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ABSTRACT It is known since the early days of molecular biology that proteins locate their specific targets on DNA up to two
orders-of-magnitude faster than the Smoluchowski three-dimensional diffusion rate. An accepted explanation of this fact is that
proteins are nonspecifically adsorbed on DNA, and sliding along DNA provides for the faster one-dimensional search.
Surprisingly, the role of DNA conformation was never considered in this context. In this article, we explicitly address the relative
role of three-dimensional diffusion and one-dimensional sliding along coiled or globular DNA and the possibility of correlated
readsorption of desorbed proteins. We have identified a wealth of new different scaling regimes. We also found the maximal
possible acceleration of the reaction due to sliding. We found that the maximum on the rate-versus-ionic strength curve is
asymmetric, and that sliding can lead not only to acceleration, but also in some regimes to dramatic deceleration of the reaction.

INTRODUCTION

The problem

Imagine that while you are reading these lines a l-phage

injects its DNA into Escherichia coli bacteria. For the in-

fected cell, this sets a race against time: its hope to survive

depends entirely on the ability of the proper restriction en-

zyme to find and recognize the specific site on viral DNA

and then cut it, thus rendering viral DNA inoperable and

harmless. If restriction enzyme takes too long to locate its

target, then the cell is dead.

Restriction-modification system in bacteria, based on the

endonuclease and methyltransferase enzymes, defends the

prokaryotic cells against phage infection while also protect-

ing the cell’s own genome (1). This fact has already been

recognized (2) as just one example of the molecular-biological

systemwhose function hinges on the ability of certain proteins

to locate their respective specific target sites on the DNA, and

do that quickly. Another system on which fast protein-DNA

recognition was studied quantitatively was lac-repressor, again
in E. coli. This protein was found (3) to be able to locate its

specific target on DNA up to two orders-of-magnitude faster

than the so-called Smoluchowski limit, which corresponds to

the search based solely on diffusion in three dimensions (4).

This paradoxical result is sometimes referred to as faster-

than-diffusion search.

As a matter of fact, the insufficiency of three-dimensional

diffusion as a search mechanism in molecular biology was

recognized even before any experiments, on purely theoret-

ical grounds, by Delbrück (5), who also suggested resolving

this problem by reducing the search dimension, i.e., by

nonspecific adsorption on a one-dimensional macromolecule

or two-dimensional membrane and then diffusing in this

smaller space. Interestingly, as pointed out in the work (6),

the idea that reduced dimension speeds up chemical reaction

can be traced even further back to Langmuir, who noticed

that adsorption of reagents on a two-dimensional surface

can facilitate their diffusive finding each other (the ideas of

Langmuir are nicely presented in (7)).

Capitalizing on the ideas of Delbrück, the authors Richter

and Eigen (8) explained the lac-repressor experiment (3) by

saying that three-dimensional diffusion has to bring protein

into an elongated space region extended along DNA quite far

from the specific target itself, where protein can nonspecif-

ically adsorb on DNA and then slide along the DNA.

The field kept attracting intensive attention for many

years. A nice recent review of various strategies employed to

address the problem experimentally can be found in the work

by Halford and Szczelkun (9). Based on the summary of

experimental evidence, authors of this review conclude, that

the process is not just a naive one-dimensional sliding, but

rather a delicately weighted mixture of one-dimensional

sliding over some distances and three-dimensional diffusion.

This conclusion was further reiterated in the even more

recent experimental work by Gowers et al. (10). A theorist

also could have guessed the presence of a crossover between

one-dimensional sliding and three-dimensional diffusion,

because sliding along coiled DNA becomes very inefficient

at large scale: having moved by ;t1/2 along DNA after one-

dimensional diffusion over some time t, protein moves in

space by only t1/4 if DNA is a Gaussian coil. This is very

slow subdiffusion. This is the situation requiring theoretical

attention to how three-dimensional and one-dimensional dif-

fusion can be combined, and how their combination should

be manifested in experiments.

On the theoretical front, a major contribution to the field is

due to Berg et al. (11). As an outcome of their theory, these

authors formulated the following nice prediction, partially

confirmed by their later in vitro experiments (12): the rate at
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which proteins find their specific target site on DNA depends

in a nonmonotonic fashion on the ionic strength of the

solution. In this context, ionic strength is believed to tune the

strength of nonspecific adsorption of proteins on DNA,

presumably because a protein adsorbs to DNA via positively

charged patch on its surface. Thus, in essence one should

speak of the nonmonotonous dependence of the rate on the

energy of nonspecific adsorption of proteins on the DNA.

Although qualitatively consistent with experiment, the

theory of Berg et al. (11) leaves several questions open. First

and foremost, how does the search time of proteins finding

their target, or the corresponding rate, depend upon the DNA

conformation? In particular, is it important that the DNA is

coiled at a length scale larger than the persistence length? Is

it important that the DNA coil may not fit in the volume

available, and then DNA must be a globule, like the nucleoid

in a prokaryotic cell in vivo or under experimental condi-

tions in vitro (13)? Second, a closely related aspect is that the

theory of Berg et al. (11) does not answer the experimentally

most relevant question (9) of the interplay between one-

dimensional sliding and three-dimensional diffusion. In

particular, one of the questions raised by experiments and

not answered by the theory of Berg et al. (11) regards the

correlations between the place where a protein departs from

the DNA and the place where it readsorbs. The third aspect

of the theory of Berg et al., although of a lesser importance

and more dependent upon taste, is that it does not yield a

simple intuitive explanation for nonmonotonic dependence

of the rate on the strength of nonspecific adsorption. One may

want to know whether a simple qualitative description of the

rate exists, at least within some limits.

More recent refinement of the theory is given in Coppey

et al. (14). The authors of this work follow Berg et al. in that

they treat DNA in terms of domains—a concept having no

unambiguous definition in the physics of DNA. Also,

Coppey et al. (14) makes it very explicit that Berg et al.

(11) and subsequent theories neglect correlations between

the place where protein desorbs from DNA and the place

where it adsorbs again—the approximation that clearly

defies the polymeric nature and fractal properties of DNA. At

the same time, this approximation leaves unanswered the

experimentally motivated question of the interplay between

one-dimensional and three-dimensional components of the

search process.

In recent years, the problem was revisited by physicists

several times (15–17), but the disturbing fact was that all of

them attributed quite different results and statements to the

findings of Berg et al. Bruinsma (15) says that according to

Berg et al. (11), the search timescales as DNA lengths L
rather than L2, as in one-dimensional diffusion along DNA;

Halford and Marko (16) state that proteins slide along

DNA some distance—a distance that is independent of DNA

conformation, regardless even of the DNA fractal properties.

Slutsky and Mirny (17), however, concentrate on the role of

the nonuniform DNA sequence, claiming that the time for

three-dimensional diffusion must be approximately the same

as the time for one-dimensional diffusion along DNA. A

further, possibly even more disturbing fact is that none of

these articles (11,14,15,17) make any clearly articulated

explicit assumption about DNA conformation. Is it straight,

or Gaussian coil with proper persistence length, or something

else? Does the result depend on the DNA conformation?

Interestingly, experimenters do discuss in their works (see

(9) and references therein) the issue of correlated versus

uncorrelated readsorption; these discussions call for theoret-

ical attention and theoretical description in terms of corre-

lations in fractal DNA, but so far, no proper theory has been

suggested.

Motivated by these considerations, in this work we set out

to reexamine the problem from the very beginning.

Model, approach, and limitations

We assume that within some volume y, one (double-helical)

DNA polymer is confined, with contour length L, persistence
length p, and a target site of the size b.
Although in our theory we use a model of a single DNA

molecule confined in the volume y, all our results apply, without

any modification, to a macroscopic solution of DNA, with

concentration 1/y (in units of DNA chains per unit volume).

For this solution, we assume that every DNA has to have

contour length L and each DNA has to have one target site.

On a length scale smaller than that of the persistence

length p, DNA is practically straight. In particular, if DNA

contour length is shorter than p, i.e., L, p, DNA as a whole

is rodlike. Long DNA, with L . p, coils up on the length

scales exceeding p. We assume that the DNA coil is

Gaussian, with overall size proportional to R ; (Lp)1/2 (as

opposed to the swollen coil described by the Flory index 3/5

(18)). That means that we neglect the excluded volume

effect. For DNA, this is a reasonable approximation for most

realistic cases, such as, e.g., l-DNA, because of the large

persistence length/diameter ratio of the double helix: ex-

cluded volume in the coil remains unimportant (19) up to

DNA length ;L , p3/b2 (up to ;100,000 basepairs under

normal nonexotic ionic conditions).

We do allow for the possibility that the length of DNA L is

so large that DNA Gaussian coil does not fit into the con-

finement volume y, R3 . y. In this case, DNA has to reflect

many times back into the volume after touching the wall. We

refer to this situation as DNA being a globule. We assume,

however, that the volume fraction of DNA inside volume y,

which is ;Lb2/y, is sufficiently small even when DNA is a

globule. In particular, we assume Lb2/y , b/p, because in a

denser system liquid crystalline nematic ordering of DNA

segments becomes likely (19).

In terms of DNA solution, rodlike DNA (with L , p) and
DNA coils are realized for the dilute solution, whereas a

situation similar to that of the globule is realized for the

semidilute solution (18) of DNA.
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We further assume that protein can be nonspecifically

adsorbed at any site on the DNA, and that nonspecific ad-

sorption energy e, or the corresponding constant y ¼ ee=kBT;
is the same everywhere on the DNA and does not depend on

the DNA sequence. We also assume that every protein

molecule has just one site capable of adsorbing to the DNA.

(Although there are proteins with two such sites able to

adsorb to two separate pieces of DNA at the same time and

thus serve as a cross-linker for the DNA itself, we do not

consider this possibility.)

We assume that nonspecifically bound protein can diffuse

(slide) along DNA with the diffusion coefficient D1, while

protein dissolved in surrounding water diffuses in three di-

mensions with diffusion constantD3. Thus, we have a unitless

parameter related to the diffusion coefficients, d ¼ D1/D3. In

the simpler version of the theory (which we shall consider

first), we assumeD1¼D3, or d¼ 1. For simplicity, we assume

that while protein is diffusing, either in three dimensions or

along the DNA, the DNA itself remains immobile.

The quantity of our interest is the time needed for the target

site to be found by a protein (consider, e.g., a restriction

enzyme attacking a viral DNA intruder). One should imagine

a certain concentration c of proteins randomly introduced

into the system, and ask about the time needed for the first of

these proteins to arrive at the target site. In this article, we will

only address the mean time, averaged over both thermal noise

and DNA conformation. For this averaged quantity, since the

DNA is assumed immobile, the problem can be addressed in

a simple way, by looking at the stationary rate. Namely, we

should consider that there is a sink of proteins in the place of

the specific target site, and that it consumes proteins with the

rate J proportional to concentration c, which should be

supported on a constant level by an influx to maintain

stationarity. Obviously then, the averaged time is just 1/J. At
the end of the article, we show how to rederive all our results

in terms of a single protein, thus avoiding an artificial

assumption that there is a sink of proteins at the place of the

target.

In this article, we calculate the rate J by assuming that con-

centration c is an arbitrary constant. To compare the predicted

rate to the Smoluchowski rate Js ¼ 4p D3cb (see Appendix A
for a simple derivation of Smoluchowski formula), we shall

mainly look at the ratio

J

Js
¼ J

4pD3cb
;

J

D3cb
; (1)

which characterizes the acceleration of the reaction rate

achieved due to the sliding along the DNA.

We will be mainly interested in the scaling dependence of

the rate J or acceleration J/Js on major system parameters,

such as y, L, and y. In this context, we will use the symbol;

to mean equal up to a numerical coefficient of order 1,
and the symbols . and , are to mean � and �,

respectively.

Along with dropping out all numerical coefficients in our

scaling estimates, we also make several assumptions driven

by a pure desire to simplify formulas and to clarify major

physical ideas. We assume that all the microscopic length

scales are of the same order, namely, approximately target

size b: protein diameter, double-helical DNA diameter, and

the distance from DNA at which nonspecific adsorption

takes place. These assumptions are easy to relax, but in this

article we shall touch neither of these issues, guided by the

prejudice that simple questions should be addressed first.

The plan of the article is as follows. First, we consider the

relatively simple cases when DNA is a Gaussian coil and

one-dimensional sliding of proteins along DNA involves

only a small part of DNA length. Already in this situation we

will be able to explain the effect of correlated readsorption

and arrive at a number of new results, such as, for instance,

possible asymmetric character of the maximum on the curve

of the rate as a function of adsorption strength. These results

are also derived through the electrostatic analogy in the

Appendix B. Second, we present a summary of all possible

scaling regimes and then discuss them in more detail. We

start this by looking at the rate saturation when one-

dimensional sliding involves entire DNA length. Third, we

consider a delicate case when DNA as a whole is a globule;

in this case, we found that even the three-dimensional trans-

port of proteins is in many cases realized through the sliding

of adsorbed proteins along DNA and using DNA as a

network of one-dimensional transport ways. We continue by

looking at the situations when diffusion coefficient of the

proteins along DNA is either smaller or larger than their

diffusion coefficient in the surrounding bulk water. Fourth,

we rederive all our major results using the language of single

protein search time instead of a stationary process and flux.

Finally, we conclude with comparison of our results to those

of earlier works and the discussion of possible further

implications of our work.

SIMPLE CASE: STRAIGHT ANTENNA VERSUS
GAUSSIAN COIL ANTENNA

The reason why nonspecific adsorption on DNA can speed

up the finding of the target is illustrated in Fig. 1, a and b: it is
because DNA forms a kind of antenna around the target, thus

increasing the size of the effective target. How should we

determine the size of this antenna? The simplest argument is

this. Suppose antenna size is j and contour length of DNA

inside antenna is l. It is worthwhile to emphasize that j

and l do not define any sharp border, but rather a smooth

crossover, such that transport outside the antenna is mainly

due to the three-dimensional diffusion, while transport inside

the antenna is dominated by the sliding, or one-dimensional

diffusion along DNA. The advantage of thinking about

stationary process is that under stationary conditions, the flux

of particles delivered by the three-dimensional diffusion into

the j-sphere of antenna must be equal to the flux of particles
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delivered by one-dimensional diffusion into the target. The

former rate is given by the Smoluchowski formula (see

Appendix A) for the target size j; for the concentration of

free (i.e., not adsorbed) proteins cfree, it is;D3cfreej. To esti-
mate the latter rate, we note that the time of one-dimensional

diffusion into the target site from a distance of order l is

;l2/D1; therefore, the rate can be written as (lcads)(l
2/D1),

where lcads is the number of proteins nonspecifically adsorbed

on the piece of DNA of the length l. Thus, our main balance

equation for the rate J reads

J;D3cfreej;
D1cads
l

: (2)

Formally, this equation follows from the continuity equation,

which says that divergence of flux must vanish everywhere

for the stationary process and that flux must be a potential

field.

Notice that the balance equation, Eq. 2, depends on the

relation between j and l—between the size of antenna

measured in space (j) and measured along the DNA (l).

Here, we already see why fractal properties of DNA con-

formations enter our problem.

To determine the one-dimensional concentration of non-

specifically adsorbed proteins, cads, and the concentration

of proteins remaining free in solution, cfree, we now argue

that as long as the antenna is only a small part of the DNA

present, every protein in the system will adsorb and desorb

many times on the DNA before it locates the target; there-

fore, there is statistical equilibrium between adsorbed and

desorbed proteins. Assuming that we know the adsorption

energy e or the corresponding constant y ¼ ee=kBT; and remem-

bering that adsorbed proteins are confined within distance of

order b from the DNA, we can write down the equilibrium

condition as

cads=cfreeb
2 ¼ y; (3)

which must be complemented by the particle-counting

condition

cadsL1 cfreeðy � Lb
2Þ ¼ cy: (4)

Since volume fraction of DNA is always small, Lb2 � y,

standard algebra then yields

cads ’
cyyb

2

yLb
2
1 y

;
cyb2

if y, y=Lb2

cy=L if y. y=Lb
2
;

(

cfree ’
cy

yLb
2
1 y

;
c if y, y=Lb

2

cy=Lb2y if y. y=Lb2
:

(5)

(

Note that at the length scales smaller than persistence

length p, the DNA double helix is practically straight, while

on the length scales greater than p, the double helix as a

whole is a Gaussian coil. This means that, if we take a piece

of double helix of the contour length l, its size in space

scales as

j;
l when l, pffiffiffiffiffiffi
lp

p
when l. p

:

�
(6)

Substituting this result into the balance equation (Eq. 2),

we can determine the antenna size and then, automatically,

the rate—the latter being either side of the balance equation.

We have to be careful, because we see that there are already

as many as four different scaling regimes, due to Eqs. 5 and 6:

Regime A: Antenna is straight (upper expression of Eq.

6), adsorption is relatively weak (upper expressions in

Eq. 5).

Regime B: Antenna is Gaussian (lower expression in Eq.

6), but adsorption is still relatively weak.

Regime C: Antenna is Gaussian and adsorption is rela-

tively strong (lower expressions in Eq. 5).

Regime D: Straight antenna and strong adsorption.

Later we will find more regimes, but now let us consider just

these four, one by one.

To begin with, suppose the antenna is straight (l , p, so
l; j, see Fig. 1 a) and the nonspecific adsorption relatively
weak (y , y/Lb2, so cads ; cyb2). In this case, the balance

equation yields l ; b(yd)1/2, or the rate

FIGURE 1 Antennae in a variety of cases. The upper part of every figure

represents a poor man’s idea of a prokaryotic cell. In panels a and b, DNA in

the cell is a coil, because coil size R is smaller than the cell dimension;

alternatively, one can think of a dilute solution of DNA in which R is much

smaller than the distance to other coils (not shown). In panel c, the amount of

DNA is so large that the coil size would have exceeded the cell diameter, and

so DNA is a globule; alternatively, one can think of a semidilute solution

(18) of strongly overlapping DNA coils. The lower figures represent a

blown-up view of the region around the target site on DNA. The antenna part

of DNA around the target is shown in lighter color than the rest of DNA. The

space region below the crossover length scale is shadowed. This space

region is roughly spherical in cases a and b; it is sausage-shaped in case c.

Panel a also shows the averaged flow lines of the diffusion, which go in three

dimensions far away from the target and go mostly along DNA within the

antenna length scale (they are equivalent to electric field lines in terms of

electrostatic analogy; see Appendix B). In panels b and c, flow lines are not

shown, simply because it is difficult to draw them. In panel c, we see that

DNA globule locally looks like a temporal network, with the mesh size r. In
this case, the antenna might be much longer than one mesh. In the figure, the

mesh size is not larger than the persistence length, so the length of DNA in

the mesh g is approximately the same as r; at lesser density, mesh size might

be longer, and then DNA in the mesh would be wiggly, with g � r.
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J; c
ffiffiffiffiffiffiffiffiffiffiffi
D3D1

p
y
1=2
b: (7)

In other words, for the ratio of this rate to the Smoluchowski

rate Js ; D3cb, we obtain

J

Js
; ðydÞ1=2 ðregimeAÞ: (8)

This result remains correct as long as antenna remains

shorter than persistence length, and since we know l, we

obtain this condition explicitly: y , p2/b2d.
Let us now suppose that nonspecific adsorption is still

relatively weak (y , y/Lb2, so cads ; cyb2), but it is strong
enough such that the antenna is longer than persistence

length (l . p, so that j;
ffiffiffiffiffiffi
lp

p
; see Fig. 1 b). Then our

balance equation yields l ; (yd)2/3 p�1/3b4/3 or

J

Js
;

ypd

b

� �1=3

ðregimeBÞ: (9)

One should check that this new result for l implies that l. p
at y. p2/b2d, and so y; p2/b2d is the crossover line between
the two regimes, A and B. In both regimes, and as expected,

the rate grows with the strength of nonspecific adsorption,

y, because increasing y increases the size of the antenna.

However, the functional scaling dependence of the rate on y
is significantly different, reflecting the difference in DNA

fractality at different length scales.

Before we proceed with analysis of other scaling regimes,

it is useful to make the following comment. The balance

equation (Eq. 2) describes the fact that every protein going

through the three-dimensional diffusion far away must then

also go through the one-dimensional diffusion closer to the

target. In other words, the balance equation (Eq. 2) describes

the self-establishing match between the three-dimensional

and one-dimensional parts of the process. But we can also

look at the situation differently: suppose that one particular

protein is adsorbed on DNA in a random place, and let us

estimate the distance it can diffuse along DNA before it

desorbs due to a thermal fluctuation. Since probability of

thermally activated desorption is proportional to e�e=kBT ¼
1=y; the time that protein spends adsorbed must be;b2y/D3.

During this time, protein diffuses along DNA by the distance

of;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1b2y=D3

p
¼ b

ffiffiffiffiffi
yd

p
: This distance was first estimated

in Richter and Eigen (8); following Coppey et al. (14) and

Halford and Marko (16), we call it sliding distance. We see,

therefore, that antenna length l is just about sliding distance

for the straight DNA, but l � ‘slide for the coiled DNA. At

first glance, this seems like a very weird result: how can the

antenna possibly be longer than the distance over which

protein can slide? In fact, the antenna does become longer

than the bare sliding distance, and this happens because, for

the coiled DNA, every protein, desorbed after sliding the

distance of the order of ‘slide, has a significant chance to

readsorb nearby. Such correlated readsorption gets more

likely as we consider more and more crumpled conforma-

tions of DNA. Indeed, if, in general, we assume that j ; ln,

then the balance equation yields l ; y1/(11n), which means

that l grows with y faster than ‘slide ; y1/2 at every n , 1.

This growth of l with y gets increasingly fast as n decreases,

which corresponds to more crumpled conformations. We

should emphasize that this mechanism of correlated read-

sorption is impossible to see as long as polymeric and fractal

properties of DNA are not considered explicitly, which is

why this mechanism has been overlooked in previous works.

With further increase of either nonspecific adsorption

strength y or DNA overall length L, we ran into the situation

when most of the proteins are adsorbed on the DNA. In other

words, if one prefers to think in terms of a single protein

diffusion, then this single protein molecule spends most of

the time adsorbed on DNA far away from the target. For this

case, we have to use the lower lines of Eq. 5 and substitute it

into the balance equation (Eq. 2). Since equilibrium condition,

Eq. 3, is still satisfied, the result lj ; ydb2 remains un-

changed. Depending on whether antenna length l is longer or

shorter than persistence length, we obtain regimes C and D.
For regime C, we have l . p; the antenna is a Gaussian

coil; j;
ffiffiffiffiffiffi
lp

p
; yielding l ; (yd)2/3p�1/3b4/3; and

J

Js
;

yðpdÞ1=3

Lb
7=3
y
2=3 ðregimeCÞ: (10)

Given our expression for l, the condition l . p implies the

familiar y . p2/b2d, and another condition for this regime is

that most proteins are adsorbed, or y . y/Lb2 (see Eq. 5).
For regime D, the antenna is straight, so j; l, and we get

l ; b(yd)1/2, just as in regime A. For the rate, however,

substitution of the lower-line terms of Eq. 5 into the balance

equation (Eq. 2) yields

J

Js
;

yd
1=2

Lb
2
y
1=2 ðregimeDÞ: (11)

According to our discussion, this regime should exist when

y , p2/b2d and y . y/Lb2. As we shall see later, these two

conditions can be met together and the room for this regime

exists only if d , 1, which means that one-dimensional dif-

fusion along DNA is slower than three-dimensional diffusion

in space.

In both regimes C and D, overall rate decreases with the in-
crease of nonspecific adsorption, y, because three-dimensional

transport to the antenna is slowed down by the lack of free

proteins.

We have so far discussed four of the scaling regimes; our

results are Eqs. 8–11. Already at this stage, we gained simple

understanding of the nonmonotonic dependence of the rate

on y—a phenomenon formally predicted in Berg et al. (11)

and observed in Winter et al. (12), but previously not

explained qualitatively: at the beginning, increasing y helps

the process because it leads to increasing antenna length;

further increase of y is detrimental for the rate because it

leads to an unproductive adsorption of most of the proteins.

We have also obtained a new feature, absent in previous
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works: the shape of the maximum on the J(y) curve is

asymmetric, at least if DNA is not too long: in regimes B and

C, rate grows as y1/3 and then falls off as y�2/3.

Since there are quite a few more scaling regimes, it is

easier to understand them if we now pause to offer the

summary of all regimes as presented in Fig. 2 and Table 1.

SUMMARY OF THE RESULTS:
SCALING REGIMES

Our results are summarized in Fig. 2 and in the Table 1. Fig.

2 represents the log-log plane of parameters L and y, and
each line on this plane marks a crossover between the scaling

regimes. This figure gives the diagram of scaling regimes for

the specific case d ¼ 1 (or D1 ¼ D3); later on, we will return

to the more general situation and present corresponding

diagrams for both d , 1 and d . 1 cases.

To be systematic, let us start our review of scaling regimes

from the two trivial cases, which correspond to the axes in

Fig. 2. When y # 1, there is no nonspecific binding of

proteins to the DNA, and no sliding along the DNA. Proteins

find their specific target at a rate equal to the Smoluchowski

rate, or J/Js ¼ 1. Similarly, if the DNA is very short, as short

as the specific target site itself, or L ; b, then once again

J/Js¼ 1, for trivial reasons. Sincewe assume that there is some

nonspecific adsorption, or y $ 1, and since DNA length is

obviously always greater than the target size b, our diagram in

Fig. 2 presents only the y. 1 andL/b. 1 regions,which iswhy

the pure Smoluchowski regime is seen only on the axes.

If we increase y and consider the y . 1 situation, then

we have significant nonspecific adsorption of proteins on

DNA—which increases the rate due to the antenna effect. If

y remains moderate, the antenna is shorter than DNA

persistence length, and it is straight. This is the regime

labeled A in Fig. 2 and described by Eq. 8. With further

increase of y, when y. p2/b2d, we cross over into the regime

labeledB and described by Eq. 9; in this regime, the antenna is

so long that it is a Gaussian coil. From regime B, we can cross
over the line y ¼ y/Lb2 and get into the regime labeled C and

described by Eq. 10. One can cross over into regime C by

either increasing y or increasing L, because increasing either

of these variables promotes unproductive nonspecific ad-

sorption of proteins on faraway pieces of DNA and thus slows

down the transport to the specific target.

From regime A, we can also cross over the line y ¼ y/Lb2,
but as long as d ¼ 1, this does not bring us to regime D;
instead, we get to the new regime labeled I, which we will

explain below.

To understand all other scaling regimes, we have to re-

member that our previous consideration was restricted in

two respects. First, we assumed that the entire DNA in the

form of Gaussian coil fits within volume y—which is true

only as long as L, y1/3 and
ffiffiffiffiffiffi
Lp

p
,y1=3;where y1/3 stands for

the linear dimension of the restriction volume. To relax this

assumption, we will have to consider a long DNA, which is

many times reflected by the walls of volume y, and inside

volume y represents a globule, locally looking like a semi-

dilute solution of separate DNA pieces, as illustrated in

Fig. 1 c. For such long DNA, we shall find two more

regimes, labeled H and I in Fig. 2. Second, we assumed that

the antenna length l was smaller than full DNA length L;
the consequence of this was our statement, Eq. 3, that there

is equilibrium between adsorbed and dissolved proteins.

Relaxing this assumption, we will have to discuss regimes

labeled E, F, and G in Fig. 2.

In Fig. 3, we present a schematic y-dependence of the rate
for a number of values of DNA lengths L. Each curve is

labeled with the corresponding value of L. To be specific, we
have chosen the lengths that correspond to various cross-

overs and are marked on the scaling regimes diagram (Fig.

2). Note that in many cases our result for the rate exhibits a

maximum and saturation beyond the maximum—features

first described in Berg et al. (11). Unlike Berg et al., we

find that the maximum is asymmetric and, even more impor-

tantly, J/Js can become much smaller than unity, i.e., one can

observe deceleration in comparison with Smoluchowski rate.

We also find a number of other features, such as the specific

power law scaling behavior of the rate.

Thus, we have to discuss one by one the new regimes E, F,
G, H, and I. These will be addressed in the next section.

FIGURE 2 Diagram of scaling regimes for the case d¼ 1, when diffusion

along the DNA has the same diffusion constant as diffusion in surrounding

water. Both L and y axes are in the logarithmic scale. When DNA is shorter

than the persistence length (b , L , p) it is essentially a rod, and if longer

than the persistence length, is a Gaussian coil. However, coil size is smaller

than the restriction volume y (p, L, y2/3/p), DNA is globular at L. y2/3/p,

and we only consider L up to ;y/pb, because at larger L DNA, segments

start forming a liquid-crystalline order. Summary of the rates for each regime

is found in Table 1. Here, as well as in the other figures, to make formulas

look shorter, all lengths are measured in the units of b, meaning that L, p, and

y stand for L/b, p/b, and y/b3.
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SYSTEMATIC CONSIDERATION OF
SCALING REGIMES

DNA is not long enough for a full antenna

If DNA is too short for the antenna, then proteins already

adsorbed on DNA can find their target faster than new

proteins can be delivered to the DNA from solution. There is

no longer any adsorption equilibrium, and instead of Eq. 3

we can only claim that cads , ycfreeb
2. Therefore, the amount

of adsorbed proteins under stationary conditions is physi-

cally determined by the stationarity itself, meaning that we

have to look at Eq. 2 as two equations. In doing so, we have

to replace l in the right-hand side (one-dimensional rate) by

L, because we do not have more DNA than L; and we have to
replace j in the left-hand side, which is the antenna size for

three-dimensional transport, by R, which is the overall size of
the DNA coil. Of course, particle-counting Eq. 4 is still valid

here, and it is the third equation. Thus, our equations read:

J

Js
;

cfreeR

cb
;

cfreeR;
cadsd

L
;

cadsL1 cfreey; cy: (12)

From here, we find

J

Js
¼ yRd=b

RL
2
1 yd

: (13)

We can now easily address all possible scaling regimes in

which the antenna is longer than the DNA.

To begin with, it is possible that DNA length is shorter

than DNA persistence length L , p, such that the entire

DNA is essentially straight, and then R ’ L. Assuming also

L3 , y, we arrive at the scaling regime labeled E in Fig. 2, in

this regime

J

Js
;

L

b
ðregime EÞ: (14)

The borderline of this regime can be established from the

condition that since the entire DNA is smaller than the

equilibrium antenna, we must expect that cads is smaller than

its equilibrium value, or cads/cfreeb
2 # y. Since, according to

the second expression in Eq. 12 we have cads/cfree¼ LR/d, we
then have the condition LR/d, yb2; at L, p this yields y.
L2/b2d. At the same condition we can also arrive from the

other side of the crossover, by noting that regime A continues

as long as the antenna is shorter than the entire DNA, l, L;
and by using our result for l for regime A, this produces the
same crossover line between regimes A and E.

TABLE 1 The summary of rates and antenna lengths in various regimes

Regime Description J/Js l

Axes Smoluchowski: no antenna 1 b

A Straight antenna, few proteins adsorbed (yd)1/2 b(yd)1/2

B Coiled antenna, few proteins adsorbed (ypd/b)1/3 (yd)2/3 p�1/3b4/3

C Coiled antenna, most proteins adsorbed y(pd)1/3/Lb7/3y2/3 (yd)2/3 p�1/3b4/3

D (d , 1) Straight antenna, most proteins adsorbed yd1/2/Lb2y1/2 b(yd)1/2

E Whole DNA as straight antenna, few proteins adsorbed L/b L

F Whole DNA as coiled antenna, few proteins adsorbed (Lp/b2)1/2 L
G Whole DNA as antenna, most proteins adsorbed yd=L2b L

H Antenna with coiled mesh, most proteins adsorbed ðp=b2Þðyd=LyÞ1=2 ðb=pÞðyyd=LÞ1=2
I Antenna with straight mesh, most proteins adsorbed yd1/2/Lb2y1/2 b(yd)1/2

K (d . 1) Antenna with straight mesh, few proteins adsorbed (yd)1/2 b(yd)1/2

M (d . 1) Antenna with coiled mesh, few proteins adsorbed pðLyd=yÞ1=2 ðb=pÞðyyd=LÞ1=2

Note that, in labeling regimes, we skip J and L to avoid confusion with the rate and DNA length.

FIGURE 3 Schematic representation of rate dependence on y. Both the

rate J and y are given in logarithmic scale. The fraction next to each curve

shows its slope, which is the power of J(y) dependence. Each curve

corresponds to a specified value of DNA length. Also indicated in Fig. 2, the

length is shown above the right end of each curve. Experimentally, the value

of y can be controlled through the salt concentration, because nonspecific

adsorption of proteins is controlled by Coulomb interaction between

negative DNA and positive patch on the protein surface; for instance, if the

salt is KCl, then it is believed (12,15) that lg y ¼ 10 lg [KCl] 1 2.5, where

[KCl] is the molar concentration of the salt. Note that we recover the

possibility, first indicated in Berg et al. (11), that the rate goes through the

maximum and then saturates; but in our case, the maximum is often

asymmetric, and at large y the rate becomes very small J/Js � 1, particularly

for long DNA. Here, as well as in the other figures, to make formulas look

shorter, all lengths are measured in the units of b, meaning that L, p, and y

stand for L/b, p/b, and y/b3.
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For longer DNA, when L . p, the entire DNA is a

Gaussian coil, and its size is R ; (Lp)1/2. Still assuming that

the second term dominates in the denominator in Eq. 13, we

arrive at

J

Js
;

Lp

b
2

� �1=2

ðregime FÞ: (15)

This regime is labeled F in Fig. 2. Its border line with regime

E is obviously the vertical line L ¼ p. In regard to crossover

to regime B, once again it can be established either from

cads/cfree ¼ LR/d , y for regime F or from l , L for regime

B. In either way, we arrive at the crossover condition y ¼
L3/2p1/2/b2d.
For even longer DNA, the antenna length becomes equal

to the length of the entire DNA only at such large y that the
system is already in regime C, with the rate falling down with
increasing y because of the unproductive adsorption of

proteins. Since antenna length l in regime C is given by the

same formula as in regime B, so the upper border line of

regime C is the continuation of the corresponding line

bordering regime B: y ¼ L3/2p1/2/b2d. However, when we

cross this line upwards from regime C, we arrive at the new
situation, because now the first term dominates in the

denominator of the Eq. 13, meaning that most of the proteins

are adsorbed on DNA, such that we obtain

J

Js
;

yd

L
2
b

ðregimeGÞ: (16)

The crossover between this regime and regime F is the

vertical line at which both terms are comparable in the

denominator of Eq. 13: L ¼ (yd)2/5/p1/5. Crossover line with
regime C can once again be established from the condition

cads/cfree ¼ LR/d , y.
In all regimes E, F, andG the rate saturates with increasing

y. For regimes E and F this happens after just initial growth

of the rate; for regime G, saturation occurs after the rate goes
through the maximum and starts decreasing. In all cases

saturation is due to the fact that increasing adsorption

strength does not lead to any increase of the antenna size,

because the entire DNA is already employed as antenna, and

the antenna has nowhere to grow.

Cell is not big enough to house the DNA
Gaussian coil

When DNA is very long for a given volume, that is, when

(Lp)1/2 . y1/3, DNA cannot remain just a coil; it must be a

globule, as it is forced to return many times back into the

volume after touching the walls (see, for example, (19)).

For the purposes of this work, it is sufficient to keep

assuming that the excluded volume of DNA is not important,

because the volume fraction of DNA within the confinement

volume y is still small, and is small even when compared at

b/p. Nevertheless, locally the system looks like a so-called

semidilute solution of DNA, or a transient network with a

certain mesh size (see Fig. 1 c).
We should recall to mind some basic facts regarding the

semidilute solution, or a transient network (18,19). Let us

denote r as the characteristic length scale of a mesh in the

network—which, in the scaling sense, is the same as the

characteristic radius of density-density correlation (see Fig.

1 c). Let us further denote g as the characteristic length along
the polymer corresponding to the spatial distance r. Quan-
tities r and g can be estimated from the following physical

argument (18,19): Consider a piece of polymer of the length

g starting from some particular monomer; it occupies region

;r3 and makes density ;g/r3. This density must be approx-

imately the overall average density, which for our system is

of the order of L/y. Thus, g/r3 ; L/y. The second relation

between g and r is similar to Eq. 6, which depends upon

whether the mesh size is bigger or smaller than persistence

length p:

r;
g if g, pffiffiffiffiffi
gp

p
if g. p

:

�
(17)

Accordingly, after some algebra, we obtain

g;

ffiffiffi
y

L

r
; r;

ffiffiffi
y

L

r
if L.

y

p
2

g;
y
2

L
2
p
3; r;

y

Lp
if

y
2=3

p
, L,

y

p
2: (18)

The upper line of the expression above corresponds to a

network so dense that every mesh is shorter than persistence

length, and the polymer is essentially straight within each

mesh. The lower line of the expression describes a much less

concentrated network, in which every mesh is represented by

a small Gaussian coil.

Returning to our problem, we should realize that the

antenna length l can in fact be longer than the mesh size g, as
illustrated in Fig. 1 c. To estimate the antenna size for this

case, we should remember that desorption from the antenna

does not necessarily completely break the sliding along

DNA, because protein can still readsorb on a nearby place on

the DNA, or, more generally, on a correlated place on the

DNA. To account for this, let us imagine that the antenna

part of DNA is decorated by a tube of the radius r. Since r is
the correlation length in the DNA solution, the protein

remains correlated with the antenna as long as it remains

within this tube around the antenna. Accordingly, our main

balance equation, Eq. 2, must be modified to account for the

fact that three-dimensional transport on scales larger than r is
now realized through the DNA network and, therefore, the

task of regular three-dimensional diffusion is only to deliver

proteins over the length-scale of the order of one mesh size r,
into any one of the l/g network meshes along the antenna.

The rate of delivery into one such mesh would be;D3cfreer,
so that the overall delivery rate into the antenna tube scales

as ;D3cfreerl/g. As usual, this must be equal to the rate of
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one-dimensional delivery along the antenna into the specific

target, so instead of Eq. 2 we finally get

J;D3cfreer
l

g
;D1

cads
l
: (19)

As long as the antenna is shorter than the entire DNA, the

relation between cfree and cads equilibrates and obeys Eqs.

3–5, so we finally get

l
2
; b

2gyd

r
(20)

and

J

Js
;

cfree
c

rl

g
;

y

Lb
2

rd

yg

� �1=2

: (21)

What is nice about this formula is that it remains correct

in a variety of circumstances—when the antenna is straight

(l , p); or the antenna is Gaussian (p , l , y2/3/p); or the
antenna is a globule (l . y2/3/p).
Taking r and g from Eq. 18, we finally obtain two new

regimes. When every mesh is Gaussian,

J

Js
;

p

b
2

yd

Ly

� �1=2

ðregimeHÞ: (22)

This regime borders regime C along the line where the

antenna size is equal to the mesh size, l¼ g, which reads y¼
y3/(L3p4b2d). Regime H also borders regime G along the line

where the antenna size is as long as the entire DNA, l¼ L, or
y ¼ L3p2/yb2d. Finally, regime H also borders another

regime I along the vertical line L ¼ y/p2, which corresponds

to the DNA within every mesh becoming straight (shorter

than persistence length). For this regime, we have to use the

upper line in the expressions in Eq. 18, thus obtaining

J

Js
;

yd
1=2

Lb
2
y
1=2 ðregime IÞ: (23)

This regime borders saturation regime G along the line y ¼
L2/b2d where l ¼ L.
In regard to the lower border of regime I, it corresponds to

the situation when the antenna becomes straight, which

happens at y ¼ y/Lb2d. However, as long as d ¼ 1, which is

the case presented in Fig. 2, this line coincides with the line

y ¼ y/Lb2, below which most proteins are desorbed and free

in solution. That is why at d ¼ 1, there is no room for regime

D, in which the antenna is straight, but most proteins ad-

sorbed. Indeed, when d ¼ 1, then three-dimensional trans-

port is mostly realized by sliding along the network edges as

soon as most proteins are adsorbed, which precisely means

that regime A crosses over directly to regime I.
As we see, in both H and I regimes the rate J decreases

with growing y, but does so more slowly than in regime C,
that is, only as y�1/2 instead of y�2/3. This happens because

adsorbed proteins are not just taken away from the process,

as in regime C, but also participate in three-dimensional

transport through the network (albeit this transport is still

pretty slow).

This completes our scaling analysis for the d ¼ 1 case

shown in Fig. 2.

Diffusion rate along DNA is different from that in
surrounding water

Let us now relax the d ¼ 1 condition and examine the cases

in which diffusion along the DNA is either slower (d, 1) or

faster (d . 1) than in the surrounding water.

First, let us consider the d , 1 case, when diffusion along

the DNA is slower than that in the surrounding water (D1 ,

D3); corresponding scaling regimes are summarized in the

diagram Fig. 4 a. Most of the diagram is topologically

similar to that in the Fig. 2, and we do not repeat the cor-

responding analysis. Of course, there are now powers of d in
all equations, but the major qualitative novelty is that there is

now room for regime D sandwiched between regimes A and

I. The formal reason why this regime now exists in a separate

region is because the line y¼ y/Lb2d goes above the line y ¼
y/Lb2. To understand the more meaningful physical differ-

ence, let us recall that the line y ¼ y/Lb2 marks the crossover

above which most of the proteins are adsorbed, but it is not

enough for the sliding-along-network mechanism to domi-

nate in the three-dimensional transport at d , 1.

Interestingly, the rate for both regimes D and I is given by
the same formula (compare Eqs. 11 and 23). This happens

because the antenna is straight for regime D and, while the

antenna is not straight for regime I, it still consists of a

number of essentially straight pieces, each representing one

mesh. The major difference between regimesD and I, despite
similar scaling of the rate, is in the mechanism of diffusion:

in regime D, proteins diffuse through the water in a usual

manner; whereas, in regime I, they are mostly transported

along the network of DNA, with only short switches on the

scale of one mesh size r between sliding tours. This is why

straight pieces of DNA in different meshes independently

add up to yield the same overall formula for the rate as in

regime D.
Let us now switch to the opposite limit and consider the

d. 1 case, for which the results are summarized in Fig. 4 b.
This diagram is quite similar to the previously considered

examples in Figs. 2 and 4 a, except there are now two new

regimes labeled K and M (in alphabetical labeling of the

regimes we skip J and L to avoid confusion with rate and

DNA length). These regimes are both below the line y¼ y/Lb2,
which means that most of the proteins are not adsorbed.

However, since d . 1, the new physical feature of the situa-

tion is that adsorbed proteins, although they are in minority,

can nevertheless dominate in three-dimensional transport by

sliding along the DNA network, because sliding is now so

fast at d . 1. Thus, regimes K and M are ones in which

effective diffusion along DNA network dominates, so we

have to use Eq. 19 for the rate and antenna size, while for the
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concentrations of free and adsorbed proteins we have to use

the upper line expressions in Eq. 5. In regime K, the local

concentration of DNA segments is so high that every mesh in

the DNA network contains an essentially straight piece of

DNA, so we have to use the upper line expression in Eq. 18,

yielding (after some algebra)

J

Js
; ðydÞ1=2 ðregimeKÞ: (24)

Similarly, since in regime M, the mesh of the DNA network

is Gaussian, we have to use the lower-line expression in Eq.

18, and this produces

J

Js
; p

Lyd

y

� �1=2

ðregimeMÞ: (25)

Since the majority of proteins are not adsorbed, it is not

surprising that the rate grows with y in both regimes K and

M. Notice that the rate is given by the same formula as for

regimes A and K (compare Eqs. 8 and 24). This is similar to

the situation with regimes D and I, as discussed before,

because even though the rate is given by the same formula,

the underlying diffusion mechanism is fundamentally dif-

ferent. In both cases of D and I or A and K, it is possible that
although scaling laws are the same, the numerical prefactors

are different.

It is also interesting to note that the crossover between

regimes B and M takes place on the line y ¼ y3/p4L3b2d
where the antenna length is equal to the DNA length in one

mesh: on the side of the B regime, the antenna is shorter than

one mesh, and transport to the antenna must be through

water; on the side ofM, the antenna is longer than one mesh,

and effective transport along the DNA network is at play.

Maximal rate

To finalize our discussion of scaling regimes, it is reasonable

to ask: what is the maximal possible rate? According to our

results, the maximal rate is achieved on the border between

regimes F and G, that is, at L ; (yd)2/5/p1/5 and at y $

y3/5p1/5/b2d2/5. Maximal possible acceleration compared to

the Smoluchowski rate is ;(yp2d/b5)1/5. It is interesting to

note that the optimal strategy in achieving the maximal rate

at the minimal possible y requires us to have the adsorption

strength y right at the level at which the probability of non-

specific adsorption for every protein is ;1/2 (on the line

y ; y/Lb2).
It is interesting that the maximal possible acceleration

grows with overall volume y, which may seem counterintuitive.

This result is due to the fact that total amount of DNA grows

with increasing y, and, according to our assumption, all this

DNA has still just one target.

DISCUSSION

Single protein view

Many of the previous theoretical works (14–17) looked at the

situation in terms of a single protein molecule diffusing to its

FIGURE 4 Scaling regimes for the cases d, 1 (a) and d. 1 (b). In this figure, Y¼ yd. Also, to make formulas look shorter, all lengths are measured in the

units of b, meaning that L, p, and y stand for L/b, p/b, and y/b3. The major difference from the d ¼ 1 case is the presence of regime D in a and the presence of

regimes K and M in b. In regime D, the majority of proteins are adsorbed, but the dominant three-dimensional transport is still the usual diffusion through the

surrounding water, because sliding along the DNA is too slow (D1 , D3). In regimes K and M, the majority of proteins are not adsorbed, but the dominant

three-dimensional transport mechanism is the sliding of minority proteins along the DNA network, because it is so much faster (D1 . D3). (Note that we skip

J and L in labeling regimes to avoid confusion with rate J and DNA length L.)
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target. In this view, one should imagine that a protein

molecule is initially introduced into a random place within

volume y, and then one should ask what is the first passage

time (20) needed for the protein to arrive to the specific target

site on DNA. The mean first-passage time t can, of course,

be found using our results for the rate J by inverting the

value of the rate and assuming that, on average, there is just

one protein molecule in the system at any time, i.e., t ¼
1=Jjc¼1=y: However, we want to rederive all our results

directly in terms of t to build bridges to the works of other

authors. The rederivation also turns out quite illuminating.

First let us consider that DNA is a globule, L . y2/3/p (or

semidilute solution), and look at regimes H, I, K, and M;

unlike stationary diffusion approach above, in the single

protein language the derivation for the globular DNA case is

actually simpler. Following Slutsky and Mirny (17), we

imagine that the search process for the given single protein

consists of tours of one-dimensional sliding along DNA

followed by diffusion in three-dimensions, followed by one-

dimensional sliding, etc. If in one tour of one-dimensional

sliding, protein moves some distance l along the DNA, then

it takes time at ;l2/D1. The length l here is, of course, our

familiar antenna length, but we will rederive it here, so we do

not assume it known. In regard to the tour of three-dimensional

diffusion, it breaks the correlation of the one-dimensional

sliding if it carries the protein over a distance larger or

approximately the same as the correlation length in the DNA

system, which is r—mesh (or blob) size. Thus, the longevity of

one tour of three-dimensional diffusion is ;r2/D3.

The next step of our argument is this. On its way to the

target, the protein will go through a great many adsorption

and desorption cycles; therefore, the ratio of time that protein

spends adsorbed and desorbed should simply follow equi-

librium Boltzmann statistics:

l
2
=D1

r2=D3

;
yLb

2

y
: (26)

Here, we note that there is an approximation underlying

our argument: one tour of correlated one-dimensional slid-

ing does include small three-dimensional excursions of the

protein into water, but they are small in the sense that they

do not go beyond the crossover correlation distance and,

therefore, readsorption after excursion occurs at a correlated

place on the DNA. Accordingly, these excursions make only

a marginal contribution to the sliding time, which is correctly

estimated as ;l2/D1.

The final part of the argument is most clearly formulated

by Bruinsma (15): since subsequent tours of one-dimen-

sional sliding occur over uncorrelated parts of DNA, full

search requires;L/l rounds. Therefore, the total search time

t can be written as

t;
L

l

l
2

D1

1
r
2

D3

� �
: (27)

Equations 26 and 27 solve the problem for all regimes of

globular DNA if we remember that mesh (or blob) size r is
given by Eq. 18. Notice that Eq. 26 gives a new interpre-

tation to the line y ; y/Lb2 on any of our diagrams in Fig. 2

and Fig. 4, a and b: for the parameters below this line most of

the overall search time is spent in three-dimensional dif-

fusion, while for the system with parameters above the line

the major time-consuming part is the one-dimensional

sliding. It is close to this line where the result of Slutsky

and Mirny (17) applies and these two times are of the same

order. And let us recall that it is also close to this line where

the maximal possible rate is achieved (see Maximal Rate,

above).

Thus, regimes H, I, K, and M result from two possibilities

for r in Eq. 18 (straight or Gaussian DNA within a mesh) and

two possibilities of either first- or second-term dominance in

Eq. 27.

Let us now turn to regimes A, B, C, and D, in which DNA
is a coil. In this case, we still essentially rely on the equations

similar to Eqs. 26 and 27, except some effort is now needed

to understand the time of three-dimensional diffusion.

Our argument for this case starts from our noticing

that there is a crossover spatial scale j, such that correlated

sliding takes place inside scale j, while regular three-

dimensional diffusion in water occurs on a larger length

scale, as it breaks correlations between desorption and sub-

sequent readsorption. Thus, the time of one tour of three-

dimensional diffusion is the mean first-passage time into any

one of the L/l spheres of size j (here l is the contour length

of DNA accommodated by one sphere of the size j; once

again, we pretend that we do not know j and l, but will

rederive them in this single-protein language). The arrival

time into one such sphere is the Smoluchowski time

(discussed in Appendix A) for the target of size j, which is

;y/D3j; the arrival time into any one of the L/l spheres is

L/l times smaller,;y/D3j(L/l) To present our equations for
l and overall search time t in form similar to Eqs. 26 and 27,

we define distance reff such that r2eff;D3½y=D3jðL=lÞ� ¼
yl=Lj; and then we obtain

l
2
=D1

r
2

eff=D3

;
yLb

2

y
(28)

and

t;
L

l

l
2

D1

1
r
2

eff

D3

� �
: (29)

Once again, remembering two regimes for the relation be-

tween l and j, Eq. 6, and having either the first or second

term dominate in the total time of Eq. 29, we recover the

regimes A, B, C, and D.
Finally, the results for all saturation regimes E, F, and G

are recovered by replacing the antenna length l with L in

Eqs. 27 or 29, and replacing equality with inequality in the

conditions of Eqs. 26 or 28.
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Comparison with earlier theoretical works

Let us now compare our findings with various statements

found in the literature. The most widely known result of Berg

et al. (11) was the prediction, later confirmed experimentally

(12), that the rate depends on y (controlled by ionic strength)
in a characteristic way, exhibiting a maximum followed by

a plateau. We have recovered this as a possible scenario for

some combinations of parameters (regimes), as shown in

Fig. 3. However, we also found a number of additional

features not noticed previously: first, the maximum is in

many cases asymmetric; second, the scaling of rate depen-

dence on y exhibits rich behavior, with the possibilities of

crossing over from y1/2 to y1/3 on the way to the maximum,

or from y�2/3 to y�1/2 on the way down; third, there is a

possibility of very strong deceleration at large adsorption

strength y compared at the Smoluchowski rate. All of these

features have a simple qualitative explanation: the rate grows

because increasing y increases the antenna; the rate decays

whenmost of the proteins are fruitlessly adsorbed far from the

target (or, in other words, every protein spends most of the

time adsorbed far away); and the rate saturates and comes to

the plateau because the antenna becomes as long as the DNA

itself. All of these features are the direct consequence of the

fractal properties of DNA, in either a coil or globule state.

Bruinsma (15) presents a review of a variety of topics

related to protein-DNA interactions, and the issue of the

search rate is considered only briefly. In that context,

Bruinsma (15) provides an important insight, used above in

presenting Eq. 27, that subsequent rounds of one-dimen-

sional search are performed on uncorrelated pieces of DNA.

In other words, there exists a crossover from mostly cor-

related events (earlier combined into one correlated sliding

length l) to mostly uncorrelated events. In accord with this

insight, the search time is linear in DNA length only in

regime I.
In the work by Halford and Marko (16), the antenna length

was explicitly identified with the sliding distance (that is,

with the bare sliding distance, earlier in this article denoted

‘slide; b
ffiffiffiffiffi
yd

p
), and then essentially Eq. 27 was used to

determine the search time. This approach is perfectly valid

only as long as the antenna is straight, l ¼ j, and l ¼ ‘slide
(which predicts the symmetric maximum of J(y) depen-

dence), but it should not be used when the DNA antenna is

coiled. For the globular DNA, the approximation of the

straight antenna—implicit in the identification of l with bare

‘slide—is valid for the right end of regime A and for regimeD,
although, of course, other globular regimes require going

beyond this approximation.

The main emphasis of Slutsky and Mirny (17) is on the

role of nonuniform sequence of DNA, which may lead to

nonspecific adsorption strength y, or to one-dimensional

diffusion coefficient D1, or for both to be noisy functions of

coordinate on DNA. In their review of the uniform

homopolymer case, Slutsky andMirny (17) employ formulas

equivalent to our Eqs. 27 or 29, but instead of conditions as

in Eqs. 26 or 28, they minimize overall time with respect to

l. As we pointed out before, this approach is only valid

within the crossover corridor around the line y ; y/Lb2. In
general, the idea of applying a variational principle is very

interesting. It can be generalized beyond the above men-

tioned corridor if one minimizes the overall dissipation,

which is equivalent to energy minimization in terms of

electrostatic analogy, as we show in Appendix B. Of course,

minimization of dissipation is equivalent to the diffusion

equation as long as diffusion is linear in gradients. Alterna-

tively, one can also think, as emphasized in Halford and

Marko (16), that search mechanism was subject to optimiza-

tion by biological evolution. To employ this idea, it is

obviously necessary first to understand the possible search

scenario, or regimes, existing in physics, and then, in the next

stage, one could attempt optimization with respect to the

parameters, such as DNA packing properties, etc., which

could be subject to selective pressure in evolution.

Berg et al. (11) and some subsequent authors treated the

DNA solution in terms of domains. Although this domains-

term was never very clearly defined, it could be understood

as space regions more or less occupied by separate DNA

coils in solution. With such an understanding, the terminol-

ogy of domains can be used as long as the DNA coil fits into

the volume y; or, in other words, is best suitable for an in

vitro experiment in which DNA solution is dilute, such that

DNA coils do not overlap. The terminology of DNA do-

mains becomes unsatisfactory at larger DNA concentrations.

Coppey et al. (14) considered the stochastic approach,

which means they did not look at the stationary diffusion, but

rather at the trajectory of a single protein. As we pointed out

before, these approaches must be equivalent as long as one

is only interested in the average time of the arrival of the first

proteins. The important contribution of Coppey et al. (14) was

the elucidation of the crucial neglect of the correlationsbetween

the desorption point of a protein and its readsorption point. It

is because of this crucial andnot always justifiedapproximation

that previous theories appear to have overlooked the mecha-

nism of correlated readsorption, which is entirely due to the

DNA being a polymer and a fractal coil. Correlated read-

sorption was anticipated by Halford and Szczelkun (9).

Experimental situation

Most of the experiments in the field (see (9) and references

therein) involve various ingenious arrangements of two or

more target sites on the linear or ring DNA and observation

of the resulting enzyme processivity. In the light of our

theory, it would be interesting to revive the earlier Berg et al.-

style experiments and to look carefully at the theoretically

predicted multiple features of J(y) curves, such as asymmet-

ric maximum, various scaling regions, the possible deceler-

ation, and so forth.
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The seeming difficulty is that all our interesting regimes

start when y . p2/b2d, when the antenna is longer than the

DNA persistence length. Since the persistence length of

dsDNA, p, is fairly large, ;150 basepairs under usual ionic

conditions (say, [Na] ¼ 0.2 M), and assuming b is ap-

proximately the diameter of the double helix, we get p/b � 25

for the dsDNA. Unless d is large, this seems to require

nonspecific adsorption energies,;6–10 kBT,which is high but
not impossible. In any case,wewould like to emphasize that the

maximum J(y) has been observed (12), which, according to our
theory, could have happened only at y. p2/b2d, thus assuring
that this range is within reach.

One of the most critical and poorly known parameters of

our theory is d ¼ D1/D3. Of course, D3 (diffusion coefficient

of the protein in water), is rather well known, and this can be

simply estimated based on its size using the Stokes-Einstein

relation. The difficult part is about D1, which involves

friction of the protein against DNA in the solvent. It is clear

that slow diffusion along DNA would make the entire

mechanism of one-dimensional sliding less efficient, and

indeed decreasing d systematically reduces the rate that we

obtain in almost all regimes. There are only two exceptions to

this: one is trivial—a pure Smoluchowski process not

involving any sliding, and realized only when there is no

nonspecific adsorption on DNA (y # 1). The other is in

regimes E and F, regimes when the entire DNA, rodlike or

coil-like, serves as an antenna, which means three-dimen-

sional transport to the DNA is the slowest part, the bottleneck

of the whole process, so that reducing d does not do any

damage—except, of course, in pushing away the correspond-

ing regime boundaries.

Experimental data on the one-dimensional diffusion of

proteins along DNA are scarce and not completely clear (21).

Very recently, when our work was already written down, the

new article of Wang et al. (22) became available, in which

the authors report application of modern single molecule

techniques to measure D1.

Finally, we comment on the state of DNA to be used in

experiment. In our theory, we dealt with the model of a

single DNA confined in some volume y. This is reminiscent

of the DNA in vivo, confined in a prokaryotic cell. Of course,

a real nucleoid is a rather complex structure involving far

more sophisticated features than just overall compaction;

they are caused by structural and other proteins, by entan-

glements, etc. (see (13) and references therein). The cases of

rodlike DNA (L , p) or coil-like DNA (p , L , y2/3/p) can
be adequately modeled by an in vitro experiment involving a

dilute solution of DNA, with 1/y DNA chains per unit

volume. Since the DNA coil is typically much larger than the

prokaryotic cell, our results for the compacted, or globular,

DNA are relevant. The question of an adequate in vitro

model of such DNA conformations is quite delicate (23,24),

and goes beyond the scope of this work; we note, however,

that our present theory can be tested simply by considering

the semidilute solution of DNA chains.

CONCLUSION

Many questions remain open. The role of concurrent protein

species, the role of nonuniform DNA sequence, the role of

DNA motion (25), the probability of unusually long search

times, the search on a single-stranded DNA or RNA, the role

of superhelical structures, the dependence of rate (or search

time) on the specific positions of one or more targets on

DNA, the related issue of enzyme processivity, the role of

excluded volume for very long DNA and corresponding

loop-erasing walks (26)—all of these questions invite

theoretical work.

To conclude, we have analyzed all scaling regimes of the

diffusion-controlled search by proteins of the specific target

site located on DNA. We found many regimes. The major

idea can be formulated in terms of the crossover between

one-dimensional sliding along DNA up to a certain length

scale and three-dimensional diffusion in surrounding space

on the larger length scale. Overall, qualitatively, this idea

seems to be in agreement with the intuition expressed in

experimental articles. In addition, we have made several

theoretical predictions which are verifiable and (even more

importantly) falsifiable by the experiments. We are looking

forward to such experiments.

APPENDIX A: SIMPLE SCALING DERIVATION
OF THE SMOLUCHOWSKI RATE AND THE
SMOLUCHOWSKI TIME

Classical Smoluchowski theory (4) treats the diffusion-controlled process

of irreversible absorption of diffusing particles by an immobile sphere of

a given radius; call it b. As in our proteins problem, Smoluchowski theory

can be formulated either in terms of stationary rate, Js, assuming con-

centration c is fixed; or in terms of mean first-passage time, ts, for a single

protein.

Let us imagine that a protein diffuses within a volume y, and its diffusion

coefficient isD3. Let us further define the time interval tb such that, over time

tb, the protein moves the distance of order b, which is D3tb ; b2. Then, over

a longer time t, the protein visits t/tb spots of size b each, and, given that

b3 � y, the probability that none of these spots are the target, or the prob-

ability to keep missing the target for the time t obeys Poisson distribution and

decays exponentially with t, is ð1� b3=yÞt=tb ’ exp½�tb3=ðytbÞ�: The mean

first-passage time is read out of the formula ts ; y/(D3b).

The corresponding stationary rate is obtained by inverting this time,

assuming overall concentration of proteins, c ¼ 1/y. Thus, Js ; D3cb.

Of course, more accurate derivation, available in a number of textbooks

(and easily formulated in terms of electrostatic analogy, see Appendix B), is

necessary to complement the result with the correct prefactor of 4p.

APPENDIX B: ELECTROSTATIC ANALOGY

Here, we rederive the results of the section regarding simple cases using the

fact that the stationary diffusion equation is the same as the Laplace equation

in electrostatics. Specifically, the problem of diffusion into the target of

the size b is equivalent to the problem of finding the electric field around

a charge of the size b. The key relatively nontrivial point of this analogy is

to realize that the potential well for diffusing particles is equivalent, in

electrostatic language, to the region in space with a very high dielectric

constant. In our case, the potential well is located all around DNA, and
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the target is also somewhere on the DNA. Therefore, it is equivalent to the

electrostatic problem in which we have a channel, of the diameter;b, filled

with a high dielectric constant material such as water, surrounded by a low

dielectric constant material. Specifically, it is easy to check that y of the

diffusion problem is exactly equivalent to ew/em; the ratio of dielectric

constants of water and surrounding medium, y ¼ ew/em � 1.

Thus, we have to address the problem of a charge Q located inside the

water-filled channel in, for example, a thick lipid membrane. For the straight

channel, this is a well-known problem in membrane biophysics. It was first

studied by Parsegian (27), and the recent most detailed exposition is given in

Kamenev et al. (28) (see also (29,30)). Here, we give only simple scaling

consideration.

Since ew/em � 1, field lines prefer to remain inside the channel for as

long as possible. This gives the picture of the electric field equivalent to the

Fig. 1, a. In other words, we should say that there is some length scale l

along the channel, and within this scale, electric field lines are predominantly

confined in the channel. At the same time, outside of the sphere of radius j,

the electric field is close to that of a spherical charge in unrestricted space.

Thus, electric field energy can be approximated as the sum of two parts, one

due to the uniform field in the volume at ;b2l in the channel, and the other

around the j-sphere in themedium. Since theE-field in the channel is;Q/b2ew
and D-field is Q/b2, the energy due to the field inside the channel is

;ðQ=b2ewÞ3ðQ=b2Þ3ðb2lÞ ¼ Q2l=b2ew: At the same time, energy of the

field in the outer zone is;Q2/jem. Thus, total electrostatic energy (self-energy

of the charge Q) is

E;
Q

2
l

b
2
ew

1
Q

2

jem
: (30)

To begin with, let us assume that the channel is straight. Then, l ¼ j, and

minimization of the energy formula in Eq. 30 gives l;b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ew=em

p
� b: This

formula was derived by Finkelstein and Ptitsyn (31). Given that y ¼ ew/em,

this formula (Eq. 30) is equivalent to our result for the antenna length in the

straight antenna regime A (assuming d ¼ 1).

Consider now the coiled channel; such a problem was never considered

in electrostatic context, but one can imagine, for instance, a flexible fiber

of high dielectric constant material surrounded by air. Equation 30 still

applies, but j;
ffiffiffiffiffiffi
lp

p
: Minimization then yields l;b4=3p�1=3ðew=emÞ2=3 ¼

b4=3p�1=3y2=3; which is our result for the antenna length in regime B.
To conclude, we note that minimization of energy in the electrostatic

language is translated to minimization of dissipation in the diffusion language.
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