Progress report

Surgical management of morbid obesity

Morbid obesity describes a condition of more than twice the 'ideal weight' for at least five years despite attempts at an effective and sustained weight reduction.¹⁻⁴ The surgical approach to morbid obesity lies in the dual premise that the condition is serious and of life-shortening severity and that long-term medical treatment by prolonged starvation,⁵⁻⁸ hypnotherapy,⁹ psychotherapy,¹⁰ anorexic and anti-obesity drugs¹¹⁻¹³ usually fails.¹⁻³ ¹⁴⁻¹⁶

Jejunoileal bypass

Kremen's experimental¹⁷ and Payne's clinical studies^{1 18} have led to more than 400 publications on the subject reporting over 10 000 patients. Most articles appeared during the last six years and 50% deal with only 5% of the patients. Approximately half the patients have had a Payne procedure,¹ onethird a Scott,¹⁹ and the remaining operations are modifications of these two procedures or are not stated.²⁰ Theoretical advantages are given for each procedure regarding weight loss and decrease in related morbidity.^{3 14 16 21-30} The aim is to leave approximately 10% of the small bowel in continuity for absorption^{1-3 16 31} and Maclean's review³² concludes that both types are successful if the length of functioning bowel is between 45 and 75 cm.

OPERATION

In Payne and De Wind's operation, 35 cm of jejunum is anastomosed endto-side to 10 cm of ileum.^{1 33} With Scott's end-to-end operation, 30 cm of jejunum is anastomosed to either 30, 20, or 15 cm of ileum^{2 19 34 35} and the 90% bypassed small bowel is drained into the colon.^{2 3} Modifications include anastomosis of gallbladder to the proximal excluded loop to reduce diarrhoea,^{36–38} automatic stapling,³⁹ plication of the ileum,⁴⁰ or formation of a valve.⁴¹

The overall mortality in 2500 patients was $3 \cdot 1\%$ with a range from 0 to $11 \cdot 5\%$.^{2 16 21 29 31-34 43 44} Immediate postoperative complications can be as high as 30% with wound problems being the commonest.^{14 32 45} Death is due to thromboembolism, myocardial infarction, and sepsis.^{14 16 22 24 33 34 46}

WEIGHT LOSS

Weight loss cannot be predicted³ and comparisons between reports are difficult because of variations in operative technique and follow-up assessment.¹⁶ Quaade²⁰ found only 45 publications (1711 patients) relating to weight loss at one year and only five reports referring to more than a five year follow-up. Data from six well-documented series indicate a 20% weight loss within six months, and about 33% by the first year.⁴⁷ Weight loss is due to both malabsorption and decreased dietary intake.^{48 49} The only prospective randomised study comparing J-I bypass and medical treatment has been conducted by the Danish Obesity Project in 130 patients.^{20 30 50} At 24 months,

median weight loss was 43 kg after bypass compared with 6 kg in the control (P < 0.001).

Insufficient data are available to prove the effect of bypass on life expectancy,¹⁴ but the answers may be provided in the future by the Danish study.⁵⁰ Serum cholesterol and triglycerides are decreased, and type II, IV, and V hyperlipoproteinaemic electrophoretic patterns and hyperglycaemia may return to normal.^{51–53}

BOWEL ADAPTATION

Bowel adaptation occurs in the functioning remnant⁵⁴ and measurements taken at subsequent laparotomy^{55 56} or by contrast radiology⁵⁷⁻⁵⁹ show a hypertrophy, dilatation, and gradual elongation. Villi lengthen, especially in the jejunum,⁶⁰ and crypts deepen in the ileum.⁶¹ The plateau in weight loss correlates with the villous hypertrophy.⁶² Surgery reduces the total intestinal absorption surface area to 8.5%.⁶² This increases by 300% at two years, giving a preoperative net surface area of 26%.⁶² Increases occur in mucosal disaccharidases^{56 63} alkaline phosphatase, thymidine kinase,⁶³ and fat transportation^{60 62} with decreased B12 and glucose absorption.^{14 60} The bypassed segment, especially the ileum, atrophies^{59 61} and the villi are either reduced in size,^{59 61} remain unchanged,^{64 65} or even hypertrophy⁵⁵ at the site of colonic regurgitation. Basal enteroglucagon and pancreatic polypeptide increase after operation,^{6 60} whereas gastrin rises only after a liquid meal.^{60 66}

DIARRHOEA

All patients develop diarrhoea that ranges from eight to 20 times per day; this decreases after one year to two or three soft stools per day.^{21 31} Causes include loss of absorptive surface, decreased transit time, disaccharidase deficiency, excessive colonic bile and fatty acids, and fat malabsorption.⁶⁷ At four years, the transit time remains at a mean of five minutes. Diarrhoea is controlled by restricting dietary fat and using diphenoxylate HCl, codeine phosphate, loperamide, cholestyramine, calcium carbonate,^{21 69} tetracycline, or metronidazole.⁷⁰ Rarely, the severity of the diarrhoea and electrolyte disturbance requires either a bypass reversal or a proximal blind loop jejunostomy for feeding.⁶⁹

LIVER FAILURE

Approximately 5% of patients develop some degree of liver failure postoperatively and 1% progress to frank cirrhosis.^{71–77} Between 60–98% of patients, especially males, have fatty metamorphosis of the liver before bypass⁷⁴ ^{76–78} which may⁷⁸ or may not⁷⁶ correlate with the extent of obesity. Centrolobular fibrosis or frank cirrhosis are contraindications to surgery.⁷⁷ Liver changes are most severe at six to 12 months postoperatively, occurring simultaneously with the maximum rate of weight loss and thereafter there is a resolution.⁷⁴ ⁷⁷ Death from liver failure or cirrhosis occurs in 0.5–2% of patients at five to 24 months after operation with 14 reported cases.^{1 2 16} ⁷¹ ⁷⁶ ⁷⁷ Fatty metamorphosis has many causes⁷⁷ and these include protein malnutrition^{79 80}; increased chenodeoxycholic acid⁸¹; inactivation of dietary choline⁸²; anaerobic bacterial overgrowth⁷² especially bacteroides,⁸³ and production of endogenous alcohol⁸⁴ or hepatotoxins.⁷² Liver histology varies from minimal to marked steatosis⁷³ with variable fibrosis⁷¹ ⁷⁴ ⁷⁷ resembling either kwashiokor⁸⁰ or typical alcoholic hepatitis.^{71 85} Nasogastric or jejunostomy feeding of amino acids,^{80 86} protein,⁸⁷ or intralipid⁸⁸ causes some improvements.^{83 87} The effects of parenteral nutrition may be beneficial^{86 89 90} or of no use,^{89 91} and antibiotics including metronidazole or tetracycline are given.² Liver failure is reversible in more than half after reanastomosis and accounts for 36% of the operations for complications.⁹⁶

BONE DISEASE

Bone disease occurs in 17 to 48% of patients one to 14 years after operation⁹²⁻⁹⁴ with clinical symptoms, biochemical, and radiological investigations often being unreliable.^{92 93} In histologically proven bone disease, plasma 25-OH vitamin D₃ is low⁹²⁻⁹⁵ and plasma PTH raised.⁹⁴ Alterations in vitamin D metabolism are due to malabsorption, steatorrhoea, liver disease, and the blind loop syndrome.⁹⁵ Several characteristic histological changes in bone have been described, including osteopaenia with excessive osteoid.⁹⁵

ARTHROMYALGIA

Arthromyalgia is a troublesome problem found in up to 20% of patients^{96–98} within three years after both a jejunocolic^{99–100} and J-I anastomosis.⁹⁸ The commonest is a non-specific self-limiting transient arthromyalgia,¹⁰⁰ although a polyarthritis may persist.⁹⁷ Extra-articular rheumatic manifestations include tenosynovitis,¹⁰⁰ erythema nodosum, pleural effusions,^{43 97} and skin pustules.¹⁰¹ The arthritis is usually acute with symmetrical involvement of hands, feet, wrists, and ankles with or without erosions.^{97 100 102} Abnormal circulating immune complexes have been identified^{99 102 103} including HLA B27^{98 99} but not confirmed.⁹⁷ Together with circulating antibodies to *B. coli* and *B. fragilis* and associated sacroileitis, this suggests a blind loop syndrome with bacterial overgrowth.⁹⁷⁻¹⁰⁰ If treatment with salicylates and other non-steroidal anti-inflammatory drugs fail,¹⁰¹ tetracycline or metronidazole may give transient relief,^{97 100 103} but occasionally a reversal operation is required.¹⁰⁴

CALCULI

Urinary calculi and nephrocalcinosis occur in approximately 1%105 of patients, but the figures given in reports vary up to 32 % 3 14 16 22 46 within the first two years¹⁰⁵ and these disorders can occur up to 10 years after J-I bypass.¹⁰⁶ Hyperoxalaemia and hyperoxaluria is due to increased absorption of exogenous oxalates, especially by the colon,¹⁰⁷⁻¹⁰⁹ but can be secondary to alterations in either the hepatic or enteric oxalate pathway.¹⁰⁵ Oxalate is deposited in the renal interstitium¹⁰⁸¹¹⁰ and, as the incidence and severity of hyperoxaluria after operation is similar in both stone and non-stone formers.¹⁰⁸ additional causative factors are necessary.^{105 107 111} Pyridoxine, folic acid, calcium, magnesium, and pyrophosphate are effective in decreasing the hyperoxalaemia.¹¹⁰ ¹¹² A low fat diet, aluminium hydroxide, cholestyramine, and diethylamino-ethanolcellulose may prevent recurrent calcium oxalate stones.^{105 107 112 113} Low oxalate diet (< 50 mg/day) decreases exogenous sources,¹¹⁴ but the exclusion of many fruits and vegetables is unacceptable to most patients.¹⁰⁸ Progressive renal failure may require regular haemodialysis¹⁰⁸ or reversal of the bypass.¹¹⁵

Biliary calculi are found in 30% of morbidly obese patients before bypass surgery,²¹¹⁶ and after bypass increase by 5% per year.^{33 116 119} Lithogenic factors include alterations in cholesterol and bile salt metabolism and bacterial infection.¹¹⁶⁻¹²¹ The lithogenicity of gallbladder bile is unexpectedly increased fourfold with an increased length of functioning ileum relative to jejunum (37.5 cm versus 12.5 cm),¹²¹ but follow-up is required to determine if there is also an increased incidence of gallstones.⁵⁰ ¹²¹ Prophylaxis and therapy with chenodeoxycholic or ursodeoxycholic acid need investigation.¹¹⁹

INTESTINAL COMPLICATIONS

A group of intestinal complications have been reported which include intussusception,¹²²⁻¹²⁵ bypass enteropathy,¹²⁶⁻¹²⁸ intestinal pneumatosis,¹²⁹⁻¹³² pseudo-obstruction,¹³³¹³⁴ transmural ileocolitis,¹³⁵ and the blind loop syndrome.¹³⁶ Intussusception of the oversewn proximal end of the bypassed segment is rare because of adequate fixation with only 26 reported cases.^{122–125 137} Vomiting and air-fluid levels may be absent, but the separation of marker clips or ultrasound help in diagnosis.¹²⁴¹²⁵ Patients with colonic pseudo-obstruction¹³⁸ ¹³⁹ present with intermittent or acute abdominal distension 18 to 36 months after J-I bypass with air-fluid levels.¹³³ ¹³⁹ The pseudoobstruction occurs distal to the drainage of bypassed intestine. Conservative treatment with nasogastric and rectal intubation produces rapid relief, and, as anaerobic bacteria may play a role, antibiotics are given.¹³³ ¹³⁹ In the 42 reported cases of intestinal pneumatosis, the symptoms were similar to irritable colon and bypass enteritis,¹²⁹⁻¹³³¹⁴⁰¹⁴¹ and may occur as a separate entity or with bypass enteritis^{127 131} and colonic pseudo-obstruction.^{133 139} Routine postoperative radiographs of the abdomen revealed pneumatosis intestinalis in 16% of patients who were all asymptomatic.¹⁴¹ Treatment includes breathing of 70% oxygen, antibiotics,^{127 129 131} and surgery only for bleeding or obstruction.¹³⁰ Bypass enteropathy (enteritis)¹²⁶¹²⁷¹⁴⁰ or the 'excluded loop syndrome'¹³⁴ probably represents a spectrum of diseases. An acute form of enteropathy was found in four of 28 patients (14%) in the early weeks postoperatively,¹²⁷ and can progress to gangrene with septicaemia or pneumatosis intestinalis.¹²⁷¹³⁴ The aetiology is unknown but may include bacterial overgrowth within the excluded bowel,¹²⁷ changes in intraluminal pH, loss of peristalsis,¹⁴⁰ an ileosigmoidostomy¹³¹ and mechanical obstruction by a sigmoid volvulus.¹⁴² Prostigmine, methadone, and other narcotics accentuate the condition¹³⁴¹⁴⁰ and antibiotics are often effective in treatment.^{126 127}

TUBERCULOSIS

Tuberculosis, especially reactivation, appears to be higher after J-I bypass than in the general population¹⁴³ and, in the nine reported cases, six occurred at extrapulmonary sites.¹⁴³⁻¹⁴⁶ These include tuberculous peritonitis, pleuritis, and cervical lymphadenitis which may not respond to therapy and may even cause death.¹⁴³ Protein malnutrition and immunoreactive changes may be the cause.^{143 147}

REVISION SURGERY

Revision surgery is performed for inadequate weight loss $(5-20\%)^{12314162343}$ or for severe side-effects $(1-23\%)^{104147}$ Procedures include conversion, more proximal or distal reconstruction, resection, or reanastomosis.¹⁴⁸⁻¹⁵³ Unless the patient is extremely ill, the tendency is for reversal of the J-I bypass with a concurrent gastric bypass.¹⁰⁴¹⁵¹⁻¹⁵³ In a short follow-up, these synchronous operations correct the metabolic abnormality and maintain weight loss.¹⁰⁴¹⁵²¹⁵³

Gastric bypass (gastric partition, gastroplasty)

Gastric bypass, developed by Mason and Ito in 1966,¹⁵⁴, 155 avoids the metabolic and nutritional complications of a J-I bypass. The operation requires the formation of a small gastric pouch (50-60 ml), a measured outlet of 10–12 mm, a secure partition, and a method of preventing dilatation of the stoma.^{156–160} Mason estimates that 25 000 patients have had some form of gastric procedure for obesity in the USA,¹⁵²⁻¹⁸³ of which 880 have been performed by his group (Mason, 1980. Personal communication). The operative technique has undergone several periods of development and modification. Initially (1966–70), a subtotal gastrectomy with a small fundic pouch was created with a large stoma. Because it led to unsatisfactory weight loss and a high mortality, it was followed in 1971 by gastroplasty; this involved a partial transection of the stomach from the lesser curve, leaving a small channel along the greater curve. Similarly, patients undergoing this procedure lost weight only during the first six months. Between 1972–74, a gastric bypass was again performed with a small stoma and a loop of jejunum. However, the era of the large upper pouch led to a fourth period in 1975 when it was realised that, to achieve optimum weight loss, it was necessary to bypass 90% of the stomach, leaving a small fundic pouch and narrow gastroenterostomy stoma.158 168 169

Since 1978 the gastroplasty or gastric partition has been gaining popularity, because of the ease of operation using autosuture stapling machines with the stoma along the greater curve or midbody^{27 165 167 168 184} or using a Roux-en-Y anastomosis.¹⁶¹ The upper pouch volume of 50–100 ml is determined by using saline,¹⁶⁸ a silicone balloon,¹⁸⁵ or measuring along the greater and lesser curves.¹⁶² To prevent disruption, either a second application¹⁶¹ or oversewing of the staple line is performed.^{168 185}

The initial operative mortality of 4% has been reduced to $1\%^{150}$ 159 170 183 but depends on the type of procedure. Deaths are due to anastomotic leaks; and gastric ischaemia and perforation, which initially occurred in $4.4\%^{170}$ have now decreased to $0\%^{.158}$ Late complications occur in up to 17% of patients¹⁷⁰ and include severe and persistent nausea and vomiting, afferent or efferent loop obstruction, dumping syndrome, hair loss, and renal stones $(1\%)^{.170}$ The serum gastrin response to a meal is increased but gastric secretory responses fall.¹⁵⁴ 157 The incidence of peptic ulceration has decreased to 1.5% using a smaller pouch¹⁵⁸ and cimetidine.¹⁷⁸ Duodenal perforation and death have been described in two patients, but, according to the registry figures, this is a rare complication.¹⁵⁸ 159 There have been no reports of liver disease after operation,¹⁶¹ 163 170 and biopsies at one year showed improvement in 50–75\% of patients.¹⁵⁷ 163 169

Weight loss is most rapid in the first six weeks.¹⁵⁸ ¹⁷⁰ The greater the initial weight, the greater the loss, with the final weight dependent on the balance between the reduced food intake and energy expenditure.¹⁵⁶ ¹⁶⁹ ¹⁸³ In an analysis of nearly 1600 patients, Griffen¹⁷⁰ found the mean weight loss at one year was 47.6 kg. In a 10 year follow-up by Mason of 67 patients, there was a 43% failure rate. Similarly, in the 58 gastroplasties operated on in 1971, there was a 53% failure rate, the patients requiring revision or further procedures because of inadequate weight loss (Mason, 1980. Personal communication).

There have been only three comparative studies of gastric versus J-I bypass.¹⁶¹ ¹⁶³ ¹⁶⁹ Alden's study¹⁶¹ of 200 patients was not randomised, and the weight loss in each group was just over 40 kg. The complications of liver

disease, calculi, arthritis, diarrhoea, and electrolyte depletion in J-I bypass patients were not found after gastric bypass. Alden¹⁶¹ found that the gastric bypass was technically more difficult, but that stapling decreased both operating time and complications. The two prospective randomised studies reported by Griffen¹⁶⁹ and Buckwalter¹⁶³ indicate that the gastric bypass is superior to the J-I bypass; the loss of weight is much the same but there are fewer long-term sequelae. However, all three studies¹⁶¹ ¹⁶³ ¹⁶⁹ retained longer lengths of small bowel in the J-I bypass and early complications after gastric bypass reached 62.5% because of technical difficulties.¹⁶⁹

Dental splintage

Initially, two patients were reported who lost 40 kg in five months after interdental splinting¹⁸⁶ and another 37 patients have been studied.^{16 187 188} The diet consisted of milk or soup amounting to 3·35 MJ with iron and vitamin supplements.^{186 188} Dental caps were removed every three months for dental hygiene and to prevent trismus.^{16 186} Early failures occurred in half the patients who could not tolerate the splints or removed them, and in only 10 of Baddeley's cases was there full cooperation, which allowed between 20 and 60 kg of weight to be lost in the first three months.¹⁶ In Rogers' study¹⁸⁷ there were no major complications and all 17 patients lost weight in a way comparable to a J-I bypass, but only one patient achieved and maintained her ideal weight. Jaw wiring can be performed in outpatients and has less morbidity than abdominal surgery^{16 187 188} and the major risk of aspiration can be minimised by correct posturing during vomiting.¹⁸⁷ Long-term results are unlikely to be much better than other conservative measures.

Vagotomy

Kral¹⁸⁹ reported three obese women who underwent bilateral truncal vagotomy and lost 15 kg weight in 20 weeks. A bilateral truncal vagotomy without drainage has now been carried out in 13 obese patients with a weight reduction of between 20–30 kg (range 2–64 kg) in the four to 24 month follow-up period.¹⁹⁶ Weight reduction may have been due to impaired gastric emptying creating a sensation of fullness, decreased acid production, and changes in hormonal or food preference.¹⁸⁹ ¹⁹⁰ Two patients have failed to lose weight and it is too early to consider this procedure for clinical use.¹⁹⁰

Biliary-pancreatic bypass

After experimental work in $dogs^{191}$ a biliopancreatic bypass was carried out in 18 obese patients.¹⁹² The operation consists of a partial gastrectomy and closure of duodenal stump. The jejunum is then transected 20 cm distal to the ligament of Treitz and a gastrojejunostomy is performed using the distal part of the Roux loop. The proximal part of the jejunum is then anastomosed to the distal ileum. This anatomical arrangement causes malabsorption of fat and carbohydrate leaving the enterohepatic bile circulation intact. In the 18 patients, a combination of four operations using different measurements of jejunum and ileum has been performed.¹⁹² The mean weight loss was 24% at six months and 34% at 12 months, with no late complications in the 17 month follow-up. The exact length of ileum and jejunum required to achieve maximum weight reduction with minimal complications has not yet been determined.

Current status

The following is a summary of information obtained regarding the current status of the surgical treatment of morbid obesity from Bray, Buchwald, Payne, Phillips, and Scott in the USA, Salmon in Canada, Hallberg and Quaade in Scandinavia, and Baddeley and Gazet in the United Kingdom. All have published studies on J-I bypass but only six (60%) are still carrying out the procedure and two are using the bilio-intestinal anastomosis.^{37 38} At present, three authors are not performing any surgery for morbid obesity. Bray is planning and Gazet is involved in a study of gastric versus J-I bypass. Three authors performed an end-to-side, and four an end-to-end type of J-I bypass and Buchwald has recently increased the length of jejunum to 65 cm. Gastric bypass or partitioning has been performed by six of the authors and is being routinely performed by two. Mason expects improved results with the gastric bypass now that the criteria for an adequate operation have been identified. However, with so many variations of the operation, an adequate period of follow-up is required for assessment.

Payne probably summarises the present situation regarding the surgical treatment of morbid obesity: 'from an ethical and moral aspect, all of these operations—gastric partitioning, gastric bypass and jejuno-ileal bypass, are being abused. Too many operations are being done on patients who are not valid candidates and by surgeons who are not qualified or have no efficient follow-up programme. The malignant abuse of these operations will result in discreditation of the surgical approach to morbid obesity. This could result in the abandonment of the only practical method, at this time, for the treatment of the morbidly obese patient'.

I am extremely grateful to Drs R M Baddeley, G A Bray, H Buchwald, J C Gazet, D Hallberg, E E Mason, J H Payne, R B Phillips, F Quaade, P A Salmon, and H W Scott for replying to my questionnaire and supplying the information on their current approach to the problem of morbid obesity. Also, to Mary Baird and Shirley Frayer for secretarial assistance.

S N JOFFE

Division of Experimental Gastrointestinal and Endocrine Surgery, University of Cincinnati Medical Center, 231 Bethesda Avenue, Cincinnnati, Ohio 45267, USA

Received for publication 10 November 1980

References

¹Payne JH, DeWind LT. Surgical treatment of obesity. Am J Surg 1969; 118: 141-7.

- ²Scott HW Jr, Dean RH, Shull JS, Gluck F. Results of jejunoileal bypass in 200 patients with morbid obesity. *Surg Gynec Obstet* 1977; **145**: 661–73.
- ³Buchwald H, Varco RL, Moore RB, Schwartz MZ. Intestinal bypass procedures. Partial ileal bypass for hyperlipidemia and jejunoileal bypass for obesity. In: *Current problems in surgery*. Illinois, USA: Pub Year Book Med, 1975.

248

⁴Drenick EJ. Definition and health consequences of morbid obesity. *Surg Clin North Am* 1979; **59**: 963–76.

⁵Howard AN. The treatment of obesity by starvation and semi-starvation. In: Munro JF, ed. *The treatment of obesity*. Lancaster: MTP Press, 1979: 139-64.

- ⁶Bray GA, Dahms WT, Atkinson RL *et al.* The control of food intake: effects of dieting and intestinal bypass. *Surg Clin of North Am* 1979; **59**: 1043-54.
- ³Bernstein RS, Van Itallie TB. An overview of therapy for morbid obesity. Surg Clin North Am 1979; **59**: 985–94.
- ⁸MacCuish AC, Ford MJ. Dietary management of obesity and obesity-related diseases. In: Munro JF, ed. *The treatment of obesity*. Lancaster: MTP Press, 1979; 19-52.

⁹Kozdon A. Treating obesity by hypnosis. Update 1979; 1 Feb. 333-7.

- ¹⁹Stunkard AJ, Brownell KD. Behaviour therapy and self-help programmes for obesity. In: Munro JF, ed. *The treatment of obesity*. Lancaster: MTP Press 1979; 199-230.
- ¹¹Blundell JE, Burridge SL. Control of feeding and the psycho-pharmacology of anorexic drugs. In: Munro JF, ed. *The treatment of obesity*. Lancaster: MTP Press 1979: 53-84.
- ¹²Mazansky H. A review of obesity and its management in 263 cases. S Afr Med J 1975; **49:** 1955–62.
- ¹³Munro JF. Clinical use of anti-obesity agents. In: Munro JF, ed. *The treatment of obesity*. Lancaster: MTP Press 1979; 85-121.
- ¹⁴Bray GA. Current status of intestinal bypass surgery in the treatment of obesity. *Diabetes* 1977; **26**: 1072–9.
- ¹⁵Van Itallie TB, Burton BT. National Institutes of Health Consensus Development Conference on Surgical Treatment of Morbid Obesity. *Ann Surg* 1979; **189**: 455–57.
- ¹⁶Baddeley RM The surgical management of obesity. In: Taylor S, ed. *Recent advantages in surgery*. Edinburgh: Churchill Livingstone 1977; **9:** 113-32.
- ¹⁷Kremen AJ, Linner JH, Nelson C. An experimental evaluation of the nutritional importance of proximal and distal small intestine. *Ann Surg* 1954; **140**: 439-48.
- ¹⁸Payne JH, DeWind LT, Commons RR. Metabolic observations in patients with jejonoileal shunts. Am J Surg 1963; **106**: 273-89.
- ¹⁹Scott HW, Standstead HH, Brill AB, Burko H, Younger RK. Experience with a new technique of intestinal bypass in the treatment of morbid obesity. *Ann Surg* 1971; **174**: 560–72.
- ²⁰Quaade F. Jejunoileal bypass for morbid obesity. Surg Clin North Am 1979; 59: 1055-69.
- ²¹Phillips RB. Small intestinal bypass for the treatment of morbid obesity. (Collective Reviews). Surg Gynec Obstet 1978; **146**: 455-68.
- ²²Salmon PA. The results of small intestine bypass operations for the treatment of obesity. Surg Gynec Obstet 1971; 132: 965-79.
- ²³Benfield JR, Greenway FL, Bray GA, Barry RE, Lechago J, Mena I. Experience with jejunoileal bypass for obesity. *Surg Gynec Obstet* 1976; **143**: 401-10.
- ²⁴Halverson JD, Wise L, Wazna MF, Ballinger WF. Jejunoileal bypass for morbid obesity. A critical appraisal. *Am J Med* 1978; **64:** 461–75.
- ²⁵Gazet J-C, Pilkington TRE, Kalucy RS, Crisp AH, Day S. Treatment of gross obesity by jejunal bypass. Br Med J 1974; 2: 311–6.
- ²⁶Corso PJ, Joseph WL. Intestinal bypass in morbid obesity. Surg Gynec Obstet 1974; 138: 1-5.
- ²⁷Joffe SN. Surgical approach to morbid obesity. Hosp Update 1979; 5: 869-82.
- ²⁸Hallberg D. A survey of possible surgical methods of treating obesity. Acta Chir Scand (suppl) 1978; **482**: 31–2.
- ²⁹Mersheimer WL, Kazarian KK, Dursi JF. A critical analysis of 51 patients with jejunoileal bypass. Surg Gynec Obstet 1977; 145: 847-52.
- ³⁰Quaade F. Studies of operated and nonoperated obese patients. An interim report on the Scandinavian Obesity Project. Am J Clin Nutr 1977; **30**: 16–20.
- ³¹Bray GA, Benfield JR. Intestinal bypass for obesity: a summary and perspective. Am J Clin Nutr 1977; 30: 121-7.
- ³²Maclean LD. Intestinal bypass operations for obesity: a review. Can Med J 1976; 19: 387–99.

³³Payne JH, DeWind L, Schwab CE, Kern WH. Surgical treatment of morbid obesity. Sixteen years of experience. *Arch Surg* 1973; **106**: 432–7.

- ³⁴Scott HW. The surgical management of patients with morbid obesity. J Roy Coll Surg Edin 1977; 22: 241-54.
- ³⁵Scott HW Jr, Dean R, Shull HJ, Abram HS *et al*. New considerations in use of jejunoileal bypass in patients with morbid obesity. *Ann Surg* 1973; **177**: 723–35.
- ³⁶Hallberg D, Holmgren U. Bilio-intestinal shunt for the treatment of obesity. (Abstract). *Acta Chir Scand* (suppl) 1978; **482**: 33.
- ³⁷Hallberg D, Holmgren U. Bilio-intestinal shunt. Acta Chir Scand 1979; 145: 405-8.

- ³⁸Hallberg D. A survey of surgical techniques for treatment of obesity and a remark on the bilio-intestinal bypass method. *Am J Clin Nutr* 1980; **33**: 499–501.
- ³⁹Joffe SN, Donaldson LA. Autosuture surgical stapling techniques in the jejunoileal bypass operation for morbid obesity. J Roy Coll Surg Edin 1981 (In press).
- ⁴⁰Starkloff GB, Stothert JC, Sundaram M. Intestinal bypass: a modification. *Ann Surg* 1978; **188:** 697-700.
- ⁴¹Wiklund B, Hallberg D. A reflux-preventing valve in jejunoileal bypass. Acta Chir Scand (suppl) 1978; **482**: 77.
- ⁴²Baddeley RM. Surgical techniques in the treatment of obesity. In: Munro JF, ed. *The treatment of obesity*. Lancaster: MTP Press, 1979: 165-98.
- ⁴³Hallberg D, Backman L, Espmark S. Surgical treatment of obesity. *Prog Surg* 1975; 14: 46-83.
- ⁴⁴Garrison RN, Waterman NG, Sanders GB, Abrams B. A community-wide experience with jejunoileal bypass for obesity. *Am J Surg* 1977; **133**: 675-80.
- ⁴⁵Iber L, Cooper M. Jejunoileal bypass for the treatment of massive obesity. Prevalence, morbidity and short- and long-term consequences. Am J Clin Nutr 1977; 30: 4-15.
- ⁴⁶Maclean LD, Shibata HR. The present status of bypass operations for obesity. Surg Ann 1977; 9: 213-30.
- ⁴⁷Chandler JG. Surgical treatment of massive obesity. Postgrad Med 1974; 56: 124-33.
- ⁴⁸Pilkington TRE, Gazet J-C, Ang L, Kalucy RS, Crisp AH, Day S. Explanations for weight loss after ileojejunal bypass in gross obesity. *Br Med J* 1976; 1: 1504–5.
- ⁴⁹Condon SC, Janes NJ, Wise L, Alpers DH. Role of caloric intake in the weight loss after jejunoileal bypass for obesity. *Gastroenterology* 1978; **74**: 34-7.
- ⁵⁰Danish Obesity Project. Randomised trial of jejunoileal bypass versus medical treatment in morbid obesity. *Lancet* 1979; 2: 1255-7.
- ⁵¹Scott HW, Dean RH, Younger RK, Butts WH. Changes in hyperlipidemia and hyperlipoproteinemia in morbidly obese patients treated by jejunoileal bypass. *Surg Gynec Obstet* 1974; **138**: 353-8.
- ⁵²Scott HW Jr, Dean RH, Harrison JS, Gluck FW. Metabolic complications of jejunoileal bypass operations for morbid obesity. Ann Rev Med 1976; 27: 397–405.
- ⁵³Stein T, Vaughan WR. Glucose tolerance in the obese surgical patient. Surg Gynec Obstet 1979; **148**: 380–4.
- ⁵⁴Tilson MD, Wright HK. Adaptation of functioning and bypassed segments of ileum during compensatory hypertrophy of the gut. *Surgery* 1970; **67**: 687–93.
- ⁵⁵Solaug JH. Morphometric studies of the small intestine following jejunoileal shunt operations. *Scand J Gastroenterol* 1976; **11**: 155–60.
- ⁵⁶Dudrick SJ, Daly JM, Gastro G, Akhtar M. Gastrointestinal adaptation following small bowel bypass for obesity. *Ann Surg* 1977; 185: 642-8.
- ⁵⁷Balthazar EJ, Goldfine S. Jejunoileal bypass. Roentgenographic observations. *AJR* 1975; **125**: 138–42.
- ⁵⁸Wade DH, Richards V, Burhenne HJ. Radiographic changes after small bowel bypass for morbid obesity. *Radiol Clin N Am* 1976; **14**: 493–8.
- ⁵⁹Solhaug JH, Tivete S. Adaptive changes in the small intestine following bypass operation for obesity. *Scand J Gastroenterol* 1978; **13**: 401–8.
- ⁶⁰Barry RE, Barisch J, Bray GA, Sperling MA, Morin RJ, Benfield J. Intestinal adaptation after jejunoileal bypass in man. Am J Clin Nutr 1977; 30: 32–42.
- ⁶¹Grenier JF, Dauchel J, Marescaux J, Eloy MR, Schang JC. Intestinal changes after jejunoileal shunt in obesity: a report of 2 cases. Br J Surg 1977; **64:** 96–9.
- ⁶²Friedman HI, Chandler JG, Peck CC, Nemeth TJ, Odum SK. Alterations in intestinal structure, fat absorption and body weight after intestinal bypass for morbid obesity. *Surg Gynec Obstet* 1978; 146: 757–67.
- ⁶³Stein TA, Wise L. Functional adaptation of the intestinal mucosal enzymes after jejunoileal bypass for morbid obesity. Am J Clin Nutr 1978; 31: 1143–8.
- ⁶⁴Daly JM, Gastro GA, Akhtar M, Dudrick SJ. Morphological and biochemical intestinal changes after jejunoileal bypass. *Rev Surg* 1977; 34: 428-31.
- ⁶⁵Tompkins RK, Waisman J, Watt CM-H, Corlin R, Keith R. Absence of mucosal atrophy in human small intestine after prolonged isolation. *Gastroenterology* 1977; 73: 1406–9.
- ⁶⁶Hesselfeldt P, Christiansen J, Rehfeld JF, Backer O. Meal-stimulated gastric acid and gastrin secretion before and after jejunoileal shunt operation in obese patients. A preliminary report. Scand J Gastroenterol 1979; 14: 13-6.
- ⁶⁷Wise L, Stein T. The pathogenesis of diarrhea after bypass of the small intestine. Surg Gynec Obstet 1976; **142**: 686-8.

- ⁶⁸Gothlin J, Andersson K-E, Dencker H. Small bowel transit time and roentgenological changes of intestinal mucosa after jejunoileostomy. Acta Chir Scand 1978; 144: 45-9.
- ⁶⁹Reynolds TB. Medical complications of intestinal bypass surgery. *Adv Intern Med* 1978; 23: 47-59.
- ⁷⁰Drenick EJ, Ament ME, Finegold SM, Parraro ED Jr. Bypass enteropathy: an inflammatory process in the excluded segment with systemic complications. *Am J Clin Nutr* 1977; **30**: 76–89.
- ⁷¹Peters RL. Patterns of hepatic morphology in jejunoileal bypass patients. Am J Clin Nutr 1977; **30**: 53-7.
- ⁷²Powell-Jackson PR, Maudgal DP, Sharp D, Goldie A, Maxwell JD. Intestinal bacterial metabolism of protein and bile acids: role in pathogenesis of hepatic disease after jejunoileal bypass surgery. Br J Surg 1979; 66: 772-5.
- ⁷³Piepkorn MW, Mottet IVK, Smuckler EA. Fatty metamorphosis of the liver associated with jejunoileal bypass. Arch Pathol Lab Med 1977; 101: 411-5.
- ⁷⁴Salmon PA, Reedyk L. Fatty metamorphosis in patients with jejunoileal bypass. Surg Gynec Obstet 1975; **141**: 75-84.
- ⁷⁵Spellberg MA, Bermudez F. Rapid development of micronodular cirrhosis following small bowel bypass for obesity. A form of iatrogenic nutritional cirrhosis? *Am J Gastro*enterol 1977; **68**: 354–8.
- ⁷⁶Weisemann RE, Johnson RE. Fatal hepatic failure after jejunoileal bypass. *Am J Surg* 1977; **134:** 253-8.
- ⁷⁷Marubbio AT, Rucker RD Jr., Schneider PD, Horstmann JP, Varco RL, Buchwald H. The liver in morbid obesity and following bypass surgery for obesity. *Surg Clin North Am* 1979; **59**: 1079-93.
- ⁷⁸Buchwald H, Lober PH, Varco RL. Liver biopsy findings in 77 consecutive patients undergoing jejunoileal bypass for morbid obesity. *Am J Surg* 1974; **127**: 48.
- ⁷⁹Holzbach RT. Hepatic effects of jejunoileal bypass for morbid obesity. *Am J Clin Nutr* 1977; **30**: 43-52.
- ⁸⁰Moxley RT, Pozefsky T, Lockwood DH. Protein nutrition and liver disease after jejunoileal bypass for morbid obesity. N Engl J Med 1974; **290**: 921-6.
- ⁸¹Sherr HP, Nair PP, White JJ. Bile acid metabolism and hepatic disease following small bowel bypass for obesity. *Am J Clin Nutr* 1974; 27: 1369–79.
- ⁸²Maxwell JD, Sanderson I, Butler WH, Gazet J-C, Pilkington TRE. Hepatic structure and function after modified jejunoileal bypass surgery for obesity. Br Med J 1977; 2: 726–9.
- ⁸³Hollenbeck J, O'Leary JP, Maher JW et al. An etiologic basis for fatty liver after jejunoileal bypass. J Surg Res 1975; 18: 83-9.
- ⁸⁴Mezey E, Imbembo AL, Potter JJ et al. Endogenous ethanol production and hepatic disease following jejunoileal bypass for morbid obesity. Am J Clin Nutr 1975; 28: 1277–83.
- ⁸⁵Mezey E, Imbembo AL. Hepatic collagen proline hydroxylase activity in hepatic disease following jejunoileal bypass for morbid obesity. *Surgery* 1978; **83**: 345–53.
- ⁸⁶Heimburger SL, Steiger E, Gerfo PL, Biehl AG, Williams MJ. Reversal of severe fatty hepatic infiltration after intestinal bypass for morbid obesity by calorie-free amino acid infusion. *Am J Surg* 1975; **129**: 229–35.
- ⁸⁷Ackerman NB. Protein supplementation in the management of degenerating liver function after jejunoileal bypass. *Surg Gynec Obstet* 1979; **149**: 8-14.
- ⁸⁸McClennand RN, De Hazo CV, Heimback DM et al. Prevention of hepatic injury after jejunoileal bypass by supplemental jejunostomy feedings. Surg Forum 1970; 21: 368-70.
- ⁸⁹Ames GC, Copeland EM, Leeb DC *et al.* Liver dysfunction following small bowel bypass for obesity. *JAMA* 1976; **235**: 1249–52.
- ⁹⁰Brown RG, O'Leary JP, Woodward ER. Hepatic effects of jejunoileal bypass for morbid obesity. *Am J Surg* 1974; **127**: 53–8.
- ⁹¹Bray GA, Greenway FL, Barry RE *et al.* Surgical treatment of obesity: a review of our experience and an analysis of published reports. *Int J Obesity* 1977; 1: 331–67.
- ⁹²Parfitt AM, Miller MJ, Frame B et al. Metabolic bone disease after intestinal bypass for treatment of obesity. Ann Intern Med 1978; **89**: 193–9.
- ⁸³Compston JE, Horton LWL, Ayers AB, Tighe JR. Osteomalacia after small-intestinal resection. Lancet 1978; 1: 9–12.
- ⁹⁴Compston JE, Horton LWL, Laker MF et al. Bone disease after jejunoileal bypass for obesity. Lancet 1978; 2: 1-4.
- ⁸⁵Halverson JD, Teitelbaum SL, Haddad JG, Murphy WA. Skeletal abnormalities after jejunoileal bypass. Ann Surg 1979; 189: 785–90.

- ⁹⁶Duncan H. Editorial. Arthropathy and the intestinal bypass operation for obesity. J Rheumatol 1977; 4: 115-7.
- ⁹⁷Zapanta M, Aldo-Benson M, Biegel A, Madura J. Arthritis associated with jejunoileal bypass. Arthritis Rheum 1979; 22: 711-7.
- ⁹⁸Fernandez-Herlihy L. Arthritis after jejunoileostomy for intractable obesity. J Rheumatol 1977; 4: 135–8.
- ⁹⁹Rose E, Espinoza LR, Osterland CK. Intestinal bypass arthritis: association with circulating immune complexes and HLA B27. J Rheumatol 1977; 4: 129-34.
- ¹⁰⁰Shagrin JW, Frame B, Duncan H. Polyarthritis in obese patients with intestinal bypass. Ann Intern Med 1971; 75: 377-80.
- ¹⁰¹Hunton DB. Arthritis after intestinal bypass surgery. Rocky Mt Med J 1978; 75: 320-1.
 ¹⁰²Wands JR, Lamont JT, Mann E et al. Arthritis, associated with intestinal bypass procedure for morbid obesity. N Engl J Med 1976; 294: 121-4.
- ¹⁰³Hallberg BS, Nilsson A, Backman L. Immunological function in patients operated on with small intestinal shunts for morbid obesity. *Scand J Gastroenterol* 1976; 11: 41-8.
- ¹⁰⁴Buchwald H. Surgical approaches for failed jejunoileal bypass and failed gastric bypass. Surg Clin North Am. 1979; 59: 1121-30.
- ¹⁰⁵Clayman RV, Williams RD. Oxalate urolithiasis following jejunoileal bypass. Mechanism and management. Surg Clin North Am 1979; 59: 1071-7.
- ¹⁰⁶Miller MJ, Frame B, Parfitt AM. Nephrocalcinosis in intestinal bypass patients. Arch Intern Med 1977; 137: 1743-4.
- ¹⁰⁷Gregory JG, Park KY, Schoenberg HW. Oxalate stone disease after intestinal resection. J Urol 1977; 117: 631-4.
- ¹⁰⁸Das S, Joseph B, Dick AL. Renal failure owing to oxalate nephrosis after jejunoileal bypass. J Urol 1979; **121**: 506–9.
- ¹⁰⁹Hessov I, Holm CN, Hansen LP. Relationship between dietary calcium and hyperoxaluria after intestinal shunt operation for obesity. *Digestion* 1978; **17**: 268-71.
- ¹¹⁰Dickstein SS, Frame B. Urinary tract calculi after operation for obesity. Surg Gynec Obstet 1973; 136: 257-60.
- ¹¹¹Dobbins JW, Binder HJ. Importance of the colon in enteric hyperoxaluria. N Engl J Med 1977; 296: 298-301.
- ¹¹²Stauffer JQ. Hyperoxaluria and calcium oxalate nephrolithiasis after jejunoileal bypass. Am J Clin Nutr 1977; 30: 64–71.
- ¹¹³Pinto B, Bernshtam J. Diethylaminoethanol-cellulose in the treatment of absorptive hyperoxaluria. J Urol 1978; 119: 630-2.
- ¹¹⁴Earnest DL, Johnson G, Williams HE *et al.* Hyperoxaluria in patients with ileal resection: an abnormality in dietary oxalate absorption. *Gastroenterology* 1974; **66**: 1114–22.
- ¹¹⁵Ehlers SM, Posalaky Z, Strate RG, Quattlebaum FW. Acute reversible renal failure following jejunoileal bypass for morbid obesity: a clinical and pathological (EM) study of a case. *Surgery* 1977; 82: 629–34.
- ¹¹⁶Wise L. Stein T. The effect of jejunoileal bypass on bile composition and the formation of biliary calculi. Ann Surg 1978; 187: 57-62.
- ¹¹⁷Faloon WW. Ileal bypass for obesity. Hosp Practice 1977; 12: 73-82.
- ¹¹⁸Gourlay RH, Reynolds C. Complications of surgery for morbid obesity. Am J Surg 1978; **136**: 54-60.
- ¹¹⁹Ayub A, Faloon WW. Gallstones, obesity and jejunoileostomy. Surg Clin North Am 1979;
 59: 1095–101.
- ¹²⁰Faloon WW, Flood MS, Wilson H et al. Gallstone formation and sterol changes in serum, bile and faeces after jejunoileostomy for obesity. (Abstract). Gastroenterology 1979; 76: 1279.
- ¹²¹Sorensen TA, Bruusgaard A, Pedersen LR, Krag E. Lithogenic index of bile after jejunoileal bypass operation for obesity. Scand J Gastroenterol 1977; 12: 449-51.
- ¹²²Holm G. Intussusception of small intestine following a jejunoileal shunt. Ugeskr Laegr 1978; 140: 1960.
- ¹²³Lavery IC, Fazio VW. Intussusception following jejunoileal bypass for morbid obesity. Report of a case. *Dis Colon Rectum* 1978; 21: 128-9.
- ¹²⁴Ricotta JJ, Gadacz TR, Keiffer RF Jr. Intussusception of the excluded segment following jejunoileal bypass. Johns Hopkins Med J 1979; 145: 7–9.
- ¹²⁵Starkloff GB, Shively RA, Gregory JG. Jejunal intussusception following small bowel bypass for morbid obesity. Ann Surg 1977; 185: 386–90.
- ¹²⁸Hubbard TB. The prevention of bypass enteritis after jejunoileal bypass for morbid obesity. *Ann Surg* 1978; **187**: 502–9.

- ¹²⁷Drenick EJ, Ament ME, Finegold SM, Passaro E. Bypass enteropathy: an inflammatory process in the excluded loop with systemic complications. *Am J Clin Nutr* 1977; **30**: 76–89.
 ¹²⁸Husemann B. Die bypass-enteritis. *Chirurgie* 1979; **50**: 91–5.
- ¹²⁹Clements JL. Intestinal pneumatosis—a complication of the jejunoileal bypass procedure. Gastrointest Radiol 1977; 2: 267-71.
- ¹³⁰Ganel A, Haspel Y, Ben-Ari G, David R. Surgical treatment for pneumatosis cystoides intestinalis complicating jejunoileal bypass. Am J Gastroenterology 1979; 71: 306–10.
- ¹³¹Ikark RW. Pneumatosis cystoides intestinalis following intestinal bypass. Am Surg 1977; 43: 467–70.
- ¹³²Reich SB, Monsour J, Salzman E. Intramural gas after jejunoileal bypass. Rocky Mt Med J 1977; 74: 36–8.
- ¹³³Ackerman NB, Abou-Mourad NN. Obstructive, pseudo-obstructive and enteropathic syndromes after jejunoileal bypass. Surg Gynec Obstet 1979; 148: 168-74.
- ¹³⁴Rubenstein RB, Mbawa N. Excluded loop syndrome: a complication of jejunoileal bypass for obesity. Br J Surg 1978; 65: 607–8.
- ¹³⁵Francis WW, Iannuccilli E. Acute fulminating transmural ileo-colitis after small bowel bypass for morbid obesity. Am J Surg 1978; 135: 524–8.
- ¹³⁶Gourlay RH, Evans KG. Jejunoileal bypass and the defunctioned bowel syndrome. Surg Gynec Obstet 1979; 148: 844-6.
- ¹⁸⁷Kaufman HJ, Weldon HW. Intussusception—a late complication of small bowel bypass for obesity. JAMA 1967; 202: 1147–8.
- ¹⁸⁸Fikri E, Cassella RR. Jejunoileal bypass for massive obesity: results and complications in fifty-two patients. Ann Surg 1974; 179: 460–4.
- ¹³⁹Barry RE, Benfield JR, Nicell PU, Bray GA. Colonic pseudo-obstruction; a new complication of jejunoileal bypass. Gut 1975; 16: 903-8.
- ¹⁴⁰Passaro E, Drenick E, Wilson S. Bypass enteritis. A new complication of jejunoileal bypass for obesity. Am J Surg 1976; 131: 169-73.
- ¹⁴¹Feinberg SB, Schwarts MZ, Clifford S, Buchwald H, Varco RL. Significance of pneumatosis cystoides intestinalis after jejunoileal bypass. Am J Surg 1977; 133: 149–52.
- ¹⁴²Sanders GB. Bypass enteritis or obstructive volvulus? Arch Surg 1977; 112: 668.
- ¹⁴³Backman L, Hallberg D. Tuberculosis after intestinal bypass operations. Acta Chir Scand 1977; 144: 159-61.
- ¹⁴⁴Pickleman JR, Evans LS, Kane JM, Freeark RJ. Tuberculosis after jejunoileal bypass for obesity. JAMA 1975; 234: 744.
- 145 Wills CE. Tuberculosis after jejunoileal bypass. (Letter). JAMA 1976; 235: 1425.
- ¹⁴⁶Yu VL. Onset of tuberculosis after intestinal bypass surgery for obesity. Guidelines for evaluation, drug prophylaxis and treatment. Arch Surg 1977; 112: 1235–7.
- ¹⁴⁷Shizgal HM, Armour FR, Spanier AH, Maclean LD. Protein malnutrition following intestinal bypass for morbid obesity. *Surgery* 1979; 86: 60–9.
- ¹⁴⁸Danø P, Nielsen O, Storgaard L. Partial reconstruction of intestinal continuity in the treatment of severe side effects following intestinal shunt operation for obesity. Scand J Gastroenterol 1979; 14: 167-71.
- ¹⁴⁹Cegielski MM, Organ CH, Saporta JA. Revision of intestinal bypass procedures. Surg Gynec Obstet 1976; 142: 829–39.
- ¹⁵⁰Sherman CS, Faloon WW, Flood MS. Revision operations after bowel bypass for obesity. Am J Clin Nutr 1977; 30: 98–102.
- ¹⁵¹Hitchcock CT, Jewell WR, Hardin CA, Hermreck AS. Management of the morbidly obese patient after small bowel bypass failure. *Surgery* 1977; **82:** 356–61.
- ¹⁵²Tapper D, Hunt TK, Allen RC, Campbell J. Conversion of jejunoileal bypass to gastric bypass to maintain weight loss. Surg Gynec Obstet 1978; 147: 353-7.
- ¹⁵³LeFave JW, Alden JF. Gastric bypass in the operative revision of the failed jejunoileal bypass. Arch Surg 1979; 114: 438-44.

¹⁵⁴Mason EE, Ito C. Gastric bypass in obesity. Surg Clin North Am 1967; 47: 1345-51.

- ¹⁵⁵Mason EE, Ito C. Gastric bypass. Ann Surg 1969; 170: 329-39.
- ¹⁵⁶Mason EE, Printen KJ, Hartford CE, Boyd WC. Optimizing results of gastric bypass. Ann Surg 1975; 182: 405-14.
- ¹⁵⁷Mason EE, Munro JR, Kealey GP et al. Effects of gastric bypass on gastric secretion. Ann Surg 1976; 131: 162–8.
- ¹⁵⁸Mason EE, Printen KJ. Gastric bypass for obesity. In: Buchwald H, Varcor L, eds. *Metabolic Surgery*. New York: Grune & Stratton, 1978: 41–57.
- ¹⁵⁹Mason EE, Printen KJ, Blommers TJ, Scott DH. Gastric bypass for obesity after ten years' experience. *Int J Obesity* 1978; **2**: 197–206.

- ¹⁶⁰Mason EE. Gastric bypass operation. Surgical pros and cons. Surg Gynec Obstet 1979: 148: 765-6.
- ¹⁶¹Alden JF. Gastric and jejunoileal bypass. Arch Surg 1977; 112: 799-806.
- ¹⁸²Alder RL, Terry BE. Measurement and standardization of the gastric pouchi n gastric bypass. Surg Gynec Obstet 1977; 144: 763-4.
- ¹⁶³Buckwalter JA. A prospective comparison of the jejunoileal and gastric bypass operations for morbid obesity. World J Surg 1977; 1: 757-68.
- ¹⁶⁴Buckwalter JA. Clinical trial of surgery for morbid obesity. South Med J 1978; 71: 1370–1.
- ¹⁸⁵Buckwalter JA, Herbst CA. Complications of gastric bypass for morbid obesity. Am J Surg 1980; 139: 55-60.
- ¹⁸⁶Cohen WN, Mason EE, Blommers TJ. Gastric bypass form orbid obesity. *Radiology* 1977; 122: 609–12.
- ¹⁶⁷Elliott J. More help for the morbidly obese: gastric stapling. JAMA 1978; 240: 1941.
- ¹⁶⁸Gomez CA. Gastroplasty in morbid obesity. Surg Clin North Am. 1979; **59**: 1113-20.
- ¹⁸⁹Griffen WO, Young VL, Stevenson CC. A prospective comparison of gastric and jejnuoileal bypass procedures for morbid obesity. Ann Surg 1977; 186: 500-9.
- ¹⁷⁰Griffen JR, Ward O. Gastric bypass for morbid obesity. Surg Clin North Am. 1979; 59: 1103–12.
- ¹⁷¹Hermreck AS, Jewell WR, Hardin CA. Gastric bypass for morbid obesity: results and complications. Surgery 1976; 80: 498–05.
- ¹⁷²Hornberger HR. Gastric bypass. Am J Surg 1976; 131: 415-8.
- ¹⁷³Ikard RW. Gastric stapling for morbid obesity. (Letter). JAMA 1979; 242: 27.
- ¹⁷⁴Ito C, Mason EE. Gastric bypass and pancreatic secretions. Surgery 1971; 69: 526-32.
- ¹⁷⁵Knecht BH. Experience with gastric bypass for massive obesity. *Am Surg* 1978; **44**: 496–504.
- ¹⁷⁶Maini BS, Blackburn GL, McDermott WV. Technical considerations in a gastric bypass operation for morbid obesity. Surg Gynec Obstet 1977; 145: 907–8.
- ¹⁷⁷Moffat RE, Peltier GL, Jewell WR. The radiological spectrum of gastric bypass complications. *Diag Radiol* 1979; **132**: 33–6.
- ¹⁷⁸Moore EE, Buerk C, Moore G. Gastric bypass operation. Surgical pros and cons. Surg Gynec Obstet 1979; 148: 764-5.
- ¹⁷⁹Printen KJ, Mason EE. Gastric surgery for relief of morbid obesity. *Arch Surg* 1973; **106**: 428-31.
- 180Printen KJ, Mason EE. Gastric bypass for morbid obesity in patients more than 50 years of age. Surg Gynec Obstet 1977; 144: 192-4.
- ¹⁸¹Soper RT, Mason EE, Printen KJ, Zellweger H. Gastric bypass for morbid obesity in children and adolescents. J Pediatr Surg 1975; 10: 51-8.
- ¹⁸²Thomas JW, Mason EE. The effects of gastric exclusion operations on pancreatic exocrine secretion. Surgery 1974; 75: 461-70.
- 183VanHouden CE, deBakker J. Morbid obesity. J Kans Med 1979; 80: 269-71.
- ¹⁸⁴Konetschik F, O'Brien PE, Watts JMcK. A complication of stapling the stomach in gastric bypass for obesity. Br J Surg 1980; 67: 298.
- ¹⁸⁵Kark AE, Burke M. Gastric reduction for morbid obesity: technique and indications. Br J Surg 1979; 66: 757-61.
- ¹⁸⁶Garrow JS. Dental splinting in the treatment of hyperphagic obesity. (Abstract.) Proc Nutr Soc 1974; 33: 29.
- ¹⁸⁷Rodgers S, Goss A, Goldney R et al. Jaw wiring in treatment of obesity. Lancet 1977; 1: 1221–2.
- ¹⁸⁸Wood GD. The early results of treatment of the obese by a diet regime enforced by maxillo-mandibular fixation. J Oral Surg 1977; 35: 461–4.
- 189Kral JG. Vagotomy for treatment of severe obesity. Lancet 1978; 1: 307-8.
- ¹⁹⁰Kral JG. Vagotomy as a treatment for morbid obesity. Surg Clin North Am 1979; **59**: 1131-8.
- ¹⁹¹Scopinaro N, Gianetta E, Civalleri D, Donalumi U, Bachi V. Bilio-pancreatic bypass for obesity: I. An experimental study in dogs. Br J Surg 1979; 66: 613-7.
- ¹⁹²Scopinaro N, Gianetta E, Civalleri D, Bonalumi U, Bachi V. Biliopancreatic bypass for obesity. II. Initial experience in man. Br J Surg 1979; 66: 618-20.