
Malaria resurgence in the East African highlands:
Temperature trends revisited
M. Pascual*†, J. A. Ahumada‡§, L. F. Chaves*, X. Rodó¶, and M. Bouma�
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The incidence of malaria in the East African highlands has increased
since the end of the 1970s. The role of climate change in the
exacerbation of the disease has been controversial, and the specific
influence of rising temperature (warming) has been highly debated
following a previous study reporting no evidence to support a
trend in temperature. We revisit this result using the same tem-
perature data, now updated to the present from 1950 to 2002 for
four high-altitude sites in East Africa where malaria has become a
serious public health problem. With both nonparametric and para-
metric statistical analyses, we find evidence for a significant
warming trend at all sites. To assess the biological significance of
this trend, we drive a dynamical model for the population dynam-
ics of the mosquito vector with the temperature time series and the
corresponding detrended versions. This approach suggests that
the observed temperature changes would be significantly ampli-
fied by the mosquito population dynamics with a difference in the
biological response at least 1 order of magnitude larger than that
in the environmental variable. Our results emphasize the impor-
tance of considering not just the statistical significance of cli-
mate trends but also their biological implications with dynamical
models.

amplification of temperature increase � climate change �
vector-transmitted disease � mosquito population dynamics

The present and future impact of climate change in infectious
disease dynamics is a pressing but controversial subject (1–7).

Malaria is a major public health burden around the tropics (6, 8)
with the potential to significantly increase in response to climate
change due to the role of temperature and rainfall in the
population dynamics of its mosquito vector (5, 9). Plasmodium
falciparum and Plasmodium vivax are the most important malaria
species for humans, and their range is limited at high altitudes by
low temperatures (10); global warming could thus drive the
geographical spread of the disease and produce an increase in
incidence at higher-altitude sites. Both of these patterns were
presented as likely outcomes of global warming by the Inter-
governmental Panel on Climate Change (1). The question arises
whether the increase of malaria incidence in the East African
highlands since the end of the 1970s is already a manifestation
of climate change. This has been extensively debated (5–7,
11–14).

One central piece of evidence against a role of climate has
been presented by Hay et al. (11), who analyzed long-term
meteorological records for four high-altitude locations in East
Africa where malaria incidence has dramatically increased in the
last two decades. They reported no significant trend for climatic
variables, in particular temperature, and concluded that the
number of months suitable for P. falciparum transmission has not
changed in the last century. A response by Patz et al. (7) argued
that the use of a global climate data set was inappropriate given
its coarse resolution (0.5 � 0.5°) and the large altitudinal
variation within these regions. Despite this caveat, it is relevant
to ask whether there is evidence of warming in these records, and

if so, whether the observed magnitude of change is of potential
biological significance.

In this paper, we revisit the existence of trends for the four
highland sites in the same monthly temperature records but now
updated to incorporate the last 5 years to the present. A
nonparametric analysis that decomposes the variability in the
data into different components reveals that the dominant signal
in three of the sites and the subdominant signal in the fourth one
correspond to a warming trend. These components are all
statistically significant, differing from those expected for red and
white noise. We then address the question of whether the signal
of warming by �0.5°C is biologically significant using tempera-
ture data to drive a model of mosquito population dynamics.
Temperature is known to influence the mosquito life cycle and
in particular the development rate of larvae and adult survival
(e.g., refs. 15–17). The mosquito model (18) is driven here by
both the original temperature time series and its detrended
counterpart for each site. The relative difference (RD) in the
output of the model for the two temperature regimes shows that
the mosquito dynamics significantly amplify the temperature
increase. Parametric models closer in formulation to the ap-
proach of Hay et al. (11) also demonstrate significant (linear)
trends. We discuss the source of disagreement with their
conclusions.

Data
The monthly temperature time series (Fig. 1) were extracted
from the Climate Research Unit (CRU, Norwich, U.K.) global
grid of 0.5° resolution (data set CRU TS 2.1) (19). The four grid
points chosen for the analyses respectively contain the following
locations of interest: Kericho in western Kenya (latitude, 0.30 S;
longitude, 35.37 E), Kabale in southwestern Uganda (1.25 S,
29.71 E), Gikongoro in southern Rwanda (2.45 S, 29.85 E), and
Muhanga in northern Burundi (3.02 S, 29.83 E). Reported
malaria incidence shows significant increases at these sites in the
last decades of the 20th century (ref. 11 and refs. therein).

Results
To examine the existence of a warming signal, we first applied
a nonparametric method, Singular Spectrum Analysis (SSA
www.atmos.ucla.edu�fcd�ssa), which decomposes the variability
in the data into orthogonal components whose form is not
specified a priori (refs. 20 and 21; Methods). This decomposition
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allows the separation of the significant signal from the noise in
the data and the identification of (nonlinear) trends and periodic
components including those with unharmonic shapes (22). The
decomposition of the variability of all temperature time series
with SSA shows that the dominant components contain both a
nonlinear trend and a seasonal cycle. The seasonality is evident
in the eigenspectrum as pairs of identical eigenvalues (22) (Fig.
2 and Fig. 5, which is published as supporting information on the
PNAS web site). The trend corresponds to the first eigenvalue in
three of the sites, Gikongoro, Kabale, and Muhanga, and to the
third eigenvalue, following the pair corresponding to seasonality,
in Kericho (Fig. 2). In all cases, these dominant and subdominant
components are significantly different from the null hypothesis
considered and lie outside the limits of the 95% confidence
interval defined by the values expected for a red noise process
with similar decorrelation time � � �1�log r, where r is the
lag-one autocorrelation value. The null hypothesis of white noise
was not considered, because it was inconsistent with the shape
of the SSA spectrum (Fig. 2; see Methods). The reconstructed
time series corresponding to the trend components is plotted in
Fig. 1 for the four sites. It consists of a nonlinear trend, with an
inflection point in the 1970s followed by an increase in the 1980s
and 1990s of �0.5°C.

With SSA, we detrended the temperature time series by
reconstructing the data with all components other than the one
corresponding to the trend. The mosquito model (see Methods)
was then run for each site with both the original and the
detrended temperature data. This stage-structured model is a
simplified version of a discrete-time system originally built to
simulate the dynamics of Southern House mosquitoes under
varying temperature and rainfall regimes in Hawaii (18). The
rainfall input, daily presence�absence of precipitation, was gen-
erated from the monthly CRU data on the total number of rainy
days (see Methods) and was kept the same for both runs. The
resulting temporal dynamics of mosquito adult abundance show
differences between the runs. Fig. 3 shows the resulting differ-
ences in mosquito abundance for two sites, Kabale and Kericho.
Results for Gikongoro and Muhanga (not shown) are similar in
order of magnitude to those of Kericho. Although the temper-

ature time series (original and detrended) exhibit a RD of no
more than 3%, the same measure for mosquito abundance grows
to 30–40% in Kericho (Fig. 3 a and c). In Kabale, for similar
differences in the two temperature time series, the RD in the
mosquito abundance is further amplified, with peak values well
above 100%. The difference measure expresses a deviation
between the original and detrended forcing relative to the mean
detrended value over the whole period. This measure is akin to
a coefficient of variation in the sense of evaluating a deviation
relative to the magnitude of the mean. The difference in the
biological response can be at least 1 order of magnitude larger
than that in the environmental drivers. It is the largest in the site
with the coldest average temperature. This result follows from
the nonlinearity of temperature effects on mosquito parameters
in the model. Specifically, the development probability G from
larvae to adults is nonlinear with a threshold at low temperature
values (below 15°C) that are too cold for development to
proceed.

For one of the sites, Kericho, we can drive the mosquito
simulations with observed daily rainfall values. The resulting
change in relative abundance (RD) for the simulated mosquitoes
is similar to those obtained with the simulated rainfall values

Fig. 1. CRU temperature time series at the four locations in the African
highlands. The bold line shows the trend obtained for each of these data with
SSA. Because the latitude of Muhanga is almost on the boundary between two
grid points in the CRU global grid, both the grid points above and those below
the latitude of 3.00 S were considered. All results remain the same for these
two time series, and we report here only the results for the grid point centered
at 2.75 S (a, Kericho; b, Kabale; c, Gikongoro; d, Muhanga).

Fig. 2. SSA. The plots show the different eigenvalues obtained by SSA for
each of the four time series ranked by order of importance according to the
variance they explain. The dominant eigenvalue in three of the four sites (c,
Gikongoro; d, Muhanga; and b, Kabale) corresponds to the trend and is
followed by a pair of eigenvalues associated with the seasonal cycle. In Kericho
(a), this order is reversed, and the trend corresponds to the subdominant
eigenvalue. The trend components account for 10%, 20.5%, 14.7%, and 18%
of the total variance, respectively, for Kericho (a), Gikongoro (c), Muhanga (d),
and Kabale (b). The respective reconstructed components are shown in Fig. 1
(those for the pair of subdominant eigenvalues in b–d and the dominant pair
in a are plotted in Fig. 5). The bars specify the 95% confidence intervals
generated with Monte Carlo simulations of red noise. Specifically, the error
bars computed for each empirical orthogonal function represent 95% of the
range of variance found in the state-space direction defined by that empirical
orthogonal function in an ensemble of 999 red-noise realizations. Thus, the
bars represent the interval between the 0.5% and 99.5% percentiles, and
eigenvalues lying outside this range are significantly different (at the 5%
level) from those generated by the red-noise process against which they are
tested. The dominant eigenvalues for Gikongoro (c), Kabale (b), and Muhanga
(d) and the subdominant eigenvalue for Kericho (a) lie outside this interval
and are significantly different from noise. The application of SSA in combi-
nation with this red-noise test is known as ‘‘Monte Carlo SSA’’ (38). The SSA

TOOLKIT freeware software from www.atmos.ucla.edu�tcd�ssa was used for
the analysis. A large order was selected to force a better separation of
constituent components mainly at the lower frequencies (22) (a, Kericho; b,
Kabale; c, Gikongoro; d, Muhanga).
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based on CRU monthly data for the number of wet days (Fig. 6,
which is published as supporting information on the PNAS web
site).

Sensitivity analysis shows that the above amplification is not
restricted to the mosquito parameters of these particular runs

but applies to a large region of parameter space. Fig. 4 shows the
mean and maximum amplification as a function of the develop-
mental rate of the mosquitoes and the daily probability of
immature survival. We focus on these two parameters, because
they exhibited the strongest effects on RD in the random
exploration of parameter space and the associated sensitivity test
(see Methods). As expected, exact mosquito abundance is sen-
sitive to variations in mosquito parameters, but the biological
amplification of the temperature difference is a robust phenom-
enon (Fig. 4).

The simulations further show a negative RD before 1980,
when due to the nonlinear shape of the temperature trend, the
detrended temperature time series has higher values than those
of the original temperature. In other words, this temperature
pattern indicates a period of lower temperatures than expected
without the nonlinear trend. An interesting consequence of this
pattern is that mosquito abundance in the model exhibits a larger
jump between the end of the 1970s and beginning of the 1980s.
This change is larger than would be expected under either a
monotonically increasing trend or no difference in temperature
before that time. The analysis reveals for all sites a similar timing
of the transition from a negative to a positive difference in 1980,
corresponding to the beginning of a warming signal.

Finally, to further test for the existence of a trend with an
approach closer to that used previously in the literature (11), we
also fitted linear parametric time series models [Seasonal Au-
toregressive Moving Average (SARMA) models, implemented
in R, www.r-project.org] to the CRU temperature data from
January to December 1950–2002. For purposes of comparison
with previous results, we also considered the period of 1970–
1995 analyzed in Hay et al. (11). Model selection indicated that
the best parametric model (the one with the lowest Akaike
Information Criterion) among the SARMA models specified in
Eqs. 2 (see Methods) was either the one with an intercept and
linear trend or the one with a linear trend only. The linear trend
is statistically significant (different from zero) in all cases and for
the two periods of time considered (Table 1 for 1950–2002; see

Fig. 3. RD in mosquito abundances (a and b) and temperature (c and d) for
two sites, Kericho (a and c) and Kabale (b and d). For mosquito abundances,
the RD time series were computed for each of the 100 stochastic realizations
of simulated rainfall (see Supporting Text, which is published as supporting
information on the PNAS web site). The values shown here correspond to one
representative simulation for each site. Gikongoro and Muhanga show pat-
terns (not shown here) of similar magnitude to those for Kericho, because
their mean temperatures are also similar. Kabale’s temperatures are colder
and result in a much larger amplification of the temperature difference. In
either case, the RDs between the original and detrended temperatures (c and
d) are at least 1 order of magnitude smaller than the RDs they generate in the
simulated mosquito abundances.

Fig. 4. Sensitivity analysis for the mean (a and b) and maximum (c and d) of RD values in Kericho (a and c) and Kabale (b and d), as a function of larval survival
and development rate in the mosquito population model. The filled circles correspond to the combination of parameters used in Fig. 3. Mosquito populations
decay exponentially for parameter combinations lying in the white area at the bottom left of each graph.
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Table 2, which is published as supporting information on the
PNAS web site, for the results of 1970–1995). Additionally, none
of the autoregressive (AR) or moving average components is a
unit root (Table 1). We also tested simpler AR models with
independent and identically distributed random noise but found
that these models failed to remove the autocorrelation of the
residuals.

Discussion
The controversy surrounding the existence of climate trends in
the 20th century in the African highlands is central to the current
debates on the causes of the pronounced increases observed in
malaria incidence in these regions over the last few decades. Our
results on (CRU) temperature data at four high-altitude sites
support the occurrence of a significant warming trend since the
end of the 1970s of �0.5°C. This timing coincides with that of the
increase in incidence reported in the literature (5). However,
statistical significance alone does not address the biological
relevance of such warming. A mosquito population model shows
that the population dynamics of the vector can dramatically
amplify even small changes in the climatic signal. Because
observed mosquito densities in the highlands are so low (23),
their abundance is an important variable for malaria transmis-
sion in these regions. By contrast, in endemic areas with gener-
ally high mosquito abundance, malaria incidence can exhibit a
plateau and decline as a function of this variable with multiple
possible explanations related to human behavior and parasite
dilution (e.g., ref. 24).

Even though this is a simplified mosquito population model,
it contains all of the relevant biology necessary to drive the
dynamics: temperature dependence in development and mor-
tality, density-dependence mortality in the larvae and a reason-
able mechanism for rainfall-dependence mortality for larvae.
Our estimates of RD for the mosquitoes are slightly conserva-
tive, because we did not include other population effects that
might amplify the signal even further, such as a positive effect of
temperature on fecundity (e.g., ref. 25). The only process that
could depress mosquito population size at higher temperatures
is increased desiccation of breeding cavities but, given the
magnitude of the temperature signal increase (0.5°C over 20
years), we do not expect this process to have a major impact in
vector population dynamics. Nevertheless, the interplay between
temperature and rainfall could be explored in more detailed
models, including the size distribution of breeding cavities. At a
more phenomenological level, evidence has been reported with
time series models for an effect of the interplay of temperature
and rainfall on malaria in the African highlands, but this effect
concerns the interannual cycles of the disease (9).

It is interesting to consider the pattern of warming described
here and in particular the changes around 1980, in light of other
climatic trends from the literature. Area averages of surface
temperature over tropical land regions have trended upwards in
the last 50 years (see figure 1 in ref. 26 for averages between 30°S
and 30°N and figure 2.2 in Annex A of ref. 1). Analyses of
observational data and the output of atmospheric general cir-
culation models driven only by sea surface temperatures (SSTs)
indicate that this warming pattern on land is driven by a similar

trend in SSTs in tropical oceans (26, 27). Interestingly, SSTs in
the tropical Indian Ocean exhibit an abrupt shift (�0.3°C) to a
warmer state around 1976 (refs. 28 and 29; see figure 2 in ref. 30
and refs. therein), concomitant with shifts in many different
atmospheric circulation indices and the general trend of warming
of (global) tropical oceans (26). At a more regional level on land,
evidence has also been reported for increasing monthly mini-
mum (nighttime) surface temperatures and decreasing diurnal
temperature ranges over Eastern Africa (e.g., ref. 31). At this
scale, however, significant geographical variation exists, with
nighttime cooling often observed close to the coast and large
bodies of water (e.g., ref. 31).

The beginning of the 1980s coincides also with the develop-
ment of chloroquine resistance against P. falciparum in this part
of Africa (5, 32). Unsuccessful treatment has been proposed as
a major factor behind the observed changes in malaria in the past
decades (5). Clearly, trends in climate and resistance need not be
independent and could interact through changing selective pres-
sures. Theoretical studies suggest that drug resistance would
evolve fastest either under high transmission intensity when
encoded by a single gene or at both low and high transmission
intensity when two or more genes are involved (33). Similarly,
demographic factors and land use change will also interact to
modify the potential for malaria transmission (6, 12–14, 32,
34–36). The primary argument we make here is not that climate
is the main driver behind higher malaria incidence, but that its
role cannot be ruled out on the basis of lack of evidence for
temperature warming in these regions. Ultimately, a better
understanding of the respective roles of climate, drug resistance,
and land-use change and the interplay of these concomitant
underlying trends will require a more creative and complex set
of mathematical models explicitly developed to examine their
concomitant impact on malaria dynamics. Statistical analyses of
time series patterns alone will not be sufficient to fully under-
stand the subtleties of malaria transmission.

Our results differ from the previous findings of Hay et al. (11).
The different conclusions do not arise from the nonparametric
nature of our analysis. Parametric time series models confirm
these findings. One possible source of discrepancy is the poten-
tial effect on model selection of first differencing the data, as in
the Dickey-Fuller test applied by Hay et al. (11). Similarly,
seasonality is treated differently in our models, with fewer terms
(and therefore parameters) whose number is determined by
model selection itself.

Because of its adaptive nature, SSA differs from the more
classical decomposition of Fourier analysis and is in particular
well suited to the analysis of nonstationary data, a property it
shares with other more recent methods such as empirical mode
decomposition (EMD) and wavelets (37). Given our focus here
on trends and not on the localization of specific frequencies, we
chose one of these flexible decompositions, although we expect
EMD to provide similar results.

The caveats of using CRU data for time series analyses have
been extensively discussed elsewhere (see ref. 7). The limitation
of a coarse spatial resolution in a landscape of rapidly varying
altitude has been especially underscored when no evidence for
warming is found. However, the presence of trends in coarse

Table 1. Results of parametric (SARMA) time series model

Site �̂ �̂1 �̂12 �̂13 �̂14 �̂15 �̂16 �̂ �̂2

Kericho 0.0099 � 0.0002 0.625 � 0.170 0.230 � 0.080 0.186 � 0.082 0.155 � 0.083 0.211 � 0.082 — �0.236 � 0.227 0.29
Kabale 0.0083 � 0.0002 0.805 � 0.115 0.132 � 0.080 0.192 � 0.080 0.185 � 0.080 0.137 � 0.083 — �0.588 � 0.158 0.28
Muhenga 0.0095 � 0.0002 0.795 � 0.121 0.189 � 0.080 0.190 � 0.082 0.174 � 0.082 0.144 � 0.084 0.124 � 0.084 �0.573 � 0.164 0.27
Ginkogoro 0.0098 � 0.0002 0.824 � 0.105 0.135 � 0.080 0.161 � 0.080 0.163 � 0.081 0.115 � 0.083 — �0.619 � 0.114 0.27

Parameter estimates and 95% confidence intervals for the SARMA model for each of the four sites in the period 1950–2002.
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resolution data must reflect their presence at a finer resolution
at some locations unless there have been systematic changes in
the number of stations over time. Systematic changes in station
numbers can generate spurious trend patterns, for example by
the removal of stations in locations with the coldest tempera-
tures. We have extracted from the CRU data set the number of
stations used for these four grid points over time, and there is no
abrupt or monotonic change in these numbers across the end of
the 1970s through to the 1980s. There is only a marked decrease
in the number of stations at all sites since 1997. However,
significant spatial variability could exist at finer spatial scales,
and future work should examine these patterns. Spatial hetero-
geneity in temperature has been shown to be influenced by
patterns of land use change with agricultural practices (35). The
spatial scale of relevance to the vector itself and to the movement
of the human population concerned must be determined to
evaluate whether particular local stations, or even a single local
station, are appropriate for addressing patterns of change in
meteorological drivers.

Methods
SSA. Based on principal component analysis, the method gener-
ates a set of eigenvalues and eigenvectors from a symmetric
covariance matrix obtained by considering the data for a given
number of lags (the ‘‘order’’ of the analysis). The eigenvalues
quantify the variance associated with each eigenvector or em-
pirical orthogonal function (EOF). Projection of the data onto
a set of EOFs allows its reconstruction for selected components,
such as those above the noise floor accounting for most of the
significant signal. Reconstruction further allows detrending of
the data by selectively removing the variability associated with
the (nonlinear) trend. The Monte Carlo SSA test (MC-SSA, ref.
38) was used to distinguish signals from red noise, in its narrow
sense. Both white and red noise can be considered. For white
noise, the power spectrum (which decomposes the variance as a
sum of sinusoidal waves of different frequencies) is f lat with an
equal representation of cyclic components of all frequencies.
Thus, there is no significant temporal autocorrelation. By con-
trast, red noise, which is known to be more relevant to environ-
mental data, is dominated by cycles of low frequency (long
period) in its power spectrum and exhibits significant autocor-
relations that decay over time (see, e.g., refs. 39 and 40). The SSA
spectrum also shows distinct patterns for these two types of
noise, and it is well known from geophysical studies that the
typical decaying patterns obtained for temperature data are
close to those generated by red noise but clearly inconsistent
with white noise. For red noise, we specifically consider here a
first-order autoregressive process, AR(1), given by xt � �xt�1

� �t with 0� � �1 and �t independent identically distributed
normal errors. The test compares statistics of simulated red-noise
time series with those of the climatic time series (20). A total of 999
randomizations were used for the computation of MC-SSA. MC-
SSA estimates the parameters of the AR(1) model from the time
series itself by using a maximum-likelihood criterion (38).

Mosquito Population Model. Vector dynamics are described with a
stage-structured model for the number of larvae (L) and adult
Anopheles gambiae mosquitoes (M) written in matrix form as:

�L
M�

t
� � P��� F

G��� S���� 	 � L
M�

t�1
,

where P is the probability that a larva remains in the larval stage
as a function of temperature �, F is the average daily fertility of
a female mosquito, G is the probability that a larva develops into
an adult as a function of temperature, and S is the daily survival
rate of an adult mosquito as a function of temperature (18). The

transition probabilities P and G in this stage-structured model
can be computed as derived by Crouse et al. (41):

P��� �
SL�1 
 SL

d����1�

1 
 SL
d��� ,

where d(�) is the number of days it takes for a mosquito egg to
develop into an adult mosquito as a function of temperature, and
SL is the daily survivorship of larvae. Similarly, G can be
computed as:

G��� �
SL

d����1 
 SL�

1 
 SL
d��� .

The number of days for larval development used to compute
P and G was calculated as the inverse of the development rate.
We modeled SL as a function of larval density and rainfall SL �
s�(R)D(L), where s is the ‘‘natural’’ survivorship of larvae (in the
absence of limiting factors), � is a [0.1] bounded logistic function
describing the survival probability of larvae as a function of the
number of consecutive dry days R, and D is an exponential
function that models the survivorship of larvae as a function of
larval density. Both � and D are controlled by one parameter
each (for more details on the functional forms, see ref. 18).
Finally, the development rate of larvae and survivorship of
adults as a function of temperature were calculated from func-
tional forms reported elsewhere (42), in particular S(�) �
exp((4.4 � 1.3� 	 0.03�2)�1).

The model was run on a daily time step using CRU temper-
ature and number of rainy days in a month. Daily temperature
values were created from monthly temperature data by simple
spline interpolation. The influence of rainfall is simulated by
increasing larval mortality as a function of accumulated days
with no rain to represent the combined effects of increased
competition and desiccation of breeding sites. Because only the
total number of rainy days is provided by the CRU records, we
generated daily presence�absence data with a prescribed auto-
correlation structure by using a Markov model with two states
(rain and no rain) adapted from Caswell (43) and with the
frequency of rainy days varying monthly as given by the CRU
data. To specify a realistic autocorrelation structure, we used
daily rainfall at a local station in Kenya (Hail Research Station,
Kericho; latitude, 0.37 S; longitude, 35.27 E) (see Supporting Text
and Fig. 7, which is published as supporting information on the
PNAS web site, for details on rain simulations). For comparison,
the model was also run for this site, Kericho, with both local and
simulated rainfall. The transition matrix in the mosquito popu-
lation model was updated daily according to the prevailing
temperature and rainfall conditions.

A comprehensive sensitivity analysis of the mosquito model
has been presented elsewhere (18). Here, we explore how
changes in key model parameters affect the mean RD in
mosquito abundance between original and detrended tempera-
ture time series. We chose four parameters: the natural daily
survivorship of larvae s, the slope of the linear development rate
of larvae as a function of temperature a, the intensity of density
dependence d, and the sensitivity of larvae to drought �. We did
not include adult survival in this sensitivity analysis, because for
the range of temperatures considered, the function S(�) is fairly
f lat. Parameter ranges were established within biologically rea-
sonable limits: s, 0.8–0.99; a, 0.0042–0.0069 (�25% of the
experimental measured slope); d, 0.01–0.1; and �, 0.01–0.1.
Values for the four parameters were chosen at random within
their range, and the model was run for both the original and
detrended temperature time series from the 1980s until the
present. At the end of the run (�10,000 days), the mean was
computed for the following measure of RD:
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RDi �
Mi 
 mi


mi�
, [1]

where Mi is the size of the mosquito population under the
original temperature time series, and mi is the size of the
mosquito population under the detrended temperature time
series, both at time i. The difference at each time is normalized
by the average size of the mosquito population over the whole
time period. This procedure was repeated 1,000 times for
different random choices of parameter combinations. We then
examined the effect of each of the parameters on the mean by
fitting a linear regression model and determining the significant
effects. Based on the results of this analysis, two parameters (the
slope of larval development and larval survival) were selected for
their higher influence on RD and examined systematically for
their effect on this quantity.

SARMA Models (44).The following three models were considered

xt �  � �1xt�1 � �
i�12

11	p

�ixt�i 
 �
j�13

12	p

�1�j�1xt�j � �t

xt �  � �1xt�1 � �
i�12

11	p

�ixt�i 
 �
j�13

12	p

�1�j�1xt�j � �t � �t [2]

xt � �1xt�1 � �
i�12

11	p

�ix t�i 
 �
j�13

12	p

�1�j�1xt�j � � t � � t,

where xt is the temperature at time t,  is the intercept, �1xt�1
represents a first-order AR(1) component, the sum terms rep-
resent the seasonal AR components [SAR(p)] for p � 1, �

corresponds to the linear trend in time, and �t represents the
error. The error itself is given by a first-order moving average
[MA(1)] process �t � ��t�1 	 �t, with �t independent identically
distributed random noise of variance �wt

2 , and initial condition

�0 � N�0,
�wt

2

1 
 �2	 .

The first and third models are nested within the second one.
Model, error structure, and maximum number of seasonal lags,
p, were chosen by using the Akaike Information Criterion. We
do not consider here the model without the intercept and the
trend, because the diagnostics resulting from its fit show that it
is inappropriate for these data. In particular, the residuals were
not independent, exhibiting significant autocorrelation.
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