ESCRs 1 in Fig. 1 will form a minimal weak aqueous nutrient

set for biomass; this role is fulfilled by phosphate (pi[e]),

mannose-6 phosphate (man6p[e]), and nad, among others.

The composition of each minimal weak aqueous nutrient

set in Fig. 2 is remarkably simple and biochemically intui-

tive. Detailed inspection shows a close correspondence

between the composition of individual nutrient sets and the

anhydrous elemental composition of biomass; namely, each

nutrient set consists of a carbon, nitrogen, phosphorus, and

sulfur source. Although, in many cases, multiple species

FIGURE 1 The 17 biomass-containing anhydrous

ESCRs associated with the iJR904 E. coli metabolic model

induce 11 equivalence classes among the 143 extracellular

species. Each species equivalence class corresponds to a

row and each biomass, containing anhydrous ESCRs, to a

column in the above plot. A square in position ij maps each

species in equivalence class i to biomass-containing anhy-

drous ESCRs j. Equivalence classes with large numbers of

species are represented by labels: Class 1 corresponds to 56

carbon sources (e.g., D-glucose, citrate, ethanol, lactose,

L-tartrate), Class 2 corresponds to 54 nitrogen/carbon

sources (e.g., most amino acids, nucleotides, and nucleo-

tide precursors), and Class 3 represents 16 species that do

not share anhydrous ESCRs with biomass (e.g., Fe21, K1,

D-methionine, trimethylamine, water, and proton). The full

inventory of these species equivalence classes and legend

of species abbreviations are given in Table 1.

FIGURE 2 There are 928 minimal weak aqueous nutrient sets for biomass

in the E. coli iJR904 genome scale metabolic model. Two-hundred-and-eighty-

seven of these nutrient sets permit growth when thermodynamic constraints are

considered. Minimal weak aqueous nutrient sets are expressed in this figure as

conjunctions of 11 equivalence classes of species that contribute to the same

biomass-containing anhydrous ESCRs. Each conjunction represented by

column j in this figure corresponds to a family of minimal weak aqueous

nutrient sets, each formed by choosing one species from each equivalence class i

that has a black box in entry ij. Each entry in the bottom row of the figure

indicates how many total minimal weak aqueous nutrient sets are contributed by

the conjunction in column j. Class 1 and Class 2 correspond to central carbon

sources and nitrogen/carbon sources, respectively. Class 3 contains species that

do not share anhydrous ESCRs with biomass. Please refer to Table 1 for full

inventory of the species in equivalence Classes 1–3 and a legend of species

abbreviations.
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provide the same atomic element in a given nutrient set, the

criterion of minimality ensures that each species in each

nutrient set is uniquely responsible for supplying at least one

anhydrous moiety pool. For example, all nutrient sets in F̂
have one of the following species as the sole phosphorus

source: phosphate, glucose-6-phosphate, mannose-6-phos-

phate, cob(I)alamin, NAD, or NMN. In all nutrient sets, the

species L-methionine, L-cysteine, sulfate, and taurine serve

as the sole sulfur sources. The tasks of providing carbon and

nitrogen are usually shared among multiple species. For

example, in column-1 nutrient sets, carbon and nitrogen are

provided by both the sulfur source and phosphorus source. In

column 7, nutrient sets carbon is provided by both Class 2

species and the phosphorus source. The only nutrient sets in

which a separate atomic element is provided by each species

in the set are the sets represented by column 10, in which

Class 1 species provide carbon; nitrate/nitrite/ammonia pro-

vide nitrogen; sulfate or taurine provide sulfur; and phos-

phate provides phosphorus.

Thiosulfate and all 16 species from Class 3 do not con-

tribute to a single minimal weak aqueous nutrient set. Since

species in Class 3 do not share a single anhydrous ESCR

with biomass, they are clearly dispensable with respect to

the weak producibility of biomass in any aqueous nutrient

media. Thiosulfate, however, shares four anhydrous ESCRs

with biomass (ESCRs 3, 5, 11, and 13 in Fig. 1), yet also

appears to be dispensable. Closer analysis of ESCR member-

ship patterns show that the only other extracellular species

that contribute to ESCRs 3, 5, 11, and 13 are sulfate, taurine,

L-methionine, L-cysteine, and thiamine. However, these species

are also the unique contributors to ESCRs 2, 4, 10, and 12,

and thus at least one of them must be present in every min-

imal weak aqueous nutrient set for biomass. As a result, every

minimal weak aqueous nutrient set for biomass is guaranteed

to span ESCRs 3, 5, 11, and 13 without containing thiosulfate,

making this species dispensable for the weak producibility of

biomass.

Minimal weak aqueous nutrient sets (287 of 928)
are thermodynamically feasible

Although weak nutrient sets are stoichiometrically compat-

ible with the production of a species, they are not necessarily

thermodynamically feasible. Irreversibility constraints re-

strict the direction in which moieties may flow between

extracellular nutrients and intracellular species. The absence

of such constraints permits behaviors like carbon fixation

and oxygen synthesis, which are thermodynamically infea-

sible in a nonphotosynthetic organism like E. coli.
Producibility calculations via Eq. 14 show that 287 of 928

(30.9%) aqueous minimal weak nutrient sets render biomass

producible in the context of thermodynamic constraints

(Supplementary Material, Table 2). These thermodynami-

cally feasible nutrient sets employ 102 of the 126 of the ex-

tracellular species that comprise nutrient sets in F̂. These

nutrient sets correspond to predictions of novel minimal

media for E. coli under the FBA model of growth.

The thermodynamical infeasibility of many minimal weak

aqueous nutrient sets can be attributed to the impotence of

individual nutrients as carbon, nitrogen, or sulfur sources.

Formally, we use the term ‘‘impotent nutrient’’ to refer to

nutrient species that are contained only in thermodynami-

cally infeasible sets of F̂. Given this definition, there are a

total of 24 impotent nutrients resulting from our analysis

(Supplementary Material, Table 3). Six-hundred-and-two of

641 thermodynamically infeasible nutrient sets contain one

or more such impotent nutrients. One-hundred-thirty-eight of

the latter sets contain two impotent nutrients and 16 contain

three impotent nutrients.

The most notable examples of impotent nutrients are taurine

and cob(I)alamin. All 457 taurine-containing minimal weak

nutrient sets and all 118 cobalamin-containing minimal weak

nutrient sets fail to be thermodynamically feasible. A majority

(517 of 641) of thermodynamically infeasible minimal weak

nutrient sets contain either taurine or cob(I)alamin. The re-

maining 22 impotent nutrients each contribute to 10 or less

minimal weak nutrient sets. These species include carbon

sources like carbon dioxide, formate, and nitrogen sources like

spermidine, L-methionine, uridine, and urea. One-hundred-

and-ninety-seven of 641 thermodynamically infeasible min-

imal weak nutrient sets contain one or more of these species.

Many impotent nutrients are dead-end species inside the

cell (i.e., aside from transport reactions, they only serve as a

reaction product). Such is the case for urea, L-histidine, and

L-methionine. Other impotent nutrients are not dead ends but

lie in a metabolic cul-de-sac; they contain a moiety that

cannot be broken down without violating irreversibility con-

straints of one or more reactions. For example, cob(I)alamin

is a 62-carbon molecule that is formed from cobinamide

and a-ribazole, through a multistep pathway that involves

irreversible reactions. In the context of thermodynamic con-

straints, cob(I)alamin can only be converted to adenosylco-

balamin, which cannot be further degraded, and thus cannot

be used as a carbon source (Fig. 3). Similarly, L-lysine can

only be converted to 1,5-diaminopentane, which is a dead-

end species. Ironically, the impotence of carbon dioxide, a

classic metabolic dead-end in nonphotosynthetic organisms,

is less trivial to justify from network analysis. Carbon di-

oxide acts as a substrate to five carboxylation reactions that

produce species that are not dead-ends (e.g., isocitrate,

dethiobiotin). Although these reactions merely add carboxyl

moieties to existing carbon compounds in the network, it

cannot be readily proven that these reactions cannot

contribute to de novo synthesis of carbon-containing species

from CO2. Our producibility calculations via Eq. 14 provide

numerical evidence that any such flux configuration is

thermodynamically infeasible.

Thirty-nine of the thermodynamically infeasible nutrient

sets in F̂ do not associate with a single impotent nutrient.

These sets belong to one of two groups:
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1. Sets containing nitrite or ammonium and one of the fol-

lowing species—butyrate, succinate, glycolate, octadecanoate,

tetradecanoate, hexadecanoate, acetaldehyde, acetoacetate,

ethanol, L-lactate, (S)-propane-1,2-diol, or acetate.

2. Sets containing phosphate and one of the following

species—putrescine, 4-aminobutanoate, L-valine, L-arginine,

L-isoleucine, glycine, phenylalanine, tyrosine, threonine,

adenine, cytosine, xanthine, or hypoxanthine.

Addition of oxygen renders 365 additional
nutrient sets thermodynamically feasible

The thermodynamical infeasibility of many nutrient sets in

F̂ can be tied to the absence of oxygen. For example, taurine

is the sole sulfur source in the 457 nutrient sets in which it

is present; however, its conversion to sulfite requires the

presence of oxygen. Oxygen can be synthesized via reverse

respiration from carbon dioxide and water in the absence of

thermodynamic constraints. As expected, the presence of

thermodynamic constraints renders de novo oxygen synthe-

sis infeasible. This appears to prevent the liberation of sulfur

from taurine-containing nutrient sets and its subsequent

incorporation into biomass (Fig. 3). Similar oxygen require-

ments underlie the conversion of the infeasible nutrients

phenylpropanoate, 3-hydroxycinnamic acid, and 3-(3-hydroxy-

phenyl)propionate species to 2-oxopent-4-enoate and fuma-

rate or succinate. In the absence of oxygen, this pathway is

inactive, thus preventing the utilization of these species as

carbon sources in the network.

Given the above observations, we examine whether

biomass is rendered producible when oxygen is added to

nutrient sets. Indeed, the addition of oxygen has a profound

effect on many thermodynamically infeasible nutrient sets

in F̂: 365 of 641 are rendered feasible in the presence of

oxygen. These include 323 of 457 taurine-containing minimal

weak nutrient sets. The remaining taurine-containing minimal

weak nutrient sets fail to render biomass producible because

they contain a thermodynamically infeasible carbon source like

cob(I)alamin, carbon dioxide, or thiamine. Additional nutri-

ent sets made feasible by the presence of oxygen include 18

of 18 minimal weak nutrient sets containing phenylpropa-

noate, 3-(3-hydroxy-phenyl)propionate, or 3-hydroxycinnamic

acid. As noted above, these species undergo oxygen-

dependent conversion to 2-oxopent-4-enoate and succinate or

fumarate. Analysis of in silico reaction knockouts shows this

pathway to be necessary for the utilization of these species as

carbon sources by the network in the presence of oxygen. Other

nutrient sets in F̂ made feasible by the presence of oxygen

include eight of 10 L-proline containing nutrient sets. This

effect is inhibited by the knockout of the ubiquinone-8 proton

pump, the ubiquinol-8 mediated oxidation of FADH2 to FAD,

and the FAD-mediated conversion of L-proline into 1-pyrro-

line-5-carboxylate. Its utilization is not inhibited by the

knockout of any other reactions in the network involving

oxygen, aside from the oxygen transport reaction. From this

analysis, it appears that the utilization of L-proline in the

presence of oxygen is dependent on FAD formation.

Consistency with in vivo nutrient media

The ASAP database (10) documents in vivo growth of E. coli
in 125 nutrient media, which have been mapped to the iJR904

model by Covert et al. (2). Minimal aqueous nutrient sets for

biomass generated by our analysis are simpler than these

nutrient media, which contain metal ions and electrolytes such

as sodium, potassium, chloride, magnesium, and calcium.

These ions play essential physiological roles in the cell by

contributing to electrochemical and osmotic gradients and by

acting as enzyme cofactors. Some of the metal ions are not

included in the iJR904 annotation (e.g., magnesium, calcium,

FIGURE 3 (a) All cobalamin-containing minimal weak aqueous nutrient sets are thermodynamically infeasible due to the inability of E. coli iJR904 to break

down the cobalamin moiety. This results from the irreversibility of reaction ADOCBLS, which mediates the biosynthesis of adenosylcobalamin (adocbl) from

N1-(a-D-ribosyl)-5,6-dimethylbenzimidazole (rdmbzi) and adenosine-GDP-cobinamide (agdpcbi). Additional metabolite abbreviations: ppi, pyrophosphate;

gmp, guanosine monophosphate. (b) Taurine-containing, minimal weak aqueous-nutrient sets fail to render biomass producible in the presence of irreversibility

constraints. Taurine acts as a sulfur donor by undergoing oxygen-dependent degradation to sulfite (so3) via reaction TAUDO. In the absence of thermodynamic

constraints, oxygen is producible by E. coli iJR904 and this reaction is active. Oxygen fails to be producible in all minimal weak aqueous nutrient sets when

thermodynamic constraints are considered, rendering the utilization of taurine as a sulfur source infeasible. Addition of oxygen renders 323 of 457 taurine-

containing nutrient sets thermodynamically feasible. Networks visualized using Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).
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chloride). The remaining ions (potassium, sodium) that are part

of the annotation are not incorporated into biomass as defined

by the iJR904 model. As a result, potassium and sodium do not

share any anhydrous ESCRs with biomass, and are dispensable

in any aqueous nutrient media for E. coli iJR904. This gap be-

tween in vivo and in silico behavior lies in the limited definition

of survival and growth, which in the current model currently only

depends on the production of biomass (see Discussion).

In addition to the salts mentioned above, ASAP nutrient

media contain oxygen, sulfate, phosphate, proton, water, and

a carbon and/or nitrogen source. Sixty-eight of these nutrient

media (Biolog plate PM1 and PM2; Biolog, Hayward, CA)

contain ammonia as a nitrogen source and vary in their car-

bon source, chosen from a set of 68 species that includes 36

species from Class 1 and 29 species from Class 2, glucose-

6-phosphate, L-methionine, and L-carnitine. The remaining

57 of the 125 nutrient sets (Biolog plate PM3) contain suc-

cinate as a carbon source and contain one or two nitrogen

sources chosen from a set of 43 species that includes 39

species from Class 2, nitrate, nitrite, ammonia, L-methionine,

and L-cysteine. Twenty-two ASAP nutrient media contain

one or more species that are infeasible as nutrients to iJR904

in the presence of thermodynamic constraints (Supplemen-

tary Material, Table 3). These species include uracil and

uridine, due to the irreversible synthesis of their pyrimidine

base; L-proline, L-leucine, L-histidine, L-methionine, and

L-lysine, which are only substrates for transport reactions;

and the biomass reaction, thymidine, which cannot be degraded

further than thiamine, and formate, which can only be de-

graded to CO2. One of the ASAP nutrients, L-carnitine, is

infeasible as a nutrient even in the fully reversible network,

since its carbons and nitrogens belong to a separate carrier pool

in the iJR904 network. These inconsistencies point to the

need for additional annotation of reactions in the E. coli net-

work and possible reformulation of thermodynamic constraints.

Many of the feasible ASAP nutrient sets are not minimal

by our analysis. Some ASAP nutrient sets fail to be minimal

because they contain two nitrogen sources (e.g., alanine and

aspartate). However, the majority of ASAP nutrient sets are

not minimal by our analysis because they contain a species

that provides both carbon and nitrogen (e.g., a species in

Class 2), in addition to succinate or ammonia. As a result,

either succinate or ammonia serves as redundant providers

of carbon or nitrogen, respectively, in these nutrient sets.

Growth of E. coli under these nutrient sets with succinate and

ammonia removed would determine whether these predicted

minimal nutrient sets are physiologically viable.

DISCUSSION

Extensions of approach

Pool maps and producibility

Given the common physical interpretation of ESCRs as max-

imal conserved moiety pools, Theorem 1 can be understood

to link weak producibility to the flow of conserved moieties

between nutrients and species in the network. Thermody-

namic constraints can be understood in this context as di-

rectional restrictions on this flow. As a result, a species may not

be producible even if each maximal conserved moiety pool to

which it contributes is supplied by a nutrient in the media. This

implies that thermodynamic constraints have a fragmenting

effect on maximal conserved moiety pools, which render a

given nutrient capable of supplying only a subset of the species

in the pools to which it contributes.

This intuition may be potentially exploited to formulate a

path-based criterion for producibility through the analysis of

pool maps, which are described in Famili and Palsson (6).

Each pool map corresponds to a subset of the metabolic

network that includes only species associated with a given

ESCR. In a pool map, each forward reaction induces a

directed edge that implies the transfer of the respective moiety

between each substrate and product pair. The existence of a

directed path from a nutrient to a species in a pool map may

contribute to a necessary and sufficient criteria for produc-

ibility similar to that expressed in Theorem 1. We are currently

investigating this approach in further detail.

Augmentation of minimal weak aqueous nutrient sets

In our analysis, we find that a large number of thermodynam-

ically infeasible minimal weak aqueous nutrient sets render

biomass producible in the presence of oxygen. This observation

shows that many minimal weak nutrient sets that fail to be

thermodynamically feasible may nevertheless comprise subsets

of larger (thermodynamically feasible) minimal nutrient sets.

Intuitively, additional nutrient requirements arise from the

fragmenting effect of thermodynamic constraints on maximal

conserved moiety pools. This requires the presence of multiple

nutrients to supply all of the species in a given maximal

conserved moiety pool, resulting in more complex minimal

nutrient sets for the (strong) producibility of a species. Although

we have chosen to only examine the addition of oxygen, the

augmentation of nutrient sets with other species may also

render them thermodynamically feasible. However, a brute

force search through all such possible augmentations will

clearly suffer from combinatorial explosion.

Direct incorporation of thermodynamic constraints

Theorem 1 defines a novel relationship between the ESCRs of a

metabolic network and producibility in the absence of thermo-

dynamic constraints: a species is weakly producible if and only

if each ESCRs to which that species contributes contains at least

one nutrient in the media. Although the condition stated in

Theorem 1 is necessary and sufficient for weak producibility, it

is only a necessary condition for producibility.

An analog of Theorem 1 directly applicable to networks

with thermodynamic constraints arises from the analysis of

the following polyhedral cone,
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Gs ¼ fg 2 R
m

1
jgT

SNnT ¼ 0; g
T
ST # 0g; (15)

where T � N represents the set of irreversible reactions in

the metabolic network S. The criterion stated in Theorem

1 applied to the extreme rays of Gs, which we refer to as

extreme semipositive subconservation relations (ESSR),

provides a necessary and sufficient condition for produc-

ibility (Supplementary Material). Unfortunately, the appli-

cation of this theorem is extremely limited, since the ESSR

associated with a metabolic network even outnumber the

ESCRs. Their calculation (or even a calculation of a subset of

ESSR, i.e., anhydrous ESSR) is intractable for a model of the

size of S, given current approaches and computing resources.

Applicability to other organisms

The method outlined in this article generates minimal weak

W-containing nutrient sets for any metabolic network for which

non-W-containing ESCRs are computable. In particular, this

study employs the non-water-containing ESCRs of the E. coli
iJR904 network to enumerate minimal weak aqueous nutrient

sets. Preliminary results show that computation of anhydrous

ESCRs may also be possible for other metabolic networks; for

example, we are able to complete this computation for the

Saccharomyces cerevisiae genome scale metabolic model

(unpublished data). The surprising tractability of the anhydrous

ESCRs computation is by itself a potentially interesting topic of

study, since it suggests that most ESCRs associated with

genome scale metabolic networks involve water.

In general, however, the computation of anhydrous ESCRs

is not guaranteed to be tractable. Indeed, less complete

networks can potentially have many more ESCRs than a

well-characterized model such as E. coli iJR904, given the

higher rank of the left null space of the stoichiometry matrix

and larger number of dead-end metabolites. This may render

even anhydrous ESCR computation difficult or impossible,

given current algorithms and computing resources. If this is

the case, then our approach is flexible by allowing results to

be obtained from the non-W-containing ESCRs of a meta-

bolic network, where W 4 M represents any other subset of

species in the network. If these non-W-containing ESCRs

are obtainable, then our approach will yield all minimal

W-containing weak nutrient sets consistent with the model

stoichiometry. Although such results would provide only a

partial characterization of minimal weak nutrient sets, they

could still provide useful insight into the capabilities of the

model in a given subset of potential environments.

Incorporating alternative models
of growth and survival

In this study, we infer novel growth media for E. coli iJR904

by determining minimal nutrient sets that render biomass

producible. These results rely on a particular in silico model

of growth and survival that is based solely on biomass pro-

duction, the latter which is in turn based on a strict definition

of biomass composition encoded in the biomass reaction.

This model of growth underlies flux balance analyses of E.
coli metabolism, where it has shown significant correlation

with in vivo behavior (8). Nevertheless, the ability to pro-

duce biomass, as defined in this model, may be neither

necessary nor sufficient for growth or survival of E. coli.
Alternative models of growth, based on different biomass

compositions, consideration of essential metabolites outside

of biomass, and quantitative criteria may yield significantly

different minimal nutrient set results. Although a full dis-

cussion of all such alternative models of growth and survival

is outside of the scope of this article, we will highlight

several examples in this section and discuss their impact on

minimal nutrient sets.

Alternative biomass compositions

The biomass reaction employed in the E. coli iJR904 genome-

scale metabolic model is based on a particular in vivo mea-

surement of E. coli biomass composition (20). It is quite

feasible, however, that alternative biomass compositions

(e.g., alternative sets of lipid components, alternative mem-

brane lipid ratios) may be compatible with growth and

survival. According to Theorem 1, the composition of the

resulting weak nutrient sets under this new biomass reaction

will depend strictly on ESCR sparsity patterns in the mod-

ified network. An implication of this result is that the

feasibility of a nutrient set as an in silico growth media is

independent of the exact ratios of lipid composition, but

is sensitive to the addition/removal of lipid components

to/from the biomass reaction.

For example, the addition of a species to the left-hand side

of the biomass reaction can (but is not guaranteed) to result in

both new biomass-containing ESCRs and new species that

share ESCRs with biomass. The size of nutrient sets will thus

be maintained or will increase with this perturbation, since

minimal nutrient sets that already contribute to the new

biomass-containing ESCRs will remain feasible, while the

remaining nutrient sets will become feasible only when

combined with a minimal set of species that intersects every

new biomass-containing ESCRs. Note that some of the new

nutrient sets produced through this augmentation process may

fail to be minimal, while other old minimal weak nutrient sets

may be mapped to the same new augmented minimal weak

nutrient sets. As a result, the total number of minimal weak

nutrient sets may increase, decrease, or stay the same as a

result of this perturbation. Conversely, removal of a species

from the left-hand side of the biomass reaction may result in

fewer species sharing ESCRs with biomass, which may

render certain species unnecessary for the producibility of

biomass and render nutrient sets containing those species

nonminimal. This will result in maintenance or reduction in

the size of individual minimal weak nutrient sets. However,

like in the previous example, the total number of minimal

weak nutrient sets may increase, decrease, or stay the same.
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It can be shown that simple alteration of biomass ratios,

implemented as the positive rescaling of stoichiometric co-

efficients on the left-hand side of the biomass reaction,

will not change the sparsity patterns of biomass-containing

ESCRs. According to Theorem 1, such a change will have no

effect on the composition of minimal weak nutrient sets for

biomass. Similarly, it can be shown that such a rescaling will

have no effect on the sparsity patterns of ESSR, which

determine strong producibility (see above). This implies that

a nutrient media in a system with positively rescaled biomass

coefficients will render biomass producible if and only if it

renders biomass producible in the original system.

Quantitative models of survival

In FBA, growth is equated to biomass production, and

survival is equated to nonzero growth. This renders in silico

survival dependent strictly on qualitative aspects of the model

(i.e., network structure, which species compose the nutrient

set), although insensitive to positive scaling of biomass

coefficients and capacity constraints (i.e., upper bounds) on

fluxes. In reality, the survival of a microbe requires main-

tenance of homeostasis, which may be exquisitely sensitive

to actual rates of nutrient inflow and maximum throughput

of metabolic reactions. An in silico growth/survival model

could capture this requirement via quantitative homeostatic

constraints that restrict cell density or intracellular species

concentrations to a given range. Survival in such a model

would be quite sensitive to the values of capacity constraints

on fluxes as well as particular values of biomass coefficients.

Although determination of minimal nutrient sets for such

a growth/survival model would require a more involved

analysis of the feasible flux polyhedron than what has been

offered here, our method would provide useful starting

points for any such approach.

Incorporating regulation

Constraint-based metabolic model formulations, such as those

offered in this article, do not address the impact of genetic

and feedback regulation on metabolic network dynamics.

The lack of adequate flux constraints allows these models to

exhibit some physiologically infeasible behaviors, such as

lactose transport in the presence of intracellular glucose. A

nutrient set, whose ability to render biomass producible

depends on such a physiologically infeasible pathway, will

clearly be inadequate as a growth media in vivo. Compu-

tation of biologically feasible nutrient sets thus may require

incorporation of regulation into the constraint-based meta-

bolic modeling framework.

Regulatory flux balance analysis (rFBA) is a major approach

for genome-scale modeling of metabolic regulation (3). This

approach simulates genetic and enzymatic regulation of

metabolism through a discrete time trajectory of flux config-

urations that optimize biomass production subject to a sequence

of flux constraints. These regulatory flux constraints represent

the impact of genetic and feedback regulation on metabolism.

Each set of constraints is computed as a piecewise function of

the previous iteration’s flux optimum and a Boolean gene

regulatory network state. Although this approach has found

success, there are several limitations to the ability of rFBA to

capture the feasible or optimal behaviors of a regulated

metabolic network (2). Firstly, rFBA uses metabolic fluxes as

surrogates for intracellular species concentrations, which are

the true effectors of genetic and feedback regulation. Secondly,

rFBA applies the unrealistic assumption that metabolic

networks reach a new optimum flux configuration immediately

after each gene regulatory change. Finally, it can be shown that

rFBA arbitrarily restricts itself to one of many possible

trajectories through flux space, even under the instantaneous

optimality assumption. This occurs because the optimal flux

configuration chosen at each time step by rFBA is usually only

one point in a high-dimensional polyhedral set of equivalent

optima. Alternative optima may produce a different set of

regulatory constraints in the next time step and result in a

drastically different trajectory.

The constraint-based metabolic model formulation with

which we test producibility can potentially provide an alter-

native to rFBAfor modeling metabolic regulation on the genome-

scale. Unlike FBA and rFBA, our formulation explicitly models

growth-mediated dilution of the metabolome. As a result,

each steady-state flux configuration and growth rate is mapped

to a unique steady-state species concentration. Regulatory con-

straints could be implemented in this framework in the form of

regulatory rules that specify feasible/infeasible combinations

of steady-state flux configurations and species concentrations.

As in rFBA, these regulatory rules would impose constraints

that implement the logic of genetic regulation and enzymatic

feedback (i.e., reaction i is ‘‘on’’ only if species j is present at

nonzero concentration); however, unlike rFBA, these con-

straints would explicitly capture the regulatory coupling of

flux values to steady-state species concentrations. Further-

more, this framework would allow direct querying of feasible

and optimal behaviors in the context of regulation, rather than

requiring the simulation of an arbitrary trajectory in steady-

state space under the assumption of instantaneous optimality.

This framework may, however, pose computational chal-

lenges, arising from the potential nonconvexity of the feasible

flux region induced by these regulatory constraints. This

would require new methods for calculating minimal nutrient

sets, as well as a reformulation of most standard genome-scale

metabolic analyses (e.g., biomass optimization, minimization

of metabolic adjustment, network pathway analysis)

(17,18,26). We are currently investigating potential ap-

proaches in this direction.

CONCLUSIONS

In this article we have applied a theorem of alternatives from

linear programming to draw a novel relationship between
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the ESCRs of a metabolic network and producibility in

the absence of irreversibility constraints. This result makes

explicit how ESCRs delineate nonfeasible behaviors of the

metabolic network, and also formalizes how producibility

captures the connectivity of species via conserved moiety

pools.

Using this principle, we have outlined a simple algorithm

that traverses the ESCRs of a metabolic network to generate

all minimal nutrient sets that are compatible with the weak

producibility of a given species. Our approach is applicable

even when all of the ESCRs of a metabolic network are

not known, as is often the case for genome-scale metabolic

networks. We have applied our method to the analysis of

anhydrous ESCRs in E. coli iJR904, computing all minimal

aqueous nutrient sets that render biomass weakly producible.

Though nutrient sets generated by our analysis are not

guaranteed to be thermodynamically feasible, we find that a

significant number of these minimal weak aqueous nutrient

sets permit in silico growth/survival under the biomass model

when thermodynamic constraints are considered.

Employing the genome scale metabolic model iJR904

and the biomass model of growth, our approach generates

testable hypotheses regarding E. coli minimal nutrient media.

Further experiments suggested by our results may yield

insight into the consistency of the E. coli metabolic network

annotation with in vivo data and facilitate iterative model

building and refinement.

APPENDIX 1: PROOFS

Proof of Lemma 2

Let ei, i ¼ 1, . . . , m, denote the basis of the Euclidean Rm. Then (Aw)i . 0 is

equivalent to (– eiTA)w , 0, and by Lemma (with b ¼ – ATei), the non-

emptiness of the set in Eq. 3 is equivalent to the emptiness of the set

fz 2 R
mjATðz1 e

iÞ ¼ 0; z$ 0g: (16)

Therefore, to prove Lemma 2, it is sufficient to show that the sets in Eqs. 4

and 16 are both either empty or nonempty, for arbitrary i ¼ 1, . . ., m. Let us

first assume the set in Eq. 16 is nonempty and let z be an arbitrary element

in this set. If we let y ¼ z 1 ei, then ATy ¼ 0 by the definition of the set in

Eq. 16. Also, since z $ 0, it follows that y ¼ z 1 ei $ 0. Finally, yi ¼ zi 1

1 . 0, from which we conclude that y belongs to the set in Eq. 4, which is

therefore nonempty.

Conversely, let us assume that the set in Eq. 4 is nonempty and let y be an

arbitrary element in this set. Since yi 6¼ 0, we can define z ¼ y/yi – ei. Then

AT(z 1 ei) ¼ ATy/yi ¼ 0 and z $ 0 since y $ 0, yi . 0, and (y/yi – ei)i ¼ 0.

We conclude that the set in Eq. 4 is nonempty and the Lemma is proved.

Proof of Lemma 3

Let p ¼ jEj and E ¼ fr1, . . . , rpg. Then, for any g 2 G, we have

g ¼ +
p

j¼1

ajr
j
; aj $ 0: (17)

For necessity, let us assume PIE) 4 PU(E). This is equivalent to

r
j

i . 0/r
j

U . 0; "j ¼ 1; . . . ; p: (18)

For g 2 G with gi . 0, from Eq. 17 it follows that there exists k 2 1, . . . , p

so that ak . 0 and rk
i .0: From Eq. 18, it follows that akrk

U.0; which by

Eq. 17 implies gU . 0, and the set fg 2 G j gi . 0, gU ¼ 0g is empty.

For sufficiency, we provide a proof by contradiction. Let us assume that fg 2
G j gi . 0, gU ¼ 0g is empty and Pi(G) = PU(G). This means that there

exists k ¼ 1, . . . , p so that rk
i . 0 and rk

U ¼ 0: Then, if we take ak ¼ 1 and aj

¼ 0, j ¼ 1, . . ., p, j 6¼ k in (17), then we find a g 2 G with gi . 0 and gU ¼ 0,

which means that fg 2 G j gi . 0, gU ¼ 0g is nonempty. This contradicts the

assumption and the Lemma is proved.

Proof of Corollary 1

We start by noting that the equivalence

A4B4A ¼ B \ A; (19)

holds for any sets A and B.

Species i is weakly producible under U [ fjg if and only if Pi(E) � PU [

fjg(E). Using Eq. 19, this is equivalent to Pi(E) ¼ PU [ fjg(E) \ Pi(E) ¼
PU(Pi(E)) [ Pj(Pi(E)) ¼ PU(Pi(E)) [ Pk(Pi(E)) ¼ PU [ fkg(E) \ Pi(E). Using

Eq. 19 again, this means that Pi(E) � PU [ fjg(E), which means that species

i is producible under U [ fjg.

Proof of Corollary 2

PiðÊÞ4PUðÊÞ if and only if species i is weakly producible under

stoichiometry matrix [Iw S] and nutrient media U. This means that there

exists a flux configuration �uu 2 RjUj; �ww 2 RjWj; �vv 2 Rn for which

½IU IW S�
�uu
�ww
�vv

2
4

3
5$ 0; ½IU IW S�

�uu
�ww
�vv

2
4

3
5

0
@

1
A

i

. 0: (20)

However, this is equivalent to the existence of a flux configuration

û ¼ RjU[Wj and �vv, for which

½IU[W S� û
�tt

� �
$ 0; ½IU[W S� û

�tt

� �� �
i

. 0; (21)

which is equivalent to i being weakly producible under stoichiometry matrix

S and nutrient media U [ W.

APPENDIX 2: ALGORITHM 1

F ¼ MinNutrient(i, E[, Z])
/* Traverse species sharing ESCRs with i */

F ¼ Ø

J ¼ set of species j [in Z] for which Pi(E) \ Pj(E) 6¼ Ø

for all j 2 J do

if Pi(E)\Pj(E) ¼ Ø then

add fjg to F

else

F9 ¼ MinNutrient(i, Pi(E)\Pj(E)[, Z])

for all U9 2 F9 do

add U9 [ fjg to F

end for

end if

end for

/* Prune nonminimal nutrient sets */

for all U 2 F do

remove U from F if there exists U9 2 F for which U9 � U

end for

return F.
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