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Establishing transcriptional regulatory networks by analysis of gene expression data and promoter sequences shows
great promise. We developed a novel promoter classification method using a Relevance Vector Machine (RVM) and
Bayesian statistical principles to identify discriminatory features in the promoter sequences of genes that can
correctly classify transcriptional responses. The method was applied to microarray data obtained from Arabidopsis
seedlings treated with glucose or abscisic acid (ABA). Of those genes showing >2.5-fold changes in expression level,
∼70% were correctly predicted as being up- or down-regulated (under 10-fold cross-validation), based on the
presence or absence of a small set of discriminative promoter motifs. Many of these motifs have known regulatory
functions in sugar- and ABA-mediated gene expression. One promoter motif that was not known to be involved in
glucose-responsive gene expression was identified as the strongest classifier of glucose-up-regulated gene expression.
We show it confers glucose-responsive gene expression in conjunction with another promoter motif, thus validating
the classification method. We were able to establish a detailed model of glucose and ABA transcriptional regulatory
networks and their interactions, which will help us to understand the mechanisms linking metabolism with growth in
Arabidopsis. This study shows that machine learning strategies coupled to Bayesian statistical methods hold significant
promise for identifying functionally significant promoter sequences.

[Supplemental material is available online at www.genome.org. The microarray data from this study have been
submitted to ArrayExpress under accession no. E-MEXP-475.]

The identification and understanding of transcriptional regula-
tory networks and their interactions are a major challenge in
biology, as transcriptional mechanisms contribute to the regula-
tion of nearly all cellular processes. The time, location, and levels
of gene transcripts are known to be specified by combinations of
protein interactions with noncoding sequences surrounding
genes, and significant progress is being made in defining protein
interactions with regulatory motifs on a whole-genome scale. For
example, experiments that localize transcription factor binding
sites using chromatin immunoprecipitation to the yeast genome
sequence have established pathways of gene regulation involving
>100 of the 141 known yeast transcription factors (Lee et al.
2002). However, the multitude of transcription factors and the
larger genomes of multicellular organisms make direct experi-
mental approaches such as this daunting with current technol-
ogy.

Computational methods that define relationships between
gene expression levels and putative regulatory sequences in up-
stream regions of genes are increasingly used to establish ge-
nome-scale transcriptional regulatory networks (Smith et al.
2005). By correlating the frequency of occurrence of known pro-
moter motifs in coregulated genes, it has been possible to relate

promoter motifs with known functions to transcriptional path-
ways in yeast (Bussemaker et al. 2001). The clustering of genes
that are coregulated during the yeast cell cycle according to their
functions and alignment of promoter sequences of clustered
genes identified promoter motifs with known regulatory func-
tions and novel motifs with predicted functions (Tavazoie et al.
1999). This strategy was extended into a systematic approach
analyzing a wide range of gene expression patterns in yeast and
Caenorhabditis elegans with frequentist statistical methods for
identifying promoter DNA elements and combinations of ele-
ments that optimally predict gene expression patterns. From this,
the expression of a significant proportion of genes was accurately
predicted according to promoter sequences (Beer and Tavazoie
2004). Regulatory modules have been defined in yeast based on
coregulated gene expression patterns, and promoters in a signifi-
cant number of these modules contained a promoter motif that
was a known binding site for a coregulated transcription factor
(Segal et al. 2003). Subsequent testing of these predictions de-
fined the functions of several regulatory proteins and established
the power of these approaches.

We are interested in elucidating the transcriptional regula-
tory mechanisms integrating carbohydrate availability and hor-
mone action in the plant Arabidopsis thaliana (Arabidopsis). Wide-
spread changes in cell function in response to carbohydrate sta-
tus, such as reduced protein synthesis and the mobilization of
alternative substrates for energy supply in response to carbohy-
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drate starvation, have been predicted based on microarray analy-
sis (Price et al. 2004; Thimm et al. 2004). These experiments also
show that the expression of a wide range of genes is regulated by
carbohydrates in Arabidopsis and ∼25% of the genes represented
on the 8K Affymetrix chip also responded to both light and sugar
treatments (Thum et al. 2004). Many of these genes encode en-
zymes of primary, secondary, and lipid metabolism, and a code-
pendent interaction between light- and sugar-responsive gene
expression was identified. These transcriptional responses
were also interconnected with ABA- and ethylene-mediated gene
expression and growth responses. Interactions between glucose-
and ABA-response pathways have been established by the
isolation of the ABA biosynthetic mutant aba2 and the ABA re-
sponse mutant abi4 in screens for reduced responses of seedlings
to high levels of glucose or sucrose (Arenas-Huertero et al. 2000;
Huijser et al. 2000; Laby et al. 2000; Rook et al. 2001; Cheng et
al. 2002).

Learning techniques are used in an increasingly wide variety
of biological applications such as microarray analysis (Lavine et
al. 2004), protein homology detection (Jaakkola et al. 1999),
function prediction based on annotated sequence (Vinayagam
et al. 2004), and functional predictions based on transcriptional
coexpression (Zhang et al. 2004). Supervised learning methods
construct a decision rule from a training set of known positive
and negative examples and algorithms such as Support Vector
Machines (SVM) (Boser et al. 1992) learn to discriminate between
training examples from each category. SVMs have demonstrated
both excellent performance in dealing with sparse and noisy
data typically generated by biological experimentation and an
ability to deal with high-dimensional data in a computation-
ally efficient way (Scholkopf et al. 2004). Recently SVM applica-
tions have also been used to discriminate between promoter
and nonpromoter regions of human DNA (Gangal and Sharma
2005), and to resolve promoter sequences and the positions of
transcription initiation sites in plant DNA (Shahmuradov et al.
2005).

Here we describe the use of a Relevance Vector Machine
(RVM) (Tipping 2000) to classify gene expression according to
the composition of promoter sequences. The RVM was used with
a Bayesian Automatic Relevance Determination (ARD) (MacKay
1994; Neal 1994) prior to select a small subset of promoter motifs
for its discriminatory rule to optimally distinguish between regu-
lated genes. Unlike correlation-based approaches, which consider
the significance of individual features, the RVM considers the
significance of a feature in the context of the features already
selected, which may be useful in considering the effects of com-
binations of features on gene expression. This approach has been
successfully used to find a small number of genes whose expres-
sion is diagnostic for certain cancer types (Li et al. 2002). The
discriminatory features selected by the RVM classifier included
promoter motifs that had known functions in both glucose- and
ABA-activated gene expression and revealed that light-responsive
promoter motifs were powerful features for classifying promoters
controlling glucose down-regulated gene expression. One motif
with no established function in glucose-responsive transcrip-
tional responses that was the strongest classifier of glucose up-
regulated gene expression was shown experimentally to confer
glucose-activated gene expression in stable transgenic lines. The
successful application of machine learning algorithms for pro-
moter sequence analysis using Bayesian statistical principles es-
tablished models of transcriptional pathways regulating glucose-
and ABA-mediated gene expression and demonstrated that these

methods hold promise for establishing transcriptional regulatory
networks in Arabidopsis and other organisms.

Results

Transcript profiling reveals that glucose regulates genes
with diverse functions

Affymetrix ATH1 Gene Chips were used to identify glucose- and
ABA-regulated genes. Seedlings were grown in liquid culture for 7
d on low sugar concentrations (0.5% glucose) and constant light
to abrogate diurnal responses. Treatments were designed to re-
veal transitions in gene expression from a sugar-restricted condi-
tion to a sugar-replete state. After 7 d of growth, the medium was
replaced with glucose-free medium for 24 h, and then glucose or
mannitol was added to 3% (w/v). Mannitol, a nontoxic nonme-
tabolized sugar, was used as an osmotic control in ABA ex-
periments to define the interactions between ABA and 3%
glucose. Seedlings that had developed the first pair of true
leaves (stage 1.02) (Boyes et al. 2001) were sampled at 0, 2, 4, or
6 h after addition of glucose, mannitol, glucose + ABA,
or mannitol + ABA. The time course was selected to detect proxi-
mal events, to minimize transcriptional changes due to acceler-
ated growth and development in response to sugars, and to
establish the dynamics of glucose- and ABA-mediated gene ex-
pression.

Scatterplots (Supplemental Fig. 1) show that >99% of the
significantly expressed genes (Present) exhibit <2.5-fold variation
in signal intensity between two independent chip hybridiza-
tions. Up- or down-regulated genes were defined independently
for each time point as those with a statistically significant change
in treatment/control pairs (Wilcoxon signed-rank test, P < 0.005)
(Hubbell et al. 2002; Liu et al. 2002). Genes with expression ratios
of glucose/mannitol and glucose/0 h of >2.5-fold or <2.5-fold at
one time-course point or more were defined as glucose-inducible
genes and glucose-repressible genes, respectively. The genes with
expression ratios of ABA + mannitol/mannitol, ABA + mannitol/
0 h, ABA + glucose/glucose and ABA + glucose/0 h of >2.5-fold or
<2.5-fold at one time-course point or more were defined as ABA-
inducible and ABA-repressible genes, respectively. The 0-h time
point was common to all treatments, and time points for the
glucose and mannitol treatments were replicated three times and
hybridized independently to ATH1 arrays to measure changes
over time. This scheme provided three experimental replicates of
glucose treatment at each time point and nine experimental rep-
licates for defining glucose-regulated genes. The ABA treatments
provided a minimum of two experimental replicates for defining
ABA-regulated genes. Accordingly, 983 genes were expressed by
>2.5-fold in response to 3% glucose, 769 genes were expressed at
2.5-fold lower levels in response to 3% glucose (Supplemental
Table 1), and 692 and 173 genes were identified as ABA inducible
and ABA repressible with >2.5-fold change, respectively (Supple-
mental Table 2). To confirm the microarray expression profile
analyses, semiquantitative RT-PCR analysis was performed on
the RNA samples used for array analysis. Fifty genes exhibiting
expression changes in response to glucose were selected and
tested two times. Results from 15 of the selected genes are shown
in Supplemental Figure 2. Gene expression patterns revealed by
RT-PCR exhibited similar dynamics to those seen in array analy-
sis, establishing the reliability of the microarray data.

We categorized glucose- and ABA-regulated genes according
to their putative functions based on Arabidopsis Gene Ontology
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(GO) annotations in GeneSpring lists, the classification of the
Munich Information Centre for Protein Sequencing (MIPS) data-
base, pathway analysis defined by AraCyc (Mueller et al. 2003)
and KEGG (Kanehisa 2002), and the literature. Table 1 shows the
significance of finding glucose- and ABA-responsive genes in dif-
ferent functional categories calculated using the hypergeometric
P-value (Tavazoie et al. 1999). ABA down-regulated genes were
not considered because of the small number of genes in this
category. The functional clusters enriched for glucose up-
regulated genes include metabolic pathways and cellular pro-
cesses associated with enhanced growth, such as amino acid and
nucleotide synthesis, sulfur assimilation, and secondary metabo-
lism. Genes involved in protein synthesis were significantly en-
riched in the glucose up-regulated set, as were protein targeting
genes and abiotic stress proteins including chaperonins and heat-
shock proteins, demonstrating that glucose-mediated transcrip-
tional regulation mediates a coordinated increase in protein syn-
thesis and processing. Glucose down-regulated genes were en-
riched in functional categories involved in metabolic responses
such as amino acid degradation, gluconeogenesis, and glutare-
doxins. The regulation of genes involved in trehalose metabolism
was highly significant, consistent with the proposed role of tre-
halose 6 P levels in regulating carbon assimilation (Schluepmann
et al. 2003). Many genes regulating light responses, such as tran-
scription factors, light receptors and signaling proteins were also
down-regulated in response to glucose, although in general this

diverse functional group was not significantly down-regulated as
a whole. The most significant categories of genes regulated by
ABA in our conditions included abscisic acid metabolism, sec-
ondary metabolism, and carbohydrate degradation pathways.
Our quantitative analysis is consistent with recent qualitative
microarray analysis showing that glucose treatment regulates a
broad range of gene functions (Price et al. 2004; Thimm et al.
2004).

Dynamics of glucose-responsive gene expression

Analysis of gene expression profiles during the first 6 h after
addition of glucose or mannitol showed rapid and transient
changes in the expression of many genes. A total of 469 genes
were maximally expressed at the 2-h time point, and 719 and 628
genes were maximally expressed at the 4-h and 6-h time points,
respectively (Fig. 1A). Nearly 42% of the induced genes exhibited
overlapping expression at the 2-h and 4-h time points; 54% of
the genes were maximally expressed at both the 4-h and 6-h time
points, whereas only 32% of the glucose-induced genes had over-
lapping expression at the 2-h and 6-h time points (Fig. 1A). Fur-
thermore, some genes were specifically induced or repressed by
glucose at 2 h, 4 h, or 6 h, respectively (Fig. 1A,B). At these three
time points, ∼25% of the induced genes had overlapping expres-
sion (Fig. 1A), whereas 45% of the repressed genes exhibited over-
lapping expression (Fig. 1B), suggesting that there are more dy-

Table 1. Functional categorization of glucose- and ABA-responsive genes

Genes in category Regulated Pv
Category n k P � log10

Glucose up-regulated
Sulfur assimilation 62 16 8.2256*
Translation 152 33 7.3065*
Abiotic stress 454 47 6.3331*
Nucleotide synthesis 186 25 6.1691*
Protein targeting 524 48 5.2264*
Secondary metabolism methyl transferases 19 5 3.6209*
Lipid transfer proteins 15 4 3.2126
Secondary metabolism flavonoid synthesis 93 9 2.6203
Nucleotide sugar transferases 70 9 2.6128
Ribosomal proteins 258 30 2.5031

Glucose down-regulated
Amino acid degradation 142 21 6.9827*
Trehalose metabolism 22 6 4.9561*
Glutaredoxins 40 8 4.7538*
Gluconeogenesis 6 3 4.5454*
Storage proteins 28 5 3.2793
Ethylene synthesis 109 8 2.3114
Pentose phosphate pathway 19 3 2.30036
Lipid degradation 113 9 2.0985
Ubiquitin conjugation 37 4 1.9157
Light-mediated signaling 128 11 2.4742

ABA up-regulated
Abscisic acid metabolism 66 13 7.5126*
Secondary metabolism 307 28 6.7421*
General carbohydrate degradation 299 22 3.6926*
Storage and lipid transfer proteins 88 9 3.1427
Lipid metabolism 485 28 2.9821
Salicylic acid metabolism 17 3 2.6772
P450 and degradation enzymes 739 37 2.4363
Trehalose metabolism 22 3 2.2472

P-values of <0.05 (corrected for multiple comparisons using the Bonferroni correction) in each regulated
group are indicated with an asterisk:

Glucose up-regulated, 143 functional categories, �log10 Pv = 3.445.
Glucose down-regulated, 116 functional categories, �log10 Pv = 3.365.
ABA up-regulated, 113 functional categories, �log10 Pv = 3.354.
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namic changes in the expression of glucose-inducible genes com-
pared to glucose-repressible genes.

Quality Threshold (QT) clustering was used to divide glu-
cose up-regulated genes into 10 clusters of 20 or more genes that

shared similar expression dynamics (Fig.
1C; Supplemental Table 3). Cluster 11
(data not shown) contained the remain-
ing genes. Cluster 1 comprises 281 tran-
scripts that have similar expression lev-
els at 2-h, 4-h, and 6-h time-course
points and represents the main expres-
sion pattern of glucose-inducible genes.
Clusters 2 and 7 exhibited similar pro-
files at the 4-h and 6-h time points,
while clusters 3 and 8 are induced pro-
gressively. Genes in clusters 4 and 9 were
induced maximally at the 2-h time
point, and then the expression level de-
creased. Glucose down-regulated genes
were classified into nine groups of 20 or
more genes that shared a similar expres-
sion profile (Fig. 1D) and one (cluster
10) (data not shown) including the re-
maining genes (Supplemental Table 3).

Clusters 4 and 9 (Fig. 1C), which
were maximally expressed 2 h after glu-
cose treatment, contained a large pro-
portion of heat-shock, peptidyl prolyl-
transferase, and transcription factor and
protein kinase genes. Sixteen genes en-
coding heat-shock and DNAJ-like pro-
teins (Fig. 1E; Supplemental Table 3)
were maximally induced by glucose at 2
h; 10 heat-shock genes were maximally
up-regulated by glucose at 4 h; and only
one heat-shock gene was induced by glu-
cose at 6 h, suggesting that expression of
heat-shock proteins is rapidly modu-
lated in response to glucose. This sug-
gests that transiently increased levels of
chaperonin activity are required to pro-
cess newly synthesized proteins. Among
the most rapidly glucose-repressed
genes, found in clusters 1, 2, and 9 (Fig.
1D; Supplemental Table 3), were tran-
scription factors regulating light re-
sponses. These included genes encoding
the trihelix DNA-binding proteins GT1
and GT2, the GATA transcription fac-
tor 4, GBF1, and AT1g19000, encoding
a 1-repeat MYB protein related to
MYBST1, which interact with DNA se-
quences in many light-responsive gene
promoters (Lam 1995; Puente et al.
1996; Chattopadhyay et al. 1998; Smalle
et al. 1998). Genes encoding the blue-
light photoreceptors CRY1 and CRY2
(Lin et al. 1995; Ahmad et al. 1998;
Kleiner et al. 1999), the phytochrome A-
specific light signaling component EID1
(Buche et al. 2000; Dieterle et al. 2001),
phytochrome kinase substrate 1 (PKS1)

(Fankhauser et al. 1999), and 6–4 photolyase (UVR3), which me-
diates light-dependent repair of UV-induced damage products
(Jiang et al. 1997), were all rapidly and persistently repressed by
glucose (Supplemental Table 3). Expression of TOC1, APRR5, and

Figure 1. Expression dynamics of glucose-responsive genes. (A) Venn diagrams showing the number
of genes up-regulated by glucose at 2-h, 4-h, and 6-h time course points determined by microarray
analyses. Here, 248 genes were up-regulated by glucose at all time points; 353 genes were induced by
glucose at both 2 h and 4 h; 475 genes were up-regulated by glucose at both 4 h and 6 h; and 263
genes were glucose inducible at both 2 h and 6 h. (B) Venn diagrams showing the number of genes
down-regulated by glucose at 2-h, 4-h, and 6-h time points determined by microarray analyses. Here,
347 genes were down-regulated by glucose at all time-course points; 416 genes were down-regulated
by glucose at both 2 h and 4 h; 449 genes were repressed by glucose at both 4 h and 6 h; and 368
genes were glucose repressible at both 2 h and 6 h. (C) The expression profiles of glucose-inducible
genes according to Quality Threshold clustering. Cluster number and time course are indicated. (D)
The expression profiles of glucose-repressible genes according to Quality Threshold clustering. Cluster
number and time course are indicated. (E) The expression profiles of heat-shock genes, starch me-
tabolism, phenylpropanoid biosynthesis, N-, P-, and S-assimilation genes, and amino acid biosynthesis
genes are shown.
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APRR7 genes belonging to the APRR1/TOC1 complex controlling
circadian rhythms (Yamamoto et al. 2003) was also rapidly glu-
cose-repressed (cluster 1) (Fig. 1D; Supplemental Table 3), sug-
gesting that carbohydrate levels may in-
fluence the central oscillator controlling
circadian rhythms.

Glucose treatment led to a rapid
and progressive increase in the expres-
sion of genes involved in protein syn-
thesis, including 32 ribosomal proteins,
a putative ribosome recycling factor, and
translation initiation and elongation
factors, which were predominantly
found in clusters 1, 2, and 3 (Fig. 1C;
Supplemental Table 3). Genes in cluster
3, which are progressively expressed,
tend to encode cell cycle and DNA-
replication-related proteins such as a
putative CDC21 protein (AT2G16440),
the DNA-replication licensing factor
MCM3 homolog, replication factor A
(AT5G08020), and MCM5 and MCM7
(PROLIFERA) (Springer et al. 2000; Hold-
ing and Springer 2002; Moore et al.
2003), which ensure fidelity of DNA rep-
lication. Clusters 2 and 7 (Fig. 1C),
which were maximally expressed at 4
and 6 h, were enriched for genes encod-
ing metabolic enzymes, ribosomal pro-
teins, and transporters (Supplemental
Table 3). These included genes encoding
a putative glucose-6-phosphate translo-
cator (AT1G61800) and genes involved
in starch biosynthesis enzymes,
(AT1G32900), glucose-1-phosphate ad-
enylyltransferase (AT2G21590), and
ADPg lucose py rophosphory l a s e
(AT2G21590)—were maximally induced
at 4 h (Fig. 1E). Genes involved in sec-
ondary metabolism—such as 4-couma-
rate:CoA ligase 3 (AT1G65060), flavonol
synthase (FLS), putative cinnamoyl CoA
reductase (AT2G23910), flavonol 4-sul-
fotransferase (AT1G18590), flavanoid
3-hydroxylase (FH3), chalcone synthase
(CHS), and cinnamyl-alcohol dehydro-
genase (AT5G19440)—were also maxi-
mally induced at 4–6 h (Fig. 1E). Genes
involved in sulfur and ammonium as-
similation were up-regulated maximally
by glucose between 2 h and 4 h, and
genes involved in amino acid biosynthe-
sis were also maximally induced by glu-
cose at 4 h and 6 h (Fig. 1E).

Glucose- and ABA-responsive
gene expression

Previous genetic analyses have shown
that sugar- and ABA-mediated growth
responses are closely interconnected in
plants (Zhou et al. 1998; Rook et al.

2001). Array analysis revealed >14% of the ABA-inducible genes
were also induced by glucose, indicating a substantial overlap
between glucose- and ABA-regulated gene expression (Supple-

Figure 2. Glucose- and ABA-coregulated genes. (A) Functional classification of genes induced by
both glucose and ABA. (B) Expression patterns of the set of 12 genes showing synergistic transcriptional
responses to glucose and ABA. Expression patterns of the two genes encoding large subunits of AGPase
(APL3 and AT2g21590) in response to glucose and ABA were indicated with a green line and black line,
respectively. (C) Transcriptional responses of APL3:GUS promoter fusions to sugar and ABA in stable
Arabidopsis transformants. Samples were taken from 7-d-old seedlings grown on the following media:
10 mM glucose + 90 mM mannitol (Mannitol), 100 mM glucose (Glucose), 10 mM glucose + 90 mM
mannitol + 0.1 µM ABA (Mannitol + ABA), and 100 mM glucose + ABA (Glucose + ABA). The fold
induction compared with the osmotic control (Mannitol) is given. Error bars represent the standard
error from 10 independent transformants. (D) Response of the APL3 promoter to sugar and ABA in
Arabidopsis protoplasts. Protoplasts were made from Col or isi3 7-d-old seedlings. Protoplasts were
cultured in the following media: 400 mM mannitol, 400 mM glucose, 400 mM mannitol + 10 µM ABA
and 400 mM glucose + 10 µM ABA. GUS activity was measured and normalized to Luciferase (Luc)
activity expressed from the CaMV 35S promoter. The fold induction compared with the osmotic
control of each genotype are given. Error bars represent the standard error of the mean from three
samples.
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mental Table 4). Several transcriptional regulators of ABA re-
sponses were regulated by glucose. The homeodomain leucine
zipper (HD-Zip) proteins in Arabidopsis are involved in ABA regu-
lation (Himmelbach et al. 2002), and expression of ATHB6 is
up-regulated by glucose (Supplemental Table 1), suggesting that
sugars may participate in ABA signaling by regulating the expres-
sion of ABA-response regulators.

Ninety-five genes were up-regulated by both glucose and
ABA. These genes are involved in stress, defense, and senescence
responses, secondary metabolism and cell wall biosynthesis,
amino acid metabolism, carbohydrate metabolism, fatty acid and
lipid metabolism and transport, transcript regulation, and signal
transduction (Fig. 2A). More than 12% of the genes induced by
both glucose and ABA are involved in stress responses, indicating
overlapping regulation by glucose and ABA. Expression of key
regulators of abiotic stress responses such as CBF3, COR15A, and
RD29A were induced by both glucose and ABA (Supplemental
Table 4). Constitutive expression of CBF3 in transgenic Arabidop-
sis plants induces expression of target COR (cold-regulated) genes
to enhance freezing tolerance in nonacclimated plants (Gilmour
et al. 2000). Expression of COR15A and RD29A is regulated by
CBF3, suggesting that both glucose and ABA may contribute to
the regulation of cold stress tolerance. In addition, four genes
encoding nonspecific lipid-transfer proteins were induced by
both glucose and ABA (Fig. 2A), consistent with reports that non-
specific lipid-transfer proteins are induced by ABA, wounding,
and cold stress (Yubero-Serrano et al. 2003). Four genes encoding
heat-shock proteins were induced by both glucose and ABA
(Supplemental Table 4). Finally, several genes involved in fatty
acid and lipid metabolism are glucose and ABA inducible, reveal-
ing the roles of sugar and ABA in lipid metabolism (Fig. 2A;
Supplemental Table 4).

Thirty-seven genes were identified as glucose- and ABA-
corepressed genes, including protein kinases, transcription fac-
tors, transporters, and enzymes. Two genes (AT4G36670 and
AT1G08930) encoding putative sugar transporters are down-
regulated by both glucose and ABA. Two genes encoding 1-ami-
nocyclopropane-1-carboxylate oxidase (AT1G77330) involved in
ethylene biosynthesis and putative ethylene-responsive element
binding factor (AT5G61590) are repressed by both glucose and
ABA, revealing that aspects of ethylene biosynthesis and re-
sponses are modulated by both glucose and ABA. Genes regulated
by glucose and ABA in opposed ways were also analyzed. Genes
involved in ammonium assimilation, such as a putative ammo-
nium transporter (AT1G64780), were glucose inducible and ABA
repressible, and lysine-ketoglutarate reductase (AT4G33150) ex-
hibited a decrease of expression level in glucose treatment and an
increase of expression level in ABA treatment (Supplemental
Table 4), suggesting that nitrogen metabolism may provide dif-
ferent compounds for stress and growth responses. Finally, the
phosphate transporter gene ATPT2 (AT2G38940) is up-regulated
by glucose and down-regulated by ABA (Supplemental Table 4),
suggesting that the sugar-replete state may promote uptake and
utilization of the phosphate required for carbon metabolism and
ABA may repress this process.

Several examples of the synergistic effects of sugar and ABA
on gene expression have been reported. For example, expression
of the rice myo-inositol-1-phosphate synthase gene RINO1 was
induced by both sucrose and ABA treatments, and the combina-
tion of both sucrose and ABA resulted in much higher expression
levels (Yoshida et al. 2002). We defined synergistic interactions as
those genes expressed at greater than twofold higher levels in

response to glucose + ABA treatment compared to the sum of
expression levels observed for glucose and ABA + mannitol treat-
ments at two or more points in the time course. A set of 12 genes
was in this class (Fig. 2B; Supplemental Table 5). These encoded
proteins that are involved in lipid metabolism and transport,
stress and senescence responses, and starch biosynthesis, such as
CER1 involved in wax biosynthesis, lipid transfer protein gene 4
(LTP4), and two senescence-related genes (SAG29 and
AT1G22160). Two of the genes encoding large subunits of ADP-
glucose pyrophosphorylase, the first step in starch biosynthesis
(Fig. 2B,C; Supplemental Table 5), were synergistically regulated,
although the APL3 subunit was only synergistically regulated at
one time point. The synergistic regulation defined by array analy-
sis was confirmed by analysis of APL3�GUS promoter reporter
gene expression in transgenic Arabidopsis seedlings (Fig. 2C,D).
The APL3�GUS gene was 3.7-fold and 2.9-fold induced by sugar
and ABA, respectively, and together they exerted a 15.6-fold in-
duction (Fig. 2C). ABI4 has been implicated in regulation of the
APL3 promoter (Rook et al. 2001). To test whether ABI4 contrib-
uted to the synergistic regulation of the APL3 promoter, the APL3
promoter�GUS reporter gene was analyzed by transient expres-
sion in Arabidopsis protoplasts. Similar synergistic regulation was
seen in protoplasts and stable transformants (Fig. 2C,D). Expres-
sion of the APL3�GUS construct in isi3 protoplasts, which are
defective in ABI4 activity (Rook et al. 2001), showed that ABA
and glucose synergism was lost (Fig. 2D). This showed that ABI4
is involved in the synergistic responses of the APL3 promoter to
glucose and ABA.

Regulatory gene expression

Glucose treatment led to rapid transient increases in the expres-
sion of diverse transcription factors including members of the
MYB, bZIP, AP2, homeodomain, NAM-like, and heat-shock tran-
scription factor protein families. Expression of MYB75/PAP1/AN2
(Borevitz et al. 2000; Stracke et al. 2001) and the flower pigmen-
tation gene ATAN11 were rapidly induced by glucose (Supple-
mental Table 1). AN2 and AN11 have been well characterized and
encode a MYB-domain transcriptional activator and a WD-repeat
protein, respectively (de Vetten et al. 1997; Quattrocchio et al.
1999). In petunia flowers, AN2 and AN11 control flower pigmen-
tation by stimulating the transcription of anthocyanin biosyn-
thetic genes. Overexpression of PAP1 also leads to elevated ex-
pression of anthocyanin biosynthetic genes (Borevitz et al. 2000),
suggesting that glucose may promote expression of phenylpro-
panoid biosynthetic genes by elevating expression of these MYB
transcription factors and ATAN11. The MYB transcript factor
gene ATR1, which activates tryptophan gene expression in Ara-
bidopsis (Bender and Fink 1998), was also up-regulated by glu-
cose, suggesting that glucose may increase expression of trypto-
phan biosynthetic genes by activating expression of ATR1. Ex-
pression of several MADS-box and WRKY-like family members
was down-regulated by glucose. The expression of a WRKY class
transcription factor (AT5g07100) encoding a protein related to
sweet potato SPF1 (Kim et al. 1997) was reduced in response to
glucose. SPF1 binds SP8a and SP8b promoter sequences of spora-
min and beta-amylase genes expressed in storage roots of sweet
potato, and reduced expression of SPF1 mRNA levels induced
sporamin and beta-amylase expression (Ishiguro and Nakamura
1994). Our analysis suggests that AT5g07100 may modulate
sugar-regulated gene expression in Arabidopsis by a similar
mechanism.
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Identification and analysis of promoter motifs

Promoter sequences comprising ∼1000 bp upstream of the pre-
dicted ATG initiation codon of all Arabidopsis genes predicted in
the TIGR version 5 annotation (Haas et al. 2005) were assembled.
Responsive genes were defined as those showing >2.5-fold
changes at the 2-h, 4-h, and 6-h time points in response to glu-
cose or ABA compared to control treatments. The set of 983 glu-
cose up-regulated promoters was compared with 769 glucose
down-regulated promoters and a set of 692 ABA up-regulated
promoters was compared to a set of 647 promoters showing no
responses to ABA. Matrices of (983 + 769) promoters regulated by
glucose, and 381 experimentally defined plant transcriptional
regulatory sequences established in the PLACE database (Higo et
al. 1999) were assembled for feature extraction. Matrices of
(692 + 647) ABA-regulated and nonregulated promoters and
PLACE elements were also assembled, and features were extracted
from both strands of the promoters. Similar matrices were also
made with a set of all 1024 (45) possible 5-mers in an unbiased
search for promoter motifs. 5-mers were chosen because 4-mers
occurred too frequently to provide discriminatory power, while
6-mers may be too selective. These features served as input into a
feature space by the RVM to construct classifiers of gene expres-
sion based on either PLACE elements or k-mer sequences.

These classifiers were tested in a 10-fold cross-validation
procedure that partitioned the data into 10 disjoint subsets of
approximately equal size. A model was then trained using nine
segments as the training data and tested on the unused segment.
This procedure was repeated 10 times, each time using a different
combination of nine segments to form the training data, such
that all 10 segments were used as test data for a different model.
The average test set performance was reasonably stable after 10
trials; therefore, a 10-fold cross-validation provided a good esti-
mate of model performance.

Classification accuracy was displayed in the Receiver-
Operator Characteristic (ROC) curves shown in Figure 3, A and B.
These show the sensitivity of classification compared to the
specificity, or the true-positive rate versus the false-positive rate.
The area under the ROC curve shows an optimum classification
rate of ∼74% for both the k-mer and PLACE element features,
indicating a robust performance. Only features that were selected
in every fold of the cross-validation procedure were selected.
These features were then ranked according to the magnitude of
their weights over the 10-folds of the cross-validation procedure,
and the top 75% are displayed in Tables 2 and 4. The top-ranked
classifiers were seven PLACE elements for glucose up-regulated
promoters, seven PLACE elements for glucose down-regulated
promoters (Table 2), and nine PLACE elements for ABA-up regu-
lated genes (Table 4). We identified 13 k-mers as top-ranking
classifiers of glucose up-regulated genes and 13 k-mers as classi-
fiers of glucose down-regulated genes (Table 3). Some of the k-
mer motifs match PLACE elements identified as effective classi-
fiers. Three of the highest-ranking k-mer motifs in glucose up-
regulated genes had perfect matches to top-ranked PLACE
elements: ACCCT matched the TELO-box PLACE element,
TAGGT matched the MYB26S PLACE element, and CGGCA
matched the E2FBNTRNR PLACE element. A single mismatch of
the GGGAG 5-mer motif was found in the AMMORESIIUDCR
NIA1 element. Among the k-mers associated with glucose down-
regulated gene expression, GGATA perfectly matched the
MYBST1 motif and the known sugar-repressible motif (TATCCA)
and the OSRAMY3D motif (TATCCAY) (Hwang et al. 1998; Lu et

al. 1998, 2002). The GATAA sequence is the IBOXCORE and the
GATA factor binding site, TATCT is found in the EVENINGGAT
element, and CGTGG is the core of G-box-type motifs such as
LRENPCABE. Some k-mer features that were strong classifiers of
glucose-regulated genes do not match functionally defined
PLACE elements, suggesting that they may have novel functions
in sugar regulation.

The hypergeometric probability distribution function was
used to assess the enrichment of these motifs in the promoters of
genes in various functional categories. Supplemental Table 6
shows that many of the motifs were significantly enriched in the
promoters of genes found in functional classes involved in glu-
cose and ABA responses. These relationships were also consistent
with the known functions of these promoter motifs in regulating
different cellular functions.

The TELO motif, the top-ranked classifier of glucose-
induced genes, was originally identified in promoters of genes
encoding components of the translational machinery (Tremou-
saygue et al. 1999). Consistent with this, our analysis shows it is
significantly enriched in the promoters of protein and nucleotide
synthesis genes (Supplemental Table 6). The BS1EGCCR and
MYB26PS motifs have been implicated in the regulation of phen-
ylpropanoid biosynthesis genes (Uimari and Strommer 1997; La-
combe et al. 2000), and these were enriched in glucose-regulated
carbohydrate metabolism and sulfate-uptake genes. The
DRECRTCOREAT motif mediates stress responses (Dubouzet et

Figure 3. ROC (Receiver Operating Characteristic) curves of RVM per-
formance in classifying glucose- and ABA-regulated genes. (A) The ROC
curves of glucose-regulated genes show the proportion of true positives
selected by the RVM versus false positives. The performance is shown by
the area under the ROC curve. PLACE element features (blue line) and
k-mer features (pink line). A random selection is shown by the green line.
(B) The ROC curves of ABA-up-regulated genes show the proportion of
true positives selected by the RVM versus false positives. The performance
is shown by the area under the ROC curve. PLACE element features (blue
line) and k-mer features (pink line). A random selection is shown by the
green line.

Li et al.

420 Genome Research
www.genome.org



al. 2003), and this motif was enriched in the promoters of abiotic
stress-related genes. The PLACE elements that were top-ranking
classifiers of glucose down-regulated gene expression, such as the
I-box, the EVENINGAT, MYBST1, and the G-box-related motif,
all have established functions in regulating light- and sugar-
related gene expression. For example, the G-box-related element
LRENPCABE was previously shown to repress gene expression by
sugars (Hwang et al. 1998; Lu et al. 1998). The MYBST1 motif,
TATCC, is very similar to the known sugar-repression motifs
(TATCCA) and OSRAMY3D (TATCCAY) (Hwang et al. 1998; Lu et

al. 1998, 2002), suggesting that TATCC is a core of motifs con-
ferring sugar repression. Supplemental Table 6 shows these mo-
tifs are significantly enriched in the promoters of genes involved
in catabolic responses, abiotic stress, and trehalose and jasmo-
nate metabolism.

PLACE elements that were strong classifiers of ABA up-
regulated promoters (Table 4) were also significantly enriched in
classes of genes known to be regulated by ABA, such as stress
responses, ABA biosynthesis, carbohydrate breakdown, and
phenylpropanoid synthesis (Supplemental Table 6). Many of
these PLACE elements have been shown to confer ABA- and
stress-responsive gene expression, such as ABARELATERD1, AB
AREATRD22, MYB1AT, and DRE2COREZMRAB17 (Busk and
Pages 1998). Recently these ABRE motifs and the DRE element
were also identified as overrepresented sequences in ABA-up-
regulated genes (Leonhardt et al. 2004). Ten k-mer motifs were
top-ranking classifiers of ABA up-regulated promoters (Table 5).
ACGTG, the most significant motif, forms the core of ABRE
LATERD1, ABREATRD22, and ACGTATBREMOTFA2OSEM;
CGTGT is the core of ABREMOTIFAOSOSEM; CGTGG is the core
of ABREATRD22; and CGTAC is the core of ABRE3HVA22.

The TELO motif was the best classifier of glucose up-
regulated expression. It is required, together with other elements
such as the TEF, trap40, and IIa/IIb elements, for high-level ex-
pression in actively dividing cells in root meristems (Tremou-
saygue et al. 1999, 2003; Manevski et al. 2000). Figure 4A shows
that promoters containing the TELO motif are maximally ex-
pressed 4 h after glucose addition. Inspection of the 222 glucose
up-regulated promoters containing the TELO motif revealed that
all contained the motif CATAAT, which forms the core of the
16-bp TEF motif. Moreover, the performance of classifiers of glu-
cose up-regulated expression that included both the TELO motif
and all 5-mers was improved by 5-mer motifs AGGGG, GGGCA,
CATAA, and ATAAT, which comprise 11 of the 16-nt TEF motifs
(data not shown). We tested the function of the TELO motif in
conferring glucose-responsive gene expression using stable trans-
genic lines. Oligonucleotide tetramers of TELO4 and TEF4 motifs
and the combined motif TEF1TELO3, which included one TEF
sequence and three TELO sequences, were inserted 5� to a mini-
mal �60 CaMV promoter (Fig. 4B,C). These promoters were

Table 3. RVM selection of 5-mer motifs in glucose-regulated
genes

Recognition
sequence

Number of times
picked by RVM

Average
weight

Up-regulated
accct 10 2.4528
gggag 10 1.9367
agtga 10 1.6673
gagaa 10 1.3825
attaa 10 1.3428
gaata 10 1.1516
gaatc 10 1.0956
taggt 10 1.0248
aatag 10 0.927
aatgt 10 0.8825
cggca 10 0.8763
accgt 10 0.7836
actct 10 0.7546

Down-regulated
ggata 10 �4.4913
gataa 10 �3.0703
tatct 10 �2.0260
catcc 10 �1.2789
aagat 10 �1.0549
caatg 10 �1.014
aatcc 10 �0.959
gatta 10 �0.947
gactc 10 �0.913
catcg 10 �0.839
cacac 10 �0.82
cgtgg 10 �0.773
gaccc 10 �0.721

Table 2. RVM selection of PLACE elements in glucose-regulated genes

Element ID
Number of times
picked by RVM

Average
weight

Recognition
sequence

Potential target genes
(from Supplemental Table S6)

Up-regulated
TELOBOXATEEF1AA1 10 2.9895 aaaccctaa Ribosomal proteins, protein synthesis
AMMORESIIUDCRNIA1 10 1.3346 ggwagggt Nucleotide metabolism
QARBNEXTA 10 1.1033 aacgtgt No significant categories
BS1EGCCR 10 0.9637 agcggg Carbohydrate metabolism enzymes
E2FBNTRNR 10 0.9067 gcggcaaa Protein synthesis
MYB26PS 10 0.8397 gttaggtt Carbohydrate metabolism, S uptake
DRECRTCOREAT 10 0.8076 rccgac Abiotic stress

Down-regulated
IBOXCORENT 10 �3.3202 gataagr Trehalose synthesis
IBOXCORE 10 �2.1431 gataa Abiotic stress
IBOX 10 �0.7107 gataag
MYBST1 10 �3.2140 ggata Trehalose synthesis

Abiotic stress
Amino acid degradation

LRENPCABE 10 �1.1698 acgtggca Carbohydrate, lipid and amino acid
metabolism

GARE2OSREP1 10 �0.9167 taacgta Secondary metabolism
EVENINGAT 10 �0.8441 aaaatatct Jasmonate synthesis, abiotic stress
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fused upstream of the GUS reporter gene, inserted in a binary
vector, and used to obtain transgenic Arabidopsis plants. For each
construct, ∼100 independent transgenic plants were tested. We
observed that the TEF1TELO3 promoter specifically conferred
glucose-responsive expression of GUS activity in root meristems
of transgenic plants (Fig. 4D,E,F). These results were consistent
with previous studies showing that the TELO motif was required
for GUS expression in root meristems and this activation required
the TEF element (Tremousaygue et al. 1999). Quantitative analy-
sis of GUS expression in TEF1TELO3�GUS transgenic plants
showed 6.9-fold higher GUS activity in response to glucose com-
pared to mannitol treatment (Fig. 4G). These results indicated
that the TELO motif, the best classifier of glucose-up-regulated
promoters, participates in the control of glucose-responsive gene
expression in a cooperative manner with the TEF motif.

Discussion

Dynamic transcriptional responses to glucose

Glucose and ABA treatments lead to rapid dynamic changes in
gene expression in Arabidopsis seedlings. Quantitative analysis of
gene function and clustering of gene expression dynamics iden-
tified patterns of coregulation of classes of genes that revealed
large-scale changes in cell function in response to glucose and
ABA. Among the most rapid transient transcriptional responses
to glucose involved the up-regulation of genes encoding heat-
shock and DNAJ-like chaperonin proteins. Genes encoding com-
ponents of protein synthesis were also rapidly induced, but their
expression persisted, suggesting a temporal control the cellular
machinery for protein synthesis that involves rapid initial syn-
thesis of chaperonins for stabilizing newly synthesized proteins
and longer-term expression of components involved in protein
synthesis. Transcription factors and protein kinase genes were

among the most rapidly modulated by glucose. Rapidly up-
regulated genes in these classes included those encoding tran-
scription factors regulating biosynthetic pathways such as
MYB75/PAP1, ATR1, MYB28, and JAF13. This is consistent with
these transcription factors mediating subsequent more persistent
expression of many genes encoding enzymes, transporters, and
other proteins involved in the reprogramming of biosynthetic
and catabolic pathways. This is supported by the identification of
cognate transcription-factor-binding sites as strong classifiers of
glucose up-regulated expression of these classes of genes (see be-
low). Among the rapidly induced and persistently expressed
genes were those functioning in the cell cycle, cell division, DNA
replication and recombination, and in growth. These rapid re-
sponses, which occur before any significant growth or develop-
ment, suggest that glucose-mediated transcriptional responses
directly orchestrate cell division and growth. One of the most
striking responses to glucose was the rapid and persistent down-
regulation of transcription factors regulating light responses and
regulators of the circadian clock. Longer-term cellular responses
to high sugar include suppression of photogene expression (Jang
et al. 1997), and our analysis suggests a mechanism involving the
rapid down-regulation of transcription factors conferring light-
responsive expression of photogenes. This proposed mechanism
is supported by the identification of cognate promoter elements
that are strong classifiers of glucose down-regulated expression
(see below). How these major changes in gene expression are
regulated remains to be elucidated. A large number of genes were
coregulated by glucose and ABA, including key regulators of ABA
action such as ATHB6 (Himmelbach et al. 2002) and a diverse set
of genes involved in signal transduction and transcription, stress
responses, and metabolism. Furthermore, several genes involved
in ethylene-mediated gene expression were also coregulated by
ABA and glucose, identifying regulatory points for three-way in-
teractions between these growth regulators (Yanagisawa et al.
2003; Price et al. 2004).

Regulatory mechanisms

Our application of machine learning methods for promoter clas-
sification linked known transcription factors and their cognate
binding sites into a model of glucose- and ABA-mediated gene
expression and revealed new glucose-mediated transcriptional
control mechanisms. The TELO promoter motif was identified by
the RVM as the strongest classifier of glucose up-regulated gene
expression. It was found in >200 of the 983 glucose-up-regulated
genes and was significantly enriched in the promoters of genes
encoding components of protein and nucleotide synthesis path-
ways (Supplemental Table 6). The TELO motif and the associated

Table 5. RVM selection of 5-mer motifs in ABA-regulated genes

Recognition
sequence

Number of times
picked by RVM

Average
weight

acgtg 10 4.5791
cgtgt 10 3.8186
cgtgg 10 1.9653
cgtac 10 1.8358
ccgac 10 1.7705
cacac 10 1.7430
gaaca 10 1.7009
atatc 10 1.4722
gatac 10 1.1721
ccatc 10 1.0937

Table 4. RVM selection of place elements in ABA-regulated genes

Element ID
Number of times
picked by RVM

Average
weight

Recognition
sequence

Potential target genes
(from Supplemental Table S6)

ABRELATERD1 10 4.4946 acgtg Abiotic stress, phenylpropanoid and ABA
metabolism, carbohydrate breakdown

ABREATRD22 10 3.0406 ryacgtggyr Abiotic stress
ACGTABREMOTIFA2OSEM 10 2.6213 acgtgkc Phenylpropanoid metabolism
DRE2COREZMRAB17 10 2.0471 accgac Abiotic stress, raffinose metabolism
ACGTATERD1 10 1.7750 acgt Phenylpropanoid metabolism
MYB1AT 10 1.6179 waacca
DPBFCOREDCDC3 10 1.3682 acacnng
ABREMOTIFAOSOSEM 10 1.3261 tacgtgtc Abiotic stress
SGBFGMGMAUX28 10 1.2677 tccacgtgtc
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TEF motif conferred increased gene expression in response to
glucose, thus establishing a new role for this element and vali-
dating the feature extraction and classification strategy. The
TELO motif, together with the adjacent TEF sequence in the
eEF1A promoter, was previously shown to direct high-level ex-
pression in rapidly cycling primordia (Tremousaygue et al. 1999).
Recently, the TELO motif was shown to be overrepresented in the
promoters of genes up-regulated during axillary bud outgrowth
in Arabidopsis, such as ribosomal protein and cell cycle genes
(Tatematsu et al. 2005). Together these data demonstrate a key
role for the TELO motif in regulating the expression of genes in
response to growth stimuli such as glucose and decapitation.

The MYB26S and BS1EGCCR motifs, which are enriched in
genes involved in carbohydrate metabolism and sulfur uptake
(Supplemental Table 6), were previously shown to regulate genes
in the phenylpropanoid pathway (Uimari and Strommer 1997;

Lacombe et al. 2000). The E2FBNTRNR
motif is enriched in protein synthesis
genes, consistent with experimental evi-
dence (Chaboute et al. 2000), and the
AMMORESIIUDCRNIA1 motif involved
in the transcriptional control of the ni-
trate reductase gene (Loppes and Radoux
2001) was enriched in nucleotide me-
tabolism genes. This model proposes
that glucose may either regulate the
transcription of genes encoding tran-
scription factors that then activate these
classes of genes, or glucose promotes the
activity of transcription factors by post-
transcriptional mechanisms. The cyclo-
heximide dependence of glucose up-
regulated expression (Price et al. 2004) is
consistent with the former mechanism.

Several examples of possible regula-
tory chains (Yu et al. 2003) involved in
glucose-down-regulated gene expression
were evident from the promoter features
described in Tables 2 and 3. Four motifs
involved in conferring light regulation
(Puente et al. 1996), the I-box core mo-
tif, the GATA motif, light regulatory mo-
tifs related to the evening element, and a
G-box-related element were all top-
weighted classifiers of glucose-down-
regulated gene expression (Table 2).
GBF1 binds the G-box and confers light
regulation, and the down-regulation of
GBF1 in response to glucose suggests
that glucose-down-regulates light-re-
sponsive gene expression by reducing
expression of GBF1 (Supplemental Table
1). Glucose down-regulates the expres-
sion of GATA4 expression (Supplemen-
tal Table 1), which encodes a GATA tran-
scription factor. This binds the se-
quences GGATA and GATAA (Puente et
al. 1996), the top-weighted k-mer mo-
tifs for classifying glucose-down-regu-
lated expression and establishes another
putative regulatory chain. Glucose
also down-regulates the expression of

AT1G19000 (Supplemental Table 1) encoding a 1 repeat MYB
protein related to MYBST1. This transcription factor binds to the
GGATA motif and I-box-related sequences (Lu et al. 2002), which
are also top-weighted classifiers of glucose down-regulated ex-
pression. This suggests another transcriptional regulatory chain
contributing to glucose-mediated transcriptional repression of
light-regulated genes. Expression of genes encoding the trihelix
proteins GT1 and GT2, which confer light activation (Lam 1995),
was also reduced by glucose treatment (Supplemental Table 1),
but their cognate GT promoter elements were not selected as
classifiers by the RVM. This analysis provides potential mecha-
nisms linking glucose- and light-mediated gene expression sug-
gested by earlier analyses (Thum et al. 2004).

The promoter of the Amy3D �-amylase gene contains a
TATCCA- and a G-box-related motif required for repression by
sugars or induction by sugar starvation (Hwang et al. 1998; Lu et

Figure 4. The TELO motif confers glucose-mediated transcriptional regulation. (A) Expression pat-
terns of the glucose-up-regulated genes with promoters containing the TELO motif. (B) Sequences of
the TELO4, TEF4, and TEF1TELO3 motifs. (C) Constructs containing the TELO4, TEF4, and TEF1TELO3
motifs in a �60 CaMV�GUS reporter vector are shown. An oligonucleotide tetramer of TELO (TELO4)
and TEF (TEF4) motifs and a combined motif (TEF1TELO3) containing one TEF sequence and three
TELO sequences were inserted upstream of the �60 CaMV�GUS reporter construct. (D,E,F) Histo-
chemical analysis of GUS activity of TEF1TELO3�GUS transgenic plants in response to 3% glucose (D),
3% mannitol (E), and water (F) for 12 h. GUS activities in lateral root primordia are shown. (G) GUS
activity of TEF4�GUS, TELO4�GUS, and TEF1TELO3�GUS transgenic plants. Protoplasts made from
7-d-old TEF4�GUS, TELO4�GUS, and TEF1TELO3�GUS transgenic plants were cultured in 400 mM
glucose or 400 mM mannitol for 48 h before GUS activity was measured. Error bars represent the
standard error of the mean from five samples. These transgenic lines were assayed at least three times.
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al. 1998, 2002; Toyofuku et al. 1998). Three rice MYB proteins
(OsMybS1, OsMybS2, and OsMybS3) bind to the TATCCA ele-
ment and mediate these sugar responses. The expression of two
Arabidopsis genes (AT1G19000 and AT5G47390) encoding MYB
proteins with high overall similarity to OsMybS2 and OsMybS3 is
glucose repressible (Supplemental Table 1), and the TATCCA-
related motif (TATCC) is a strong classifier of glucose down-
regulated gene expression. This suggests a third regulatory chain
in which these Arabidopsis MYB proteins mediate glucose down-
regulated transcription through the TATCC element.

Several cis-acting promoter elements confer ABA-responsive
gene expression. These include the ABA-responsive element
(ABRE) (Marcotte Jr. et al. 1989), coupling elements (Shen et al.
1996), and recognition sites for MYB and MYC classes of tran-
scription factors (Iwasaki et al. 1995; Abe et al. 1997). Our RVM
analyses of ABA-responsive promoters identified ABRE-like mo-
tifs, recognition sequences for the ATMYB2 transcription factor,
a G-box-related motif and DRE-related motifs as top-weighted
classifiers of ABA-induced genes. These motifs were enriched in
the promoters of genes encoding proteins involved in stress re-
sponses, secondary metabolism, and hormone metabolism
(Table 4; Supplemental Table 6). Our RVM classification is con-
sistent with recently reported analysis of motif frequencies in
ABA-regulated genes, which identified ABRE and DRE motifs as
overrepresented (Leonhardt et al. 2004). The expression of genes
encoding ABF3, DREB1A, DREB1B, DREB1C, and DREB2A tran-
scription factors, which mediate ABA-responsive gene expression
through ABRE- and DRE-related motifs, respectively, was induced
by ABA, suggesting a regulator chain model in which these tran-
scription factors mediate ABA responsiveness through the motifs
identified as strong classifiers of ABA-regulated expression. Simi-
larly, expression of ATMYB2 is up-regulated by ABA (Supplemen-
tal Table 2). It has been shown to function as a transcriptional
activator in ABA-inducible gene expression under drought stress
in plants (Abe et al. 2003) and its recognition motif (WAACCA)
was a strong classifier of ABA-up-regulated promoters (Table 4).
The DRE-related motif (ACCGAC) conferred glucose-, ABA-,
drought-, high salt-, and cold-responsive gene expression (Busk
et al. 1997; Kizis and Pages 2002; Dubouzet et al. 2003). Its cog-
nate transcription factor DREB1A/CBF3 was also transcription-
ally up-regulated by both glucose and ABA, suggesting a regulator
chain model for glucose and ABA regulation of stress-responsive
and other target genes.

Promoter analysis

A variety of approaches have been taken to establish regulatory
networks based on whole-genome analysis of gene expression
levels. Many of these use frequentist probabilistic methods to
identify overrepresented sequence motifs associated with expres-
sion profiles (Beer and Tavazoie 2004), which can then be used to
infer relationships between motifs and gene expression patterns.
Our analysis of promoter sequences uses an RVM classifier to give
an estimate of the probability that a gene is up- or down-
regulated based on promoter sequence features. The advantage of
the RVM (Tipping 2001) with a Bayesian Automatic Relevance
Determination (MacKay 1994; Neal 1994) prior is that it selects a
small subset of promoter motifs for its discriminatory rule that
optimally distinguish between regulated genes. The RVM also
has the useful property that no parameters are set, such as the
threshold of significance of a feature, since the entire model is
generated automatically from the data. It also considers the sig-

nificance of a feature in the context of the features already se-
lected. This makes the application especially suitable for biologi-
cal problems with many variables of unknown significance that
may influence each other. The RVM correctly predicted the
up- or down-regulation of ∼70% of the 1752 promoters in the
glucose regulon and 692 promoters in the ABA-up regulon. This
success is similar to that achieved in a recent study (Beer and
Tavazoie 2004), which correctly predicted the expression pat-
terns of 73% of 2587 yeast genes in 255 conditions using pro-
babilistic methods. Our analysis also shows that there are other
features affecting gene expression that are not captured
by PLACE elements or 5-mer sequences within 1 kb of the initia-
tion codon of Arabidopsis genes. These “missing” features prob-
ably include combinatorial effects and protein–protein interac-
tions.

The promoter sequences selected by the RVM strategy were
validated by demonstrating that the TELO motif, which was the
top-weighted classifier of glucose-up-regulated gene expression,
conferred glucose-mediated expression in conjunction with the
TEF motif. Furthermore, other promoter motifs selected as top-
weighted classifiers had established functions in glucose- and
ABA-mediated gene regulation. The transcriptional coregulation
of transcription factors and promoters containing cognate pro-
moter elements selected by the RVM provides further validation
of the classification strategy and permitted regulatory networks
to be established.

The sparse feature selection of our RVM provides a compu-
tationally efficient way of dealing with the wide range of vari-
ables commonly encountered in biology and is suitable for bi-
ologists to apply, as the classification rule is built automatically
without any statistical assumptions. Bayesian statistical methods
such as we have used also provide more realistic probability mod-
els based on these large data sets (Eddy 2004). Our work reveals
that these approaches have significant promise in classifying pro-
moter functions according to their sequence and establishing
transcriptional regulatory networks.

Methods

Plant material, growth condition, and time course
Arabidopsis thaliana seedlings (ecotype Columbia-0) were grown
in liquid culture for 7 d on MS medium containing 0.5% glucose
in constant light. After 7 d of growth, the medium was replaced
with glucose-free medium for 24 h, and then seedlings
were treated with 3% glucose, 3% mannitol, 3% glucose + 10 µM
ABA or 3% mannitol + 10 µM ABA, and sampled at 0, 2, 4,
or 6 h after treatment. Three independent sets of cultures
grown in 3% glucose and 3% mannitol were sampled for RNA
isolation.

RNA preparation, cRNA synthesis, and microarray
hybridization
Total RNA was extracted from the treated Arabidopsis seedlings
using an RNeasy Plant Mini Kit (Qiagen) according to the kit
manual. Affymetrix Gene Chip array expression profiling was
carried out at the John Innes Genome Lab (http://www.
jicgenomelab.co.uk) according to Affymetrix Expression Analysis
Technical Manual II (Affymetrix Manual II; http://www.
affymetrix.com/support/technical/manuals.affx). Further infor-
mation on processing microarray data and clustering is provided
in the Supplemental material.

Li et al.

424 Genome Research
www.genome.org



Machine learning methods
The Relevance Vector Machine (RVM) (Tipping 2001) was se-
lected as the most appropriate technique for learning to distin-
guish between up- and down-regulated genes according to the
sequence composition of their promoter regions. A MATLAB
implementation of the RVM is available from http://www.
relevancevector.com.

Assume that our data set, D, is comprised of � coregulated
genes

D = ��x� i,ti��i=1
� , x� i ∈ ℜd, ti ∈ �−1, +1�

where x�i represents a set of features describing the i-th training
pattern, in this case k-mers representing putative promoter pro-
tein-binding sites, and ti indicates whether the i-th gene is up-
regulated (ti = +1) or down-regulated or nonregulated (ti = �1).
The Relevance Vector Machine, in a statistical pattern recogni-
tion setting, essentially implements a familiar logistic regression
model,

p�t|x� � ≈
1

1 + exp�−f�x� ��
where f�x� � = �

i=1

�

�ixi + �o

However, a Bayesian training algorithm was used, with an Auto-
matic Relevance Determination (ARD) (MacKay 1994; Neal 1994)
prior over the vector of model parameters, �� = {�0, �1, �2, …, ��}.
The advantage of this approach was that the model was able to
determine a small set of the most discriminatory features to form
its decision rule. In this application it chooses, from a large set of
arbitrary motifs, a small number of motifs that “optimally” dis-
tinguish between differentially regulated genes. A more extensive
explanation is provided in the Supplemental material, and the
method is available as a Web service for Arabidopsis promoter
analysis from http://theoval.cmp.uea.ac.uk/∼gcc/cbl/bred/, using
the TIGR version 5 annotation (Haas et al. 2005).

Calculating enrichment in functional categories
To ascribe functions to genes represented on the ATH1 chip,
Gene Ontology (GO) annotations were integrated within Gene-
Spring 6.1 (Silicon Genetics, Redwood City, CA) as “GeneLists.”
This was achieved by converting the Gene Ontology graph struc-
tures as exported from DAG-Edit (GO flat-file format, http://
www.geneontology.org/) into a file-system-based data structure,
where vertices are represented by directories. A list of Arabidopsis
genes annotated to each GO term was prepared from the TIGR
version 5 XML files (ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/
PSEUDOCHROMOSOMES/), and each list was stored in Gene-
Spring XML format within the appropriate directory. We classi-
fied sugar-regulated genes according to their putative functions
based on Arabidopsis Gene Ontology (GO) annotations in Gene-
Spring lists, the classification of the Munich Information Centre
for Protein Sequencing (MIPS) database, pathway analysis de-
fined by AraCyc (Mueller et al. 2003) and KEGG (Kanehisa 2002),
and the literature.

We calculated the P-value of the enrichment of regulated
genes and promoter elements in functional categories using the
hypergeometric cumulative distribution function (Tavazoie et al.
1999). Values were expressed as �log10 of P, where at least x
genes in category of size k were regulated. k was determined from
gene annotations as described above. The total number of genes
on the array (M) was 21,000, and the total numbers of regulated
genes were glucose up-regulated genes (N = 983), glucose down-
regulated (N = 769), and ABA up-regulated (N = 692). The Bon-
ferroni Correction was used to establish the significance of mul-
tiple comparisons of functional categories. Functional categories

containing fewer than five genes were not considered for statis-
tical reasons, and larger and heterogeneous functional groups
were also not included in the analysis.

Construction of synthetic promoter motifs, Arabidopsis
transformation, and �-glucuronidase (GUS) assays
Promoter motifs were synthesized, annealed into double-
stranded DNA oligomers, cloned into a minimal promoter-
reporter cassette, and transformed into Arabidopsis as described
in the Supplemental material. Transformants were selected and
assayed as described in the Supplemental material.
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