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An important aspect of understanding a biological pathway is to delineate the transcriptional regulatory mechanisms
of the genes involved. Two important tasks are often encountered when studying transcription regulation, i.e., (1) the
identification of common transcriptional regulators of a set of coexpressed genes; (2) the identification of genes that
are regulated by one or several transcription factors. In this study, a systematic and statistical approach was taken to
accomplish these tasks by establishing an integrated model considering all of the promoters and characterized
transcription factors (TFs) in the genome. A promoter analysis pipeline (PAP) was developed to implement this
approach. PAP was tested using coregulated gene clusters collected from the literature. In most test cases, PAP
identified the transcription regulators of the input genes accurately. When compared with chromatin
immunoprecipitation experiment data, PAP’s predictions are consistent with the experimental observations. When
PAP was used to analyze one published expression-profiling data set and two novel coregulated gene sets, PAP was
able to generate biologically meaningful hypotheses. Therefore, by taking a systematic approach of considering all
promoters and characterized TFs in our model, we were able to make more reliable predictions about the regulation
of gene expression in mammalian organisms.

[Supplemental material is available online at www.genome.org.]

Gene expression is largely regulated by transcription factors (TFs)
that recognize specific sequences, called cis-regulatory elements
or TF-binding sites, in promoters. One of the ultimate goals of
biological research is to construct the entire regulatory network
of an organism (Covert et al. 2004). Clinically, a comprehensive
understanding of transcriptional regulation in a specific patho-
logical process may lead to new therapeutic strategies or discov-
eries of new drug targets. Computational approaches tackle this
problem by modeling TF-binding sites using position weight ma-
trices and searching for these sites in noncoding DNA sequences.
Position weight matrices of many characterized transcription fac-
tors are available in databases such as TRANSFAC (Matys et al.
2003) and JASPAR (Sandelin et al. 2004). A gene may be regulated
by a particular TF if its promoter contains the binding site of this
TF, although pure searches for matching patterns can have many
false positives.

Computational approaches for identifying the transcrip-
tional regulators of a particular gene are greatly enhanced by
large-scale expression-profiling experiments and sequence analy-
sis of multiple genomes. Genome-wide mRNA-profiling experi-
ments allow the identification of genes that have similar expres-
sion patterns. As coexpressed genes are likely to be regulated by
the same TFs, it is thought that the analysis of noncoding se-
quences of coexpressed genes will be useful in identifying com-

mon cis-regulatory elements recognized by known or novel TFs.
These methods have been successfully applied to simple organ-
isms such as yeast and worm (Hughes et al. 2000; GuhaThakurta
et al. 2002; Thijs et al. 2002; Ao et al. 2004), but have been largely
unsuccessful in mammals because intergenic sequences in higher
eukaryotes are very long and contain a large excess of nonregu-
latory sequences. To help solve this problem and reduce the false
positive rate, the comparison of sequences of multiple genomes
is crucial. This is based on a hypothesis termed “phylogenetic
footprinting” (Tagle et al. 1988), which states that functional
regulatory elements are more conserved in evolution than non-
functional sequences. Therefore, methods have been developed
to align noncoding DNA of evolutionarily mid-distant species,
such as human and mouse, and to find TF-binding sites that are
conserved in multiple species (Wasserman et al. 2000; Blanchette
and Tompa 2002; Kellis et al. 2003; Wang and Stormo 2003).
Although this process reduces the number of false positive sites,
systematic identification of bona fide transcriptional regulators
in mammals still remains a challenging problem.

Two important questions often encountered in biological
studies regarding transcriptional regulation include the follow-
ing: (1) Find the common transcriptional regulators of a set of
genes that are involved in the same biological pathway, in the
same cellular process, in response to the same stimulus, or in the
same disease. (2) Find genes that are regulated by one or several
TFs that have important roles in a particular biological function
or a pathophysiological process. To answer the first question,
previous studies have utilized statistical methods to test the en-
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richment of a TF’s binding site in a set of coregulated genes
against a “reference” set such as randomly selected genes in the
genome (Aerts et al. 2003; Elkon et al. 2003; Qiu et al. 2003; Hu
et al. 2004). Other methods took a database approach to store all
of the predicted binding sites and use them to estimate the prob-
ability of observing a TF-binding site by chance (Karanam and
Moreno 2004; Cole et al. 2005; Ho Sui et al. 2005). However,
results obtained using this approach are highly variable because
they are very dependent on several factors, including the choice
of the reference set, the statistical method itself, the score cutoff
to identify a site, and the length of the sequence being searched.
Therefore, a more robust statistical model is needed.

While experimental methods such as chromatin immuno-
precipitation, followed by promoter microarray (Lee et al. 2002)
may identify transcriptional regulatory targets, computational
methods have also been developed to identify genes regulated by
one or several transcription factors. All of these methods first
establish a model of regulatory sequences based on the binding
sites of the TFs being studied. This model is then used to search
genomic sequences to identify potential targets of the same TFs
(Kel et al. 2001; Jin et al. 2004). Alterna-
tively, regulatory models may also be
trained by logistic regressions (Krivan
and Wasserman 2001; Liu et al. 2003;
Qiu et al. 2003). Although previous stud-
ies were able to generate reasonable re-
sults using these methods, establish-
ment of the regulatory model requires a
set of known gene targets. Thus, it is dif-
ficult to generalize these methods and
apply them to large-scale analyses.

From the viewpoint of systems bi-
ology, the transcriptional regulatory net-
work of an organism consists of all of the
genes, including all of the TFs, and all
network interactions between the genes
and their transcriptional regulators.
With the ever-increasing number of
completely sequenced genomes and bet-
ter annotation of transcription factors in
the genome, it is now possible to take a
systematic and statistical approach to es-
tablish an integrated model considering
all of the genes and all characterized TFs
in the genome. Such a model would al-
low one to make robust statistical infer-
ences about transcriptional regulation.
Specifically, this model would allow one
to answer the two important questions
mentioned above and would reliably as-
sign the statistical significance of the
findings.

In this study, we present such a
model and demonstrate its utility to
analyze the potential regulatory se-
quences of a set of coexpressed genes in
mammalian genomes and to make pre-
dictions regarding their regulatory
mechanisms. We implemented this pro-
posed model in a Web-based workbench
termed the Promoter Analysis Pipeline
(PAP). PAP is suitable for predicting tran-

scriptional regulators of a set of genes and for identifying the
target genes of a set of transcription factors. Various tests, includ-
ing the analysis of coregulated gene sets collected from the lit-
erature, comparison with the chromatin immunoprecipitation
experiment data, and the analysis of a published time-course
expression-profiling data set indicated the robustness and accu-
racy of PAP. Therefore, PAP is useful in making reliable predic-
tions about the regulation of gene expression. PAP is available at
http://bioinformatics.wustl.edu/PAP.

Results

PAP overview

The design of PAP includes two components (Fig. 1). The data-
processing pipeline was assembled using a series of algorithms
and data manipulation tools. This set of applications was used to
carry out genome-wide promoter analysis, namely, orthologous
sequence alignment, TF binding-site identification, and pro-

Figure 1. An overview of the Promoter Analysis Pipeline (PAP). PAP has two components. The data
processing pipeline assembles a set of algorithms to generate the results of a genome-wide promoter
analysis, whereas the user interface queries and processes the stored data according to the user’s input.
Promoters were acquired and repetitive elements in the promoters were masked. Promoters of or-
thologous genes were aligned and transcription factor (TF) binding sites were identified and mapped.
Probability scores of each promoter and each transcription factor were calculated, and a distribution
of probability scores was generated for each transcription factor. R-scores were then computed using
these distributions. All of these results were stored in a database termed PAPdb, which was used to
predict the TFs that are most likely to regulate a set of genes and the genes most likely regulated by
a set of TFs.
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moter score calculation. The calculated results were stored in a
relational database termed the Promoter Analysis Pipeline Data-
base (PAPdb). The graphical user interface of PAP includes a set of
interactive Web pages. These pages allow the user to input a set
of potentially coregulated genes, to identify a set of transcription
factors that are most likely to regulate these genes, to browse
binding sites of these TFs, and to predict other genes that might
be regulated by the same set of TFs. This bipartite design of PAP
uncouples the majority of the computation from the user inter-
face. Therefore, PAP is able to return results of genome-wide pro-
moter analyses in real time. Details of methods and algorithms
used in PAP are described in the following sections.

Curation of potential regulatory sequences

To generate the data required for PAP, an interval of genomic
sequence that contains putative regulatory signals was defined
for each gene. In simple organisms such as yeast or worm, the
intergenic sequences are usually very short. Therefore, previous
studies were able to obtain meaningful results or make reliable
predictions using 500–600 base pairs (bp) as the putative pro-
moter length (Hughes et al. 2000; GuhaThakurta et al. 2002). In
mammals, the intergenic sequences for some genes may be very
long, and the regulatory sequences may be located distantly from
the transcription start sites. In higher eukaryotes, regulatory el-
ements have also been found in the first intron (Helledie et al.
2002; Wong et al. 2002; Mathew et al. 2004). In the current
setup, the sequence range that is mostly likely to contain regu-
latory signals was defined as 10 kilobases (kb) of sequence up-
stream and 5 kb downstream of the transcription start site. This
interval was truncated if another gene was encountered prior to
10 kb and if the translation start site was reached prior to 5 kb for
the upstream and downstream sequence, respectively. Therefore,
the maximum length of the sequence analyzed for each gene was
15 kb. Based on the annotated transcription start sites, most of
the genes do not encounter another upstream gene within a dis-
tance of 10 kb, whereas only a portion of genes do not reach their
translation start site within a distance of 5 kb downstream (Fig.
2A). These sequences, defined as described, will be referred to as
a gene’s “promoter” throughout this work.

Using this definition, promoter sequences were retrieved
from the Genome Assembly Project of the National Center for
Biotechnology Information (NCBI). Since some alternatively
spliced transcripts might have the same promoter sequence ac-
cording to our definition (e.g., alternatively spliced exons did not
change the position of the transcription or translation start site),
22,276 and 21,089 distinct promoter candidates were collected
for human and mouse, respectively (Table 1). In the current
model, two transcripts of the same gene locus are treated sepa-
rately if they have different promoter candidates. Therefore, they
will have different statistical scores. Although TF-binding sites
within interspersed repetitive sequences might be functional
(Zhou et al. 2002), most of the regulatory elements discovered
so far are located outside of the repeats. Therefore, repetitive
elements in promoters were masked using the program Repeat-
Masker.

Identification of conserved sequences

The basic assumption of phylogenetic footprinting is that most
functional regulatory elements or TF-binding sites are conserved
through evolution. As such, although functional elements may

indeed exist in nonconserved sequence, they are most likely to be
found in regions of sequence conservation in promoters of mul-
tiple species. To identify such conserved regions, orthologous
genes for each gene locus were identified using NCBI’s Homolo-
Gene database (see Methods). Although genes in some of these
ortholog groups may not be true orthologs, aligning the promot-
ers of these genes may be informative to identify functional el-
ements. For each ortholog group, we then aligned promoters of
human and mouse gene loci using the program TBA (Blanchette
et al. 2004). TBA is a local alignment program that aligns mul-
tiple sequences in order of their pairwise distance in the phylo-
genetic tree. This program was chosen because it does not require
a “reference sequence” and it identifies all of the multiple local
alignments, including those alignments that only consist of a
subset of input sequences. This allows PAP to identify TF-binding
sites that are only conserved in a subset of organisms.

In the promoter regions being studied, the most conserved
segment is around 2 kb upstream and downstream of the anno-
tated transcription start sites (Fig. 2B), with 20% of the sequence
alignable, on average. The average G/C content of all the human
promoters at each position across the sequence range stored in
PAP was calculated. The region between �570 bp and +730 bp
was G/C rich, with the G/C content increasing nearer to the

Figure 2. The sequence conservation of the promoter sequence de-
fined in PAP. (A) The fraction of genes whose promoters extend to a
particular upstream or downstream position from the transcription start
site. Most of the genes do not encounter another upstream gene within
a distance of 10 kb, whereas only a portion of genes do not reach their
translation start sites within a distance of 5 kb downstream. (B) The
fraction of promoters that are conserved at a particular upstream or
downstream position from the transcription start site. This fraction
was calculated using the total number of promoters at each position in
A as the denominator. The most conserved and alignable region is
around 2 kb upstream and downstream of the annotated transcription
start sites.
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transcription start site from both directions (data not shown).
These global analyses of alignable sequences and G/C content are
comparable to other genome-wide promoter studies (Wasserman
et al. 2000; Aerts et al. 2003; Louie et al. 2003).

Identification of conserved TF-binding sites

Using weight matrices from TRANSFAC and JASPAR databases
and the software PATSER (Stormo et al. 1982), a list of putative
binding sites in all of the promoters was generated. The default
cutoff score calculated by PATSER is used as the threshold score
to predict a TF-binding site. TF-binding sites were deemed con-
served if they were aligned in the sequence alignments of the
orthologous promoters. Only 12% of the predicted sites were
conserved between human and mouse.

The probabilistic framework of PAP

Assuming that the scores calculated by PATSER using the weight
matrix model are related to binding energies (Berg and von Hip-
pel 1987; Stormo 1998; Stormo and Fields 1998), we can deter-
mine relative binding probabilities for each promoter based on
the combined scores of all of the potential binding sites (see
Methods). Actual binding probabilities will depend on a variety
of other factors, including the cooperative binding of TFs and the
concentration of the TFs within the nucleus. In the case where
the true binding profile of a TF is accurately modeled by its
weight matrix, we expect that the computed scores are highly
correlated with binding probabilities, such that promoters with
higher combined scores are more likely to be bound by the
TF than promoters with lower scores. These relative probabil-
ity scores need to be normalized to be compared between differ-
ent TFs. Therefore, we rank each promoter in the genome by
its computed binding probability score from 1 for the highest
scoring promoter to N for the lowest scoring of the N promoter
regions in the database. The rank is converted to an “R-score,”
which is related to the fraction of promoters with a higher
rank, by

R-score = ln N − ln�rank� (1)

which ranges from 0 to ln N for the lowest to highest ranking
promoters. Promoters ranked in the top half have R-score � ln 2,
those in the top 10% have R-score � ln 10, those in the top 1%
have R-score � ln 100, and so on. Furthermore, summing R-

scores for several promoters is
equivalent to multiplying the prob-
abilities of their ranks, which pro-
vides a convenient means of deter-
mining the significance of the
binding scores for sets of promoters
or sets of TFs.

PAP’s performance on
experimentally verified
TF-binding sites

To test the ability of PAP’s model to
analyze real biological data sets
found in different experimental
contexts, nine previously identified
coregulated gene clusters were col-
lected from the literature. These test
cases covered the most common
scenarios in which a set of corre-

lated genes might be identified, including two tissue-specific
gene clusters (muscle-specific and liver-specific genes), a coex-
pressed gene cluster (heat-shock response genes), a set of genes
involved in a biological pathway (parathyroid hormone pathway
genes), and known targets of the same transcription factor (NF-
�B-regulated immune genes). For each set of genes we computed
the average R-score (see Methods), denoted �R-score�, for every
TF, and then determine the rank of each TF for each gene set.
In 12 of 14 test cases, the known binding factor was ranked
within the top six, and the only two exceptions were the ubiq-
uitous TFs Sp1 and Ap1 (Table 2). This prediction accuracy was
greatly improved compared with the case where human–mouse
conservation was not applied as a filter (data not shown). These
results showed PAP was able to predict the transcription regula-

Table 1. Summary of the data stored in the Promoter Analysis Pipeline Database

Gene

Species Gene loci Transcripts Promoters

Gene loci
with multiple

transcripts

Gene loci with
multiple

promoters

Human 20,984 24,749 22,276 2202 951
Mouse 20,830 21,172 21,089 287 227

Promoter Human–Mouse Homology

Species

Average
promoter

length

Average
percent of

repeats Species
Orthologous

gene loci

Average percent
promoter
aligned

Human 10,252 45.0 Human 14,140 21.0
Mouse 10,019 36.9 Mouse 14,224 20.2

Table 2. Test results of PAP using coregulated gene sets collected
from the literature

Gene cluster TF Matrix 〈R-score〉 Rank P-value

Muscle specifica SRF M00810 4.605 1 ∼0
MEF M00405 2.976 2 ∼0
Myf M00001 2.976 1 ∼0
SP1 MA0079 2.386 31 0.007

Liver specificb HNF-1 M00790 3.561 1 ∼0
HNF-3 M00791 2.406 3 0.002
C/EBP M00116 2.242 4 0.0095
HNF-4 M00134 2.192 6 0.0036

Heat shock responsec HSF2 M00147 2.477 1 0.0033
HSF1 M00146 2.375 2 0.0048

PTH-regulatedd CREB M00801 3.73 2 ∼0
AML1 M00751 3.27 6 0.0001
AP-1 M00173 2.564 77 0.0069

NF-�B immune genese NF-�B M00774 2.882 2 ∼0

Eight gene clusters that are regulated by common transcription factors
were collected from the literature. For each TF, the 〈R-score〉 was calcu-
lated as described in Results, and the rank of the true TF amongst all of
the characterized TFs was determined. PAP predicted the true TF within
the top six in 12 test cases. Low P-values indicate that the predictions are
statistically significant.
aWasserman et al. 2000.
bKrivan and Wasserman 2001.
cVisala Rao et al. 2003.
dQiu et al. 2003.
eBaeuerle and Baichwal 1997.
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tors of coregulated genes identified in different experimental
contexts.

Testing the statistical significance of PAP’s findings

To evaluate the reliability of PAP’s predictions, the statistical sig-
nificance of PAP’s findings was determined using randomly gen-
erated data sets. Genes were randomly selected from all 14,140
human genes that had a mouse ortholog and whose promoters
were stored in PAP. The probability of observing a similar score or
higher by chance was determined empirically from the distribu-
tion generated using these randomly selected gene sets:

P-value��R-score� � S� =

number of random tests with �R-score� � S
total number of random tests

(2)

For each transcription factor for the gene clusters collected from
the literature (Table 2), 10,000 random gene clusters of the same
size were generated and P-values were calculated. In all of the test
cases, the P-value was <0.01, showing that PAP accurately pre-
dicted these true factors with high statistical significance.

Comparison of PAP’s prediction with chromatin
immunoprecipitation experiment data

To test PAP’s performance of predicting regulatory targets of tran-
scription factors, we compared PAP’s predictions with the results
of chromatin immunoprecipitation, followed by promoter mi-
croarray experiments. We collected lists of genes that are experi-
mentally proven to be bound by transcription factors, including
HSF1 (Trinklein et al. 2004), HNF1, HNF4, HNF6 (Odom et al.
2004), and E2F4 (Ren et al. 2002). For each of these transcription
factors, PAP calculates a combined score for each gene according
to all of the predicted binding sites in its promoter (see Methods).
Therefore, a gene with an overrepresented binding site of a TF
will have a high score for that TF. To see whether PAP’s predic-
tion is consistent with the experimental observations, the non-
parametric Mann-Whitney U-test was applied to test whether the
experimentally identified target genes have significantly higher
scores, i.e., whether they have overrepresented sites of the true
factor. For each of the five TFs, the Z score and the P-value were
calculated (Fig. 3). In all of the test cases except HNF6, the

P-values are very low (P < 0.0001), suggesting that PAP’s predic�

tion is highly consistent with the experimental results. The poor
performance of predicting regulatory targets of HNF6 might re-
sult from the incompleteness of the HNF6-binding profile in
TRANSFAC.

Prediction of genes regulated by a set of transcription factors

Starting with a set of coexpressed genes, PAP is able to predict the
transcription factors that regulate these genes. Another interest-
ing pursuit is the identification of other genes that might be
regulated by the same set of transcription factors (Fig. 4A). This
methodology may be applied to identify tissue-specific genes
that are regulated by a well-defined regulatory module. To test
the feasibility of this approach, a cluster of 14 liver-specific genes
was used (Krivan and Wasserman 2001). These genes contain
binding sites of several transcription factors, including HNF-1,
HNF-3, HNF-4, and C/EBP, which are known to drive liver ex-
pression, and a “liver-specific regulatory module” was derived
previously using this gene set. Leave-one-out cross validation was
applied, such that one gene was chosen to be the verification
gene each time. In every round, 13 genes were analyzed by PAP
and high-scoring transcription factors were selected by a P-value
cutoff of 0.001. The selected TFs were then used to calculate the
joint probability scores (see Methods) of all of the human genes,
and the rank of the verification gene is determined (Fig. 4B). In
most cases, the verification gene was ranked very high, and the
performance was compromised only when genes that are not
regulated by all of the TFs in the liver-specific module (Krivan
and Wasserman 2001), such as INS, DDC, or SLC2A2, were se-
lected as the verification gene. Therefore, these results are con-
sistent with established biological knowledge.

Figure 3. PAP’s prediction of target genes of transcription factors is
consistent with chromatin immunoprecipitation experiment data. Target
genes of transcription factors HSF1, HNF1a, HNF4a, HNF6, and E2F4
were determined by previous chromatin immunoprecipitation experi-
ments and were collected from the literature. The nonparametric Mann-
Whitney U test was used to test whether these validated genes have
higher scores in PAP’s predictions. In each case, the Z score and the
P-value were calculated.

Figure 4. The utility of PAP to identify additional genes regulated by
the same set of factors. (A) Methodology of identifying additional simi-
larly regulated genes. Starting from a set of coregulated genes, several
transcription factors may be identified and hypothesized to be the com-
mon transcription regulator of the input genes. Additional genes that
may be regulated by the same factors may be searched using these
transcription factors. (B) Fourteen previously reported liver-specific genes
were used to test this methodology by leave-one-out cross-validation. In
each round, 13 genes were analyzed by PAP and putative common tran-
scription factors were determined. High scoring matrices were then used
to score all of the human genes, and the rank of the verification gene is
reported.
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Application of PAP to a published expression profiling
experiment data

To demonstrate the usefulness of PAP to analyze multiple gene
clusters identified by mRNA expression-profiling experiments,
and to identify the underlying transcriptional regulatory events,
we applied PAP to a published expression-profiling data set
(Tomczak et al. 2004). In this study, gene-expression profiling in
a 12-d time course was used to identify genes involved in myo-
genic differentiation. This time course was supposed to capture a
sequence of events including cell proliferation, cell-cycle with-
drawal, and maturation of myotubes. These processes are known
to be transcriptionally regulated by MyoD family transcription
factors and cell-cycle regulators. In this study, four groups of
genes consisting of a total of 22 clusters with distinct expression
patterns were identified by cluster analysis. When PAP was used
to analyze these clusters and find potential transcription regula-
tors, MyoD and E2F-1, a cell cycle regulator, were identified
(Supplemental Table 1). Remarkably, E2F-1 was the top-ranking
TF for the second and third cluster in the first group, where a
majority of genes are cell cycle-regulating genes. And MyoD, as
well as other muscle transcription factors such as TEF, SRF, and
myogenin, were identified for many clusters in the third group,
which contains many muscle-specific genes. This is consistent
with the observation that genes in the first group were expressed
in the early stage of the time course where proliferation is domi-
nating, and that genes in the third group were expressed in the
later stage of the time course where differentiation is dominat-
ing. This example demonstrated PAP’s utility in analyzing mul-
tiple coregulated gene clusters and highlighting underlying tran-
scriptional regulation.

Application of PAP to a novel cell proliferation-related
gene cluster

The cell proliferation-related gene cluster was identified using
previous mRNA expression-profiling experiments on two well-
studied paradigms, prostate regeneration following castration
and testosterone replacement (Magee et al. 2003) and peripheral
nerve injury (Nagarajan et al. 2002). The first paradigm has been
used to simulate and recapitulate the normal physiologic turn-
over of luminal prostatic epithelia, whereas in the second para-

digm, Schwann cells are converted from a quiescent state to a
proliferating state after nerve injury. In both paradigms, we
found that the expression profile of Ki-67, a well-known marker
of cell proliferation, is similar. Therefore, genes with expression
profiles correlated to Ki-67 were collected from both expression
experiments. By taking the intersection of the two sets of genes
in which cell proliferation is involved, genes that were specific to
each paradigm were filtered out and 32 common genes were
identified. The most enriched GO term in the resulting gene set
are cell cycle (GO:0007049, P = 7.34E-23) and cell proliferation
(GO:0008283, P = 1.29E-18), which supports the hypothesis that
these genes are involved in general cell proliferation and may be
regulated by common transcription factors (Bluthgen et al.
2005). Among these 32 genes, six genes did not have identified
human orthologs and were removed from the promoter analysis
(Supplemental Table 2).

When PAP was used to analyze these genes, known tran-
scriptional regulators of cell cycle regulatory genes including
NF-Y (P = ∼0) and E2F (P = 0.0015) were identified (Table 3).
Moreover, these factors have been proven to directly regulate
several genes in our gene cluster (Supplemental Table 3), and
previously characterized NF-Y and E2F-binding sites in these pro-
moters were correctly identified by PAP (Fig. 5; data not shown).
Gfi-1 is known to regulate cell proliferation in T cells and hae-
matopoietic stem cells (Duan and Horwitz 2003; Hock et al.
2004). Human–mouse conserved Gfi-1 sites were present in 16
genes in the cell-proliferation gene cluster (Supplemental Table
4). ZF5-binding sites were previously shown to colocalize with
NF-Y sites and E2F-1 sites in promoters of cell cycle regulated
genes (Sharan et al. 2003). When the clustering of ZF5-binding
sites with NF-Y or E2F sites was considered, 15 genes have a
sequence window that is shorter than 500 bp and contains bind-
ing sites of each of the three TFs. These genes are more likely to
be ZF5 targets (Supplemental Table 5).

As a complimentary study, we used PAP to analyze another
cell-proliferation signature previously identified in a different
study (Chang et al. 2004). This signature consists of 165 serum
response genes thst are directly related to cell proliferation. Using
this data set, PAP identified TFs that were also identified using
our own proliferation genes, including NF-Y, E2F-1, ZF5, and
Gfi-1 (Supplemental Table 6). This result confirmed the role of
these TFs in cell proliferation.

Application of PAP to cholesterol biosynthesis pathway genes

The promoter analysis of genes encoding cholesterol biosyn-
thetic enzymes was motivated by a previous study of Schwann

Table 3. Top ranking transcription factors predicted in cell
proliferation-related genes

Accession Factor Consensus 〈R-score〉 P-value

M00185 NF-Y TRRCCAATSR 2.975 ∼0
M00430 E2F-1 TTSGCGG 1.911 0.0015
MA0038 Gfi-1 AAATCACWGY 1.82 0.002
M00175 AP-4 RYCAGCTGYG 1.65 0.0611
M00007 Elk-1 AACMGGAAGT 1.625 0.0935
M00716 ZF5 GSGCGCGR 1.551 0.1945
M00773 c-Myb GNCAGTT 1.546 0.1622

Primary cell cycle regulators. NF-Y, and E2F were accurately predicted as
top ranking transcription factors. Other high scoring TFs predicted with
higher P-values are likely to regulate a subset of these cell proliferation
genes.

Figure 5. PAP identified experimentally validated TF-binding sites in
cell-proliferation related genes. Promoter regions that contain bona fide
TF-binding sites are shown. Other TF-binding sites predicted by PAP are
also shown. Numbers in the figure represent the sequence positions ac-
cording to the transcription start site. Experimentally verified sites are
designated by a star above the site.
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cell expression profiling (Nagarajan et al. 2002). Cholesterol is an
essential constituent of myelin. As expected, expression patterns
of nine cholesterol synthetic enzymes were strictly correlated to
myelination marker genes. Except for a few genes such as HMG-
CoA synthase and HMG-CoA reductase, the transcriptional regu-
latory mechanisms of most cholesterol synthetic enzymes re-
main unknown. Egr2 is a key myelination transcriptional regu-
lator, and expression profiles of many cholesterol synthetic
enzymes have been shown to strictly correlate with those of my-
elination marker genes. Therefore, PAP was applied to determine
whether Egr2 is a direct transcriptional regulator of cholesterol
synthetic enzymes and if not, what transcription factors are po-
tential downstream effectors of Egr2 activity.

When 11 cholesterol synthesis genes (Supplemental Table 7)
with annotated human and mouse orthologs were analyzed us-
ing PAP, several known transcription regulators of cholesterol
synthetic enzymes, including NF-Y, CREB, and YY1 (Supplemen-
tal Table 3) were identified with low P-values (Table 4). Although
only three cholesterol synthetic enzymes have been shown to be
directly regulated by CREB, PAP’s result indicates that CREB may
directly regulate other cholesterol synthesis genes as well.

Interestingly, PAP did not predict Egr2 as one of the top-
ranking transcription factors (Egr matrix ranks the 38th). This
implied that Egr2 may not be a direct transcriptional regulator of
most of these enzymes. To investigate whether any of the high-
scoring transcription factors predicted by PAP may be mediating
the regulation of cholesterol synthetic genes by Egr2, the R-scores
and P-values of genes encoding these factors were calculated us-
ing Egr2 as the transcription factor. Four of these transcription
factor genes (NFYA, CREB1, YY1, and AP1) have overrepresented
Egr-binding sites with low P-values (P < 0.05). Furthermore,
when these four TF genes were collected as a gene cluster and
analyzed by PAP, Egr2 matrix had a very low P-value of 0.0043,
which indicated that NFYA, CREB1, YY1, and AP1 are likely to be
regulated by Egr2. These results suggest a model of transcrip-
tional regulation of cholesterol biosynthesis genes in Schwann
cell, in which Egr2 does not directly regulate all of the cholesterol
synthesis genes, but instead, coordinates cholesterol synthesis
required for myelination through transcription factors, NF-Y,
CREB, YY1, and/or AP1 (Fig. 6).

Discussion
In this study, a systematic and statistical approach was taken to
establish a genome-wide promoter analysis model. The entire

collection of promoters in the genome serves as a natural back-
ground for statistical analysis. Our model was tested using pre-
viously identified coregulated gene clusters, as well as many
other data sets. In all of these tests, PAP performed robustly and
was able to make reliable predictions about transcriptional regu-
latory mechanisms.

When tested using previously characterized coregulated
gene clusters, PAP predicted the experimentally verified tran-
scriptional regulators accurately. In addition, PAP also identified
other TFs that may interact with them. For example, in the analy-
sis of muscle-specific Myf target genes, E2A was also predicted as
a high-scoring factor besides MyoD, and the hetero-oligomer-
ization of E2A with MyoD is required for MyoD’s function in
muscle (Lassar et al. 1991). Another example was given in the
NF-�B immune genes, where the top-ranking transcription fac-
tor, c-Rel, is known to interact with NF-�B (Miyamoto et al.
1994). These results confirmed that PAP’s predictions are consis-
tent with biological knowledge and previous experimental re-
sults.

While the current version of PAP has proven to be a useful
tool for discovering and exploring regulatory networks, new data
and enhanced analysis methods will provide further improve-
ments. The two types of data that PAP utilizes, comparative ge-
nome sequences, and transcription-factor binding models are
rapidly accumulating and will lead to improved analyses. In this
study, only the mouse and human genomes were utilized, and it
was shown that conservation was valuable for identifying true
regulatory sites. The genomes of additional mammals and other
vertebrates are now completed or in progress, and we expect that
they will add useful information and allow for a more thorough
investigation of distant regulatory regions. While TRANSFAC is
the most comprehensive of transcription factor databases, it is far
from complete, containing binding sites for only a fraction of the
known and putative transcription factors. For many of the factors
that are included, too few sites are known to build reliable mod-
els of their specificity and make accurate predictions of their
binding sites throughout the genome. But new technologies,
such as microarrays and ChIP-chip experiments (Lee et al. 2002),
along with improved motif discovery algorithms, are rapidly in-
creasing our knowledge of transcription factors and their binding
sites. Those improvements in basic information can be rapidly
imported into PAP to enhance its performance.

The analysis methods can also be improved to better take
into account important correlations in the data. For example,
currently, TF sets can be used to identify potentially coregulated
genes. However, if two TFs have very similar binding profiles,
they will have similar scores on any given promoters, which may

Table 4. Top ranking transcription factors predicted in
cholesterol biosynthesis genes

Accession Factor Consensus 〈R-score〉 P-value

M00287 NF-Y RRCCAATSRG 3.381 ∼0
M00801 CREB CGTCAN 2.18 0.019
M00413 AREB6 WCACCTGW 2.104 0.0089
M00059 YY1 CCATNTW 1.808 0.0589
M00716 ZF5 GSGCGCGR 1.772 0.2331
MA0089 TCF11-MafG NATGAC 1.754 0.2127
M00322 c-Myc GCCAYGYGS 1.749 0.0665
M00188 AP-1 RGTGACTMA 1.72 0.1044
M00217 USF CACGTG 1.698 0.1733

Experimentally validated transcription regulators of cholesterol biosyn-
thesis genes, such as NF-Y and CREB, were predicted as top ranking tran-
scription factors. Other high scoring TFs predicted with higher P-values are
likely to regulate a subset of these cholesterol biosynthesis genes.

Figure 6. Predicted transcriptional regulatory model of cholesterol bio-
synthesis genes in Schwann cells. In this model, Egr2 does not directly
regulate all of the cholesterol synthetic enzymes in myelination. Instead,
Egr2 coordinates the expression of these genes through other transcrip-
tion factors, including NF-Y, CREB-1, YY1, and AP-1.
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confound the analysis. This issue may be resolved by considering
constraints between the TFs, such as limited ranges of spacing or
orientation, as well as other correlations that may indicate coop-
erative interactions. And when considering sets of genes, or sets
of TFs, R-scores are tabulated and averaged over the entire set,
which may miss important subsets with significant matches. Ef-
ficiently determining such significant subsets, and accurately as-
sessing their P-values, is computationally challenging, and we are
currently exploring techniques to accomplish the task. This will
provide PAP with a much richer ability to discover important
regulatory features in the genome sequences.

Methods

Promoter data preparation
Human and mouse chromosomal sequences and gene-annota-
tion files were downloaded from the NCBI’s Genome Assembly
Project through their FTP site (ftp://ftp.ncbi.nih.gov/genomes/).
Genome build 34 was used for human and genome build 32 was
used for mouse. For each mRNA, the promoter sequence was
obtained from the genomic sequence using the mRNA and cod-
ing start positions. Repetitive elements in promoter sequences
were masked by the program RepeatMasker (http://www.
repeatmasker.org/) using slow and sensitive search mode.

Ortholog groups’ identification
The annotation of homolog groups was acquired from the NCBI’s
HomoloGene database. The information of each homolog group,
including gene loci and the protein similarity between any two
loci was available in an XML formatted file downloaded from
ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build36/. Since a ho-
molog group in HomoloGene’s annotation may contain two
similar genes of the same organism, ortholog groups, which by
definition have at most one gene for each organism, were iden-
tified for each gene in a homolog group.

TF-binding sites’ identification
The program PATSER (Stormo et al. 1982) was used to search for
TF-binding sites in the promoter sequences. For each character-
ized TF-binding matrix, PATSER scores each subsequence and cal-
culates the P-value of observing a particular score or higher at
that sequence position (Staden 1989). This score is assumed to be
exponentially related to the probability of binding (see below).
PATSER also calculates a P-value cutoff for each weight matrix
using the information content (Staden 1989). This P-value cutoff
is then used to eliminate low-scoring sites. Therefore, weight ma-
trices that have low information contents will have more pre-
dicted sites and are less specific.

A total of 466 vertebrate matrices from TRANSFAC 7.2
and 79 vertebrate matrices from JASPAR were searched in
the promoter sequences. The average G/C content of all hu-
man and mouse promoters, 46.5%, was used as the background
base frequency of G/C. Promoters of orthologous genes were
aligned using the program TBA (Blanchette et al. 2004). TF-
binding sites in multiple sequences were defined as conserved if
their first bases were aligned according to the sequence align-
ment.

Probability scores and R-scores
For each transcription factor and each promoter in the genome,
the probability score of the TF binding to the promoter was com-
puted by summing the exponential of the score of each indi-
vidual site predicted in the promoter on either strand (Guha-

Thakurta et al. 2004). This score is set to a minimum value of 1
for a promoter with no sites exceeding the cutoff. A linear regres-
sion model was used to estimate the contribution of false positive
sites to the probability scores, and this estimated contribution
was then subtracted from the probability score.

Based on the probability score, the R-score of a promoter for
a TF is computed by equation 1. For a set of n promoters, the
average R-score, <R-score>, is calculated by

�R-score� =
1
n � R-score (3)

For a set of TFs, the R-score of a promoter is similarly computed
by equation 1 considering all of the promoters in the genome,
but the joint probability score of these TFs binding to a promoter
is used. The joint probability score of a promoter is the product of
the probability score of each individual TF binding to this pro-
moter.
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