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The potent antitumor agent mucocin (1) was isolated from the leaves of Rollinia mucosa (jacq.)
Baill. (Annonaceae) by McLaughlin and co-workers in 1995.1-3 This agent has exquisite
selectivity for the inhibition of A-549 (lung cancer) and PACA-2 (pancreatic cancer) solid
tumor cell lines with potency 10,000 times that of adriamycin (doxorubicin). Annonaceous
acetogenins selectively inhibit cancerous cells through the blockage of the mitochondrial
complex I (NADH-ubiquinone oxidoreductase), and the inhibition of the plasma membrane
NADH oxidase, which depletes ATP and induces apoptosis (programmed cell death) in
malignant cells.4

In a program directed toward the construction of nonadjacent tetrahydrofuran containing
acetogenins, we have developed a new approach to the construction of C2-symmetrical 1,4-
diols, using a temporary silicon-tethered (TST) ring-closing metathesis (RCM) homo-coupling
reaction.5 Herein, we now describe a novel and expeditious synthesis of mucocin (1), which
utilizes the TST-RCM cross-coupling reaction (Scheme 1).6,7 This approach capitalizes on the
localized C2-symmetry and thereby permits the construction of 2 and 3 from a common
synthetic intermediate, the known homoallylic epoxide 5.8 We further envisioned that the C4-
C5 bond could be formed by enantioselective addition of the alkyne 3 to the aldehyde 4, thereby
providing a new strategic disconnection for this class of biologically important molecules.9
The key feature of this approach is the utilization of a triply convergent strategy, that can be
adapted to facilitate the synthesis of related annonaceous acetogenins, resulting in one of the
most expeditious syntheses of a complex acetogenin developed to date.

The synthesis of the 3-hydroxy-2,6-disubstituted tetrahydropyran 2 was accomplished using
the novel six-step strategy outlined in Scheme 2. Mitsunobu inversion of the allylic alcohol
5 using p-methoxyphenol afforded the requisite aryl ether.10 Regiospecific ring opening of
the epoxide with the homoenolate equivalent11 derived from tert-butyldimethylsilyl protected
divinyl carbinol, followed by an in situ protection of the resultant secondary alcohol, afforded
the differentially protected triene 7 in 96% overall yield. Chemoselective Sharpless asymmetric
dihydroxylation of the triene 7 using AD-mix-β furnished the hydroxy ketone 8 in 70% yield
(ds ≥99:1 by HPLC), after recycling the recovered triene 7 (2×).12 The alkyl side chain was
then introduced via the conjugate addition of the cuprate derived from octylmagnesium
bromide and copper cyanide to furnish the ketone 9 and thereby set the stage for the reductive
etherification. Treatment of 9 with bismuth tribromide and tert-butyldimethylsilane in
acetonitrile, followed by in situ protection of the secondary alcohol, furnished the tert-
butyldimethylsilyl ether 10 in 93% yield (ds ≥19:1 by NMR).13 Finally, the p-methoxyphenyl

Note Added after ASAP. In the version posted 11/5/O3, in Scheme 2 the absolute configuration for the secondary tert-butyldimethylsilyl
ether in 7, 8, and 9 was incorrect. The version posted 11/11/O3 and the print version are correct.
Supporting Information Available: Spectral data and detailed experimental procedures for all of the synthetic intermediates (PDF).
This material is available free of charge via the Internet at http://pubs.acs.org.
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ether was oxidatively cleaved with ceric ammonium nitrate (CAN) to complete the construction
of 2.10

The construction of the tetrahydrofuran 3 was also initiated from the homoallylic epoxide 5,
as outlined in Scheme 3. Mitsunobu inversion of 5 followed by regiospecific ring opening of
the epoxide (cf. Scheme 2) with the cuprate derived from allylmagnesium bromide and catalytic
copper cyanide afforded the secondary alcohol, which was subjected to a cobalt(II) catalyzed
oxidative cyclization to afford the trans-2,5-tetrahydrofuran 11 in 75% overall yield (ds ≥19:1).
2d,14 Conversion of the primary alcohol 11 to triflate, followed by cuprate displacement and
in situ deprotection of trimethylsilyl group, furnished the B-ring fragment 3.

The synthesis of butenolide fragment 4 commenced with the regioselective ring opening of
commercially available (S)-propylene oxide 6 (Scheme 4). Treatment of 6 with the carbanion
derived from the alkyne 12 afforded the secondary alcohol, which was converted to the
selenocarbonate 13 using phosgene and phenylselenol.15 The selenocarbonate 13 was
subjected to standard free radical conditions, to afford the γ-butyrolactone in 80% yield. Metal-
catalyzed isomerization of the exo-cyclic olefin and subsequent hydrolysis of the diethyl acetal
furnished the requisite aldehyde 4 in good overall yield.

Scheme 5 outlines the manner in which the three fragments were assembled to complete the
synthesis of mucocin (1). The enantioselective addition of the alkynyl zinc reagent derived
from 3 to the aldehyde 4 furnished the propargylic alcohol in 81% yield with excellent
selectivity (ds = 20:1 by HPLC).9,16 Protection of the alcohol as the triisopropylsilyl ether
followed by deprotection of the p-methoxyphenyl ether afforded the allylic alcohol 1410 and
thereby set the stage for the TST-RCM cross-coupling reaction. The construction of the mixed
bis-alkoxy silane was achieved from the allylic alcohol 2 through the treatment with excess
diisopropyldichlorosilane to afford the mono-alkoxychlorosilane, followed by the removal of
the excess silylating agent and addition of the second allylic alcohol 14. Ring-closing
metathesis of the silicon-tethered diene using stoichiometric Grubbs' catalyst furnished 15 in
83% yield and completed the construction of the carbon skeleton of mucocin (1) (Scheme 5).
17 The synthesis was concluded with the fluoride-mediated deprotection of 15, followed by
chemoselective reduction with diimide.18 The spectroscopic data and optical rotation of
synthetic mucocin (1) were identical in all respects to the values reported for the natural
substance [1H/13C NMR, IR, [α]26

D -16.O (c = 0.25, CH2Cl2)].

In conclusion, we have accomplished an enantioselective total synthesis of the annonaceous
acetogenin (—)-mucocin (1) using a triply convergent 12-step sequence (longest linear
sequence) in 13.6% overall yield. This approach represents the first application of the
temporary silicon-tethered (TST) ring-closing metathesis (RCM) cross-coupling reaction and
the enantioselective alkyne/aldehyde addition in the synthesis of a complex annonaceous
acetogenin. Finally, the synthesis highlights the utility of the bismuth tribromide-mediated
reductive etherification for the construction of 3-hydroxy-2,6-disubstituted tetrahydropyrans.
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Scheme 1.
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Scheme 2a.
(a)p-MeOC6H4OH,DIAD,PPh3,THF,0°C,80%;(b)(CH2=CH)2CHOTBS, sBuLi, THF,-78 °C,
then TBSOTf, 2,6-lutidine, -78 to 0 °C, 96%; (c) AD-mix-β, tBuOH/H2O, MeSO2NH2, 0 °C
(3×), 70%; (d) noctylMgBr, CuCN, THF, -78 °C, 65%; (e)BiBr3, tBuMe2SiH, MeCN, 0°C,
then 2,6-lutidine, TBSOTf, 0°C, 93%; (f) (NH4)2Ce(NO3)6, MeCN/H2O, -5°C, 91%.
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Scheme 3a.
(a)p-MeOC6H4OH,DIAD,PPh3,THF,0°C,80%;(b)CH2=CHCH2MgBr, CuCN, Et2O, -78°C,
90%; (c) Co(modp)2, O2, tBuOOH, iPrOH, 60°C, 83%; (d) Tf2O, Et3N, CH2Cl2, -78°C, 86%;
(e) TMSC≡C(CH2)4MgBr, CuI, THF, -20 to -10°C; then MeOH, TBAF, -20°C to room
temperature, 73%.
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Scheme 4a.
(a)S-Propylene oxide 6, nBuLi, HMPA, THF, -30 °C; (b) COCl2, Et3N, C6H6, 0 °C to room
temperature, then PhSeH, pyridine, THF/C6H6, 0 °C to room temperature, 60% overall yield
from 12; (c) nBu3SnH, AIBN, C6H6, Δ, 8O%; (d) RhH(CO)(PPh3)3, C6H6, 85 °C, 84%; (e)
HCOOH, pentane, 0 °C, 9O%.
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Scheme 5a.
(a)3, Et2Zn, PhMe, Δ, then (R)-BINOL, Ti(OiPr)4, THF, 4,0 °C, 81%; (b) TIPSOTf, pyridine,
DMAP, THF, 0 °C, 96%; (c) (NH4)2Ce(NO3)6, MeCN/H2O, -10 °C, 91%; (d) 2, iPr2SiCl2
(xs), CH2Cl2, imidazole, 0 °C to room temperature, then 14, imidazole, 0 °C to room
temperature, 74%; (e) Grubbs' catalyst (1.8 equiv), 1,2-DCE, Δ, 83%; (f) HF/MeCN,
CH2Cl2, room temperature, 91%; (g) TsNHNH2, NaOAc, 1,2-DME/H2O, Δ, 95%.
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