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In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon

organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana

TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and

lateral growth. In trn mutants, the leaf venation network had a severely reduced complexity: incomplete loops, no tertiary or

quaternary veins, and vascular islands. The leaf laminas were asymmetric and narrow because of a severely reduced cell

number. We postulate that the imbalance between cell proliferation and cell differentiation and the altered auxin distribution

in both trn mutants cause asymmetric leaf growth and aberrant venation patterning. TRN1 and TRN2 were epistatic to

ASYMMETRIC LEAVES1 with respect to leaf asymmetry, consistent with their expression in the shoot apical meristem and

leaf primordia. TRN1 codes for a large plant-specific protein with conserved domains also found in a variety of signaling

proteins, whereas TRN2 encodes a transmembrane protein of the tetraspanin family whose phylogenetic tree is presented.

Double mutant analysis showed that TRN1 and TRN2 act in the same pathway.

INTRODUCTION

Leaves originate as lateral outgrowths at the peripheral zone of

the shoot apical meristem (SAM). The SHOOT MERISTEMLESS

(STM) gene is important for the maintenance of stem cells of the

central zone of the SAM in an indeterminate state.ASYMMETRIC

LEAVES1 (AS1) represses STM in stem daughter cells at the

peripheral zone of the SAM, gradually specifying this region for

organogenesis. AS1 is a Myb transcription factor important for

many processes during leaf formation: initiation, lateral growth,

lamina symmetry, venation patterning, and dorsoventrality

(Byrne et al., 2000; Semiarti et al., 2001; Iwakawa et al., 2002,

Zgurski et al., 2005). Mutations in AS1 of Arabidopsis thaliana

result in asymmetric leaves (Byrne et al., 2000).

In Arabidopsis, leaf venation patterning is an early, progressive,

and hierarchical process (Candela et al., 1999) in which vascular

cells have faster cell cycling than other cell types to get the

vascular pattern correctly integrated into the context of nonvas-

cular tissue. The duration of cell cycling, as observed with the

PCYCB1-1:b-glucuronidase (GUS) marker gene, also reflects

the size of the different vein types (Kang and Dengler, 2002). Auxin

distribution and transport play an important role in venation pat-

terning. In early developmental stages, cotyledon-derived indole-

3-acetic acid (IAA) has been suggested to be imported acropetally

into the SAM and the first leaf primordia, resulting in the formation

of the midvein. Upon maturation, primordia are transformed into

IAA sources, which coincide with IAA biosynthesis, first at the leaf

tip and then followed by auxin production at the margins (hyda-

thodes). This sink–source transition coincides with the lateral

growth of primordia and the formation of the secondary veins,

starting apically from the midvein (Avsian-Kretchmer et al., 2002).

At a later stage, free auxin is also produced at low levels in the leaf

lamina, inducing the tertiary and quaternary veins (Aloni et al.,

2003). The key role of auxin in venation patterning has further been

proven by pharmacological tests and mutational analysis (for

review, see Turner and Sieburth, 2002).

In plants, patterning is a position-dependent process that

involves cell-to-cell communication and the establishment of

gradients, such as those of auxins, that are recognized and in-

terpreted by cells. These recognition events involve the activation

of receptor molecules, resulting in a signal transduction cascade
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and the activation/repression of a number of genes. Well-known

examples of receptor molecules are the membrane-localized

receptor kinases (Diévart and Clark, 2004) and the cytoplasmic

or membrane nucleotide binding site–leucine-rich repeat (NBS-

LRR) proteins, of which a number are involved in pathogen

recognition (Belkhadir et al., 2004). Tetraspanins represent an-

other type of membrane protein that participates in diverse

communication processes, such as cell proliferation, differentia-

tion, and virus and toxin recognition (Hemler, 2003). Recently, a

plant tetraspanin has been described with a function in develop-

ment (Olmos et al., 2003).

Previously, we identified the tornado (trn) class of recessive

mutations that interfere with overall plant growth and morpho-

genesis (Cnops et al., 1996). Allelism tests showed that there are

two genetic loci, TRN1 and TRN2, both located on the lower arm

of chromosome 5 (Cnops et al., 2000) and that trn1 is allelic to

lopped1 (Carland and McHale, 1996; Cnops et al., 2000). A table

of the two loci with their different alleles has been presented by

Cnops et al. (2000). TRN genes are required for root hair pat-

terning and for the suppression of lateral root cap identity in the

epidermis (Cnops et al., 2000). Here, we report the isolation of the

TRN1 and TRN2 genes and their functional analysis in leaf

development.

RESULTS

TRN1 Is a Putative LRR Protein and TRN2 Encodes a

Transmembrane Protein

The TRN1 gene was cloned from a T-DNA–tagged mutant (trn1-4)

with a T-DNA insertion in At5g55540 (Figure 1A). It encodes a

unique Arabidopsis gene consisting of two large exons separated

by a small intron of 79 bp. TRN1 is classified as an unknown

protein of 1380 amino acids. The N-terminal region contains a

putative LRR ribonuclease inhibitor–like (LRR-RI) subfamily do-

main that is most similar to the animal cytosolic nucleotide binding

oligomerization domain (NOD-LRR) proteins (Inohara et al., 2005).

The LRR domain is followed by an ATP/GTP binding motif A (¼P

loop) (Figure 1A), which is part of a region homologous with the

animal DEATH-ASSOCIATED PROTEIN KINASE1 (DAPK1), as

predicted by Structural Classification of Proteins and BLAST.

However, the kinase domain, the ankyrin domains, and the death

box from DAPK1 were absent in TRN1 (Figure 1A). Most topology

prediction programs (including the transmembrane hidden Mar-

kov model [TMHMM]) predict TRN1 to be cytosolic. The presence

of ESTs and/or genomic sequences in monocots, dicots, and pine

(Pinus taeda) indicated that TRN1 is conserved in plants and

already existed before the evolutionary angiosperm–gymnosperm

split. Sequence analysis of trn1-1 and trn1-2/lop1 revealed dele-

tions of 41 and 23 bp, respectively, followed by a stop codon.

Similarly, the C-to-T substitution in trn1-3 introduced a stop codon

into the TRN1-coding region (Figure 1A). Thus, all mutant TRN1

alleles analyzed to date might arise as a result of a premature

translational termination (Figure 1A). Although the position of the

stop codon varied from amino acid 96 in trn1-3 to amino acid 1162

in trn1-1, similar phenotypes were observed in all alleles.

The TRN2 gene was cloned with a map-based strategy (Peters

et al., 2004) (see Supplemental Figure 1 online) and correspon-

ded to At5g46700 that had been identified previously by Olmos

et al. (2003). The TRN2 protein consists of 269 amino acids and

was predicted to be a secreted protein (TargetP score of 0.922)

containing four transmembrane domains (TM1 to TM4), two

extracellular loops (ECL1 and ECL2), and cytoplasmic N and C

termini (Figure 1B; see Supplemental Figure 2 online). Protein

alignments identified TRN2 as a member of the tetraspanin family

(PF0035). TRN2 was sequenced in six trn2 alleles. The single-

base changes in the coding region of trn2-1, trn2-2, and trn2-3

were situated in the very conserved region of the putative second

ECL2 domain (Figure 1B). The G-to-A change in trn2-1 intro-

duced a stop codon at the beginning of exon 2, leading to a

truncated protein that lacked part of the ECL2 loop, the last

transmembrane domain, and the cytoplasmic tail (Figure 1B; see

Supplemental Figure 2 online). The G-to-A substitution in trn2-2

replaced a Gly by a Glu. This Gly is conserved in 10 of 17 TRN2-

like proteins and followed a very conserved Cys (see Supple-

mental Figure 2 online). The C-to-T change in trn2-3 substituted a

Pro (conserved in 9 of 17 TRN2-like proteins) for a Leu (see

Supplemental Figure 2 online). The 30-bp deletion in trn2-4

completely removed the small helix in the cytoplasmic tail (Figure

1B). The trn2-5 allele contained rearrangements, because we

were unable to amplify the complete gene by PCR. trn2-6 had a

4-bp insertion in the ECL2 loop, causing a frameshift and a

premature stop codon five amino acids after the insertion. All trn2

alleles had similar overall phenotypes, indicating that both the

ECL2 domain and the C-terminal cytoplasmic tail are important

for a functional TRN2 protein.

RT-PCR expression analysis revealed that both TRN1 and

TRN2were expressed in seedlings, roots, leaves, stems, flowers,

and cell suspensions (Figure 1C). This observation was in agree-

ment with the pleiotropic phenotype of both trn mutants. RNA

in situ hybridizations were performed on 11-d-old seedlings.

Strong expression of TRN1 and TRN2 was detected in the SAM

and the young leaf primordia (Figure 1D). Expression was also

detected in the lamina of the cotyledons, especially in the

mesophyll and vascular bundles (Figure 1D).

The Plant Tetraspanin Family Consists of Several

Members and Is Conserved throughout the

Multicellular Clades

BLAST and HMMER (profile of hidden Markov models for protein

sequence analysis) searches revealed 16 homologs of TRN2 in

Arabidopsis (see Supplemental Figure 2 online) and plenty of

homologs in a variety of plant species, including mosses (Phys-

comitrella and Ambronella), gymnosperms (Cycad and Pinus

species), and angiosperms (both monocots and dicots). There-

fore, we refer to TRN2 also as Arabidopsis TETRASPANIN1

(TET1). All plant tetraspanins have a similar predicted structure:

four transmembrane domains with a short ECL1 of ;11 amino

acids between TM1 and TM2, a large ECL2 of;137 amino acids

between TM3 and TM4, and short and divergent N- and

C-terminal tails with 6 to 8 and 7 to 40 amino acids, respectively

(as can be deduced from the non-full-length plant ESTs) (Figure

1B; see Supplemental Figure 2 online). Protein sequences de-

rived from 40 clustered EST/cDNAs were used together with pre-

dictions from the annotated rice (Oryza sativa) pseudomolecules
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(version 1; available at http://www.tigr.org/) and the 17 Arabi-

dopsis genes to make an evolutionary tree of the complete

plant TET protein family (Figure 2; see Supplemental Figure 3

online). Ten of the 17 Arabidopsis TET proteins could be grouped

reliably into five classes amid TETs of both monocot and eudicot

species (Figure 2). All of these proteins contained the absolutely

(100%) and highly (90%) conserved amino acids, such as the

Cys in ECL1, three amino acids before TM2, and the nine Cys

residues in ECL2, indicating that these residues were important

for functionality (Figure 1B). All 10 Arabidopsis genes from these

five classes were expressed (Figure 2). The remaining seven

Arabidopsis TET proteins were more divergent and were less

obvious to classify. Their position in the tree varied depending on

the methodology used, and no clear homologs could be found in

other plant species (Figure 2). Some of these proteins had an

accelerated evolutionary rate (Figure 2), resulting even in muta-

tions that affected domain length or residues that were com-

pletely conserved in the other plant TET proteins. Few expression

data (EST or microarray) were available for this group of genes,

and no homologs were found in the rice genome, suggesting

that they could be dicot-specific. Genevestigator (https://www.

genevestigator.ethz.ch) gave expression only above back-

ground for Arabidopsis TET11, TET12, and TET13 in cell sus-

pensions, roots, and stamens, respectively, which might be the

reason for the lack of ESTs in other dicot species. Because no

expression data were obtained for Arabidopsis TET16 and

TET17, they might represent pseudogenes.

Comparison of secondary structure between the plant TET

proteins and the tetraspanins revealed that both groups of

proteins were of similar size and shared the same topology.

These results indicate that the plant TET family shares structural

homology with the tetraspanin family in animals.

trn Leaves Are Defective in Symmetry and Size

All trn mutants, irrespective of their genetic background and

mutated either in the TRN1 or the TRN2 locus, had similar overall

phenotypes: severely dwarfed, with twisted and malformed

organs, and sterile. However, cotyledon shape and symmetry

were unchanged. Total length, lamina length, and lamina area

were normal in trn2-1, and only the lamina area was slightly, but

significantly, reduced in trn1-1 (6.1 mm2 compared with 6.8 mm2

in C24). Rosette leaf size and shape were severely affected. trn

leaves had a rumpled surface with asymmetric laminas because

of nondeveloped blade parts. These defects varied within and

Figure 1. TRN1 Gene Structure and TRN Gene Expression.

(A) Genomic and protein structures of TRN1. Top line, gene structure of

TRN1 with two boxed exons and a small intron. The positions of the

mutations in each of the four trn1 alleles are represented. Bottom line,

TRN1 protein with LRR–ribonuclease inhibitor-like repeat domains (gray

boxes), a P-loop for ATP/GTP binding (black box), and homology with

DAPK (dark gray box). AA, amino acids.

(B) Structure of the TRN2/TET1 protein as a representative of the plant

TET family based on comparisons of 10 Arabidopsis TET proteins and 51

TET proteins derived from full-length tomato (Lycopersicon esculentum),

soybean (Glycine max), daylily (Hemerocallis hybrid), ice plant (Mesem-

bryanthemum crystallinum), maize (Zea mays), wheat (Triticum aestivum),

barley (Hordeum vulgare), and rice (Oryza sativa) cDNA and rice genomic

sequences (all members of the five conserved plant tetraspanin classes).

The most conserved amino acids are positioned along the protein.

Residues that are 100% identical among different plants are in red, and

those that are 90% identical are in blue. The polar amino acids in the four

transmembrane domains are in italics.

(C) Expression analysis of TRN1 and TRN2. RT-PCR analysis of TRN2/

TET1 with exon 1 and 2 primers. cs, cell suspensions; f, flowers; l, leaves;

r, roots; s, stems; sl, seedlings.

(D) In situ localization of TRN1 and TRN2 in 7-d-old seedlings. Top two

panels are SAMs hybridized with antisense TRN1 (left) and TRN2 (right)

probes; bottom two panels are sections through the cotyledon lamina

hybridized with the same probes. le, lower epidermis; lp, leaf primordia;

p, palisade parenchyma; s, spongy parenchyma; SAM, shoot apical

meristem; ue, upper epidermis; vb, vascular bundle. Bar ¼ 200 mm.
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Figure 2. Phylogenetic Tree of the Plant Tetraspanin Family, Inferred with MrBayes.

Posterior probability values are shown at the internodes. The scale measures the evolutionary distance in substitutions per amino acid site. The

neighbor-joining analysis yielded similar classes, although deeper nodes were less supported. In addition, the branch containing Arabidopsis TET13 to

TET15 branched off at the base of the tree. Because of this incongruence between the two methods, and the low posterior probability values in the

Bayesian analysis, the positions of these genes remained uncertain; therefore, they were not assigned to any of the defined classes. The tree was based

on 40 plant-deduced protein sequences obtained from the TIGR gene indices database, the 17 Arabidopsis TET proteins, and predictions from rice

genomic clones (asterisks). Genes from monocots are indicated in red, from dicots in dark blue, and from Arabidopsis in light blue. EST data are given

next to the genes. The Arabidopsis data set was completed with the Gene Atlas data from Genevestigator (https://www.genevestigator.ethz.ch/). C,

cold stress; Da, grown in darkness; Dr, drought stress; F, flowers; Fr, fruits; I, inflorescences; L, leaves; N2, nitrogen starvation; Po, pool of conditions;

Ps, pathogen response; R, roots; Sa, salt stress; Se, seed; Sl, seedling; Tc, tissue culture. In the analysis, 22K array data were used.
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between individuals (i.e., parts or even the entire leaf blade

could be missing) (Figure 3A). The length of the first and second

leaves was slightly reduced in trn1-1 but unaffected in trn2-1.

However, subsequent rosette leaf laminas were visibly smaller

in both trn mutants. Lamina area was reduced by two-thirds

in the first leaves of trn1 and trn2 (Figure 3B) because of

a decrease in cell number. The palisade cell number in transverse

sections of fully expanded trn2-1 leaves was 44 6 5, compared

with 120 6 5 in Columbia 4 (Col). The reduction in cell number

in trn2 was partially compensated by larger cells (Figure 3E).

In addition, the upper epidermal cell area was increased in

trn2-1 compared with Col (5264 6 658 mm2 versus 2146 6

258 mm2). Dorsoventrality was normal, as suggested by the

occurrence of a vacuolated abaxial rib zone, a meristematic

adaxial side in young leaf primordia, and the presence of pali-

sade and spongy parenchyma and collateral vascular bundles

with dorsal xylem and ventral phloem in expanded leaves

(Figures 3D and 3E).

Serial transverse sections through the shoot apices of 6-d-

old seedlings showed that lateral meristems of the leaf

primordia were reduced in trn2-1 and often contained vacuo-

lated cells, resulting in truncated lateral outgrowths in older

primordia with differentiated cells or even intercellular gaps

(Figure 3D). At full expansion, big intercellular gaps, depleted in

palisade and spongy cells, were present throughout the leaf

(Figure 3E).

A flow cytometry experiment was performed with the first

two true leaves of the trn mutants (trn1-2 and trn2-4) in Wassi-

lewskija (Ws) and heterozygous wild-type plants (Ws1 and Ws2)

to assess whether changes in mitotic cell division or endoredu-

plication could be observed and to explain the altered expansion

and differentiation in trn mutants (Figure 3F). Whole-leaf samples

were harvested from 8 to 25 d after germination (DAG) to analyze

the DNA content as a function of time. At early time points, most

cells were in mitotic cell division with a 2C or 4C DNA content,

representing the cells in the G1- or G2-phase of the cell cycle,

respectively. The transition from mitotic cell division to expansion

was characterized by the increase of higher ploidy levels and

thus coincided with the start of endoreduplication (Beemster

et al., 2005). The leaves reached maturity when the DNA content

was stabilized. When these different processes were monitored

in the trn plants, it became evident that the transition from mitotic

cell division to endoreduplication occurred at least 2 d earlier in

the mutants. The 2C/4C content was stable in wild-type plants

until 10 DAG, whereas in trn mutants it had already decreased

before 8 DAG. The leaves of the trn mutant also reached maturity

at 15 DAG, whereas in wild-type leaves the stable DNA distribu-

tion was seen only at 19 DAG. These data showed that the

transition from mitotic cell division to cell expansion occurred

earlier in the trn mutants (Figure 3F). The basipetal progression in

proliferation, expansion, and differentiation in the leaf blade that

can be visualized with the cell cycle marker PCYCB1-1:GUS in

young primordia shows a gradual restriction of mitotically active

cells toward the base of the leaf in the course of organ differentia-

tion (Donnelly et al., 1999). A similar spatial distribution of

PCYCB1-1:GUS activity became apparent when analyzing

trn1-1, although ectopic activity was noted in the vascular

system (see below).

trn Cotyledons and Vegetative Leaves Have a Defective

Venation Network

Venation patterning was abnormal in the majority of mutant

cotyledons. The complexity was measured as the number of

secondary vein loops originating from the midvein: 87% of

trn1-1, 73% of trn1-2, 62% of trn2-1, and 80% of trn2-4 coty-

ledons had the lowest complexity (i.e., two secondary loops plus

or minus the start of one or two others), whereas wild-type

cotyledons (except C24) had three or four secondary loops

(Figure 4). Furthermore, the venation network was discontinu-

ous. The secondary loops were not connected apically to the

midvein in;20% (trn2-1 and trn2-4) to 25% (trn1-1 and trn1-2) of

the cotyledons (Figure 4). Interestingly, vascular islands, veins

unconnected to the rest of the network, were detected in a small

subset of trn cotyledons (Figure 4).

The provascular marker line PATHB8:GUS was used to dis-

tinguish between patterning and differentiation defects in trn2-1

leaves. At 5 DAG, preprocambial (isodiametric) cells were

stained in the middle of the leaf primordium at the position of

the future midvein in wild-type leaves as well as in trn2-1mutants

(Figure 5A). Abnormalities appeared at 6 DAG and coincided with

the formation of the secondary vein loops. Although in wild-type

leaves the secondary veins always formed closed loops, they did

not connect apically or distally or, in extreme cases, at all to the

midvein in trn2-1 leaves (Figure 5A). Tertiary and quaternary

veins were formed in leaves 1 and 2 of Col within and outside the

secondary vein loops at 7 and 8 DAG, respectively. By contrast,

in trn2-1 mutants, almost no higher-order veins were initiated.

Similar observations were made using differential interference

contrast optics in trn1-1 and trn2-1 primordia (data not shown).

The PCYCB1-1:GUS activity was strong in trn1-1 in and around

differentiated veins, especially at open vein endings and in

vascular islands in differentiated apical zones. Ectopic expres-

sion revealed that these cells were still dividing or blocked at the

G2/M transition of the cell cycle. This ectopic expression coin-

cided with thicker veins (Figure 5B), suggesting that in these cells

division takes longer than in wild-type cells.

Venation complexity in first leaves was measured as the

number of branch points (brp) between veins. The total number

of brp was 80 and 90% reduced in trn1-1 and trn2-1, respec-

tively, but this was attributable not only to the decreased lamina

area in both mutants, because the brp:lamina area ratio was 57%

that of wild type in trn1-1, 39% in trn1-2, 33% in trn2-1, and 38%

in trn2-4 (Figure 3C). To identify the type of veins that were

affected, we counted the brp between different order veins.

There were 60% fewer brp between primary and secondary

veins and 75% fewer between secondary and tertiary veins than

in the wild type, but almost no tertiary to quaternary brp in either

mutant (Figure 3A). Hence, in the trn mutants, the total number of

brp decreased mainly because of the progressive reduction in

higher-order veins. The midvein itself was never affected. It

should be noted that the total number of brp, the brp:lamina area

ratio (Figure 3C), and the total number of secondary vein loops

(open and closed) were similar in both trn mutants.

In addition to the complexity of the vascular network, its

continuity was also affected in trn mutants, because open distal

vein loops were detected and vascular islands were observed in
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Figure 3. Morphology and Anatomy of trn Mutants.
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>50% of trn1-1 and trn2-1 first leaves. These nonconnected

pieces of vasculature were completely absent in both C24 and Col

wild types. The discontinuous venation network was investigated

with aniline blue, a dye that stains callose in phloem sieve ele-

ments. The gaps did not contain phloem elements and were thus

completely deprived of vascular tissue (Figure 5F). This observa-

tion is in agreement with the discontinuity between vascular

elements seen in the PATHB8:GUS marker analysis (Figure 5A).

trn1 and trn2 Double Mutant Analysis

To investigate the genetic interaction between trn1 and trn2,

double mutants were made. Heterozygous plants for both trn1-2

(Ws) and trn2-4 (Ws) were crossed because both mutants are

sterile. In the next generation, F1 plants heterozygous for both

trn1-2 and trn2-4 were selected with PCR analysis, and seeds

were harvested. Because TRN1 and TRN2 are only separated by

3545 kb on the bottom arm of chromosome 5, very few double

mutants were expected in the F2 generation. Therefore, 113

wild-type-looking plants were analyzed by PCR, and the 101

plants heterozygous for both trn1 and trn2 were harvested. Only

one plant segregated in the next generation with the ratio of 1:3

mutant:wild type, indicating that the parental plant had under-

gone a crossover between TRN1 and TRN2. No obvious pheno-

type different from those of trn1-2 or trn2-4 was observed in the

next generation. To analyze the leaf shape and venation pheno-

types in more detail, the cotyledons and first two leaves of 39 F3

trn-looking plants were harvested. The remaining leaves were

collected for DNA preparation, and the genotype of each plant

was verified with PCR to be a double mutant. The cotyledons and

first leaf pair in trn1-2 trn2-4 looked indistinguishable from those

of the single parents. The leaf surfaces were irregular, with pieces

or even half of the lamina missing (Figure 3A). The lamina area of

the double mutant was similar to that of trn1-2 and statistically

slightly larger than that of trn2-4 (Figure 3A). The double mutant

had a similar but slightly less severe venation pattern in the

cotyledons compared with both single mutants (Figure 4). The

vasculature of the double mutant leaves was severely reduced

and mostly open. The number of brp was similar to that of both

single mutants (data not shown), but the brp:lamina area ratio

Figure 3. (continued).

(A) Leaf morphology and venation pattern of first leaves of Ws, trn1-1, trn1-2, trn2-1, trn2-4, trn1-2 trn2-4, as1-1, and trn2-1 as1-1. Double-headed

arrow, part of the leaf blade missing ¼ asymmetry; asterisk, open top loop. pb, primary bundle; pv, primary vein or midvein; qv, quaternary vein; sv,

secondary vein; tv, tertiary vein. Bar ¼ 0.5 cm.

(B) and (C) Graphs of the lamina area (B) and total branch points (brp)/lamina area (C) of fully expanded first and second leaves of 30 C24, 58 trn1-1, 30

Col-4, 41 trn2-1, 39 as1-1, 37 trn2-1 as1-1, 23 Ws, 31 trn1-2, 34 trn2-4, and 50 trn1-2 trn2-4 plants. Single, double, and triple asterisks indicate

significant differences between mutant and parent by Student’s t-test (P < 0.05) and between double mutants and both parental single mutants.

(D) Transverse sections through 8-d-old shoot apices of wild-type (top) and trn2-1 (bottom) leaf primordia, respectively. c, cotyledon; g, gap; lp, leaf

primordium; mv, midvein; s, stomata. Bar ¼ 300 mm.

(E) Transverse sections through fully expanded first leaves of wild-type (top) and two trn2-1 (bottom) laminas. x indicates the position of the midvein,

which is bifurcated in the top leaf and eccentric in the bottom trn leaf. Bar ¼ 200 mm.

(F) Whole-leaf flow cytometry of the wild type (Ws) and trn mutants. The different stages of leaf growth are indicated with arrows: proliferation period

before the yellow arrow, expansion period between the two arrows, and mature stage after the purple arrow. DAG, days after germination.

Figure 4. Venation Pattern in Cotyledons of trn Mutants.

The venation complexity is given as the percentage of cotyledons displaying a particular venation pattern. The most representative complexity for a wild

type or mutant is boxed. The percentages of cotyledons with discontinuities in their venation are circled. The arrow indicates a vascular island. cots,

cotyledons; ND, not determined.
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Figure 5. Venation Patterning in Leaves of trn Mutants.
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was statistically more reduced in trn1-2 trn2-4 compared with

the single mutants (Figure 3A). These data indicate that TRN1

and TRN2 are involved in the same processes. Because of the

similar phenotypes of the single mutants, epistasy could not be

determined.

TRN1 and TRN2 Are Epistatic to AS1with Respect to

Leaf Asymmetry, and TRN2 Is Synergistic with AS1

with Respect to Venation Patterning

The as1-1 mutant develops leaf laminas with unequal left and

right halves, petioles attached to the abaxial surface of the leaf

blades, and altered venation patterning (Figure 3A) (Byrne et al.,

2000; Sun et al., 2002; Zgurski et al., 2005). trn2-1 (Col) was

crossed to as1-1 (Col-1), and plants homozygous for as1-1 were

self-fertilized in the F2 and analyzed in the F3 for the phenotype of

trn2-1 as1-1. In a similar manner, double mutants were obtained

from a cross between trn1-1 (C24) and as1-1. Similarly, trn2-1

as1-1 and trn1-1 as1-1 segregated 1:3 and had a clear trn leaf

shape phenotype, with the typical missing parts in the lamina and

no characteristics of as1-1 leaf shape (Figure 3A). These data

reveal that TRN2 and TRN1 are epistatic to AS1 with respect to

leaf asymmetry. However, total leaf length and lamina area in

as1-1 trn2-1 were intermediate compared with those of their

parents, indicating that with respect to lamina growth both loci

were independent (Figure 3B).

The vascular system was analyzed in the cotyledons to ex-

clude the influence of the aberrant leaf shape on venation

pattern. The reduction in venation complexity produced in

as1-1 and trn2-1 single mutants was even more pronounced in

the double mutant (Figure 4). Furthermore, twice as many double

mutant cotyledons had an open apical loop, and a new pheno-

type of two open apical loops was observed in 9% of as1-1 trn2-1

cotyledons (Figure 4). A similar trend was seen in the first leaves

as well, where the brp:lamina area ratio was more reduced in the

double mutant than in both single mutants (Figure 3C). These

data indicate that the TRN2 and AS1 loci act synergistically in

venation patterning. The analysis of the vasculature in trn1-1

as1-1 was more complicated, probably because of the mixed

background of both single mutations. TRN1 and AS1 probably

also act synergistically in venation patterning, because the new

phenotype of two open apical loops was observed in 24% of the

trn1-1 as1-1 plants.

trnMutants Have an Altered Auxin Distribution

Auxin is an important inducer of vascular pattern formation, and

this pattern is severely affected in trn mutants. Therefore, the

altered venation patterning in trn leaves could result from defects

in auxin homeostasis, distribution, or transport. The PDR5:GUS

marker gene was introgressed into trn1-1 and trn2-1 for in situ

localization of auxin accumulation or auxin reactivity in leaves

(Mattsson et al., 2003; Koizumi et al., 2005). In wild-type leaf

primordia, GUS expression was first noticed in a distal focus and

subsequently seen at the position of the future midvein (Figure

5C). With the initiation of the leaf lamina and the differentiation of

the midvein, PDR5:GUS expression diminished from the mid-

vein, and new expression zones appeared at the sites of future

secondary vein loops, followed by new zones of expression that

coincided with the formation of the tertiary and quaternary veins

(Figure 5C) (Mattsson et al., 2003). In wild-type adult leaves,

weak PDR5:GUS expression was observed at the hydathode

regions. In addition, a similar pattern was observed in leaves

3 and 4. PDR5:GUS activity preceded procambium formation,

decreased when procambial strands were formed, and disap-

peared at later stages of vascular differentiation. Until 5 DAG, the

PDR5:GUS expression pattern did not differ between the wild-

type and either trn mutant, except for the often asymmetric

location of the distal focus (Figure 5C). Weaker PDR5:GUS

patterns were obtained in trn leaves at 6 DAG, in agreement with

the ectopic PAtHB8:GUS expression pattern at that time. Inter-

estingly, little PDR5:GUS activity was detected at or around the

vascular system of 8-d-old leaves 1 and 2, but ectopic expres-

sion was observed along the margins and persisted in mature

leaves (Figure 5C). Besides the GUS pattern described above,

PDR5:GUS activity in later leaves was stronger and 2 d earlier in

the marginal serrations than in the wild type (Figure 5C). Serial

sections of these leaves showed ectopic GUS activity predom-

inantly in the palisade and spongy mesophyll layers (see Sup-

plemental Figure 4 online). Auxin concentration was measured in

shoot apices of 19-d-old seedlings. The endogenous IAA con-

centration in both trn mutants was similar to that of the wild type

(65 6 15 pmol/g in trn1-1, 71 6 15 pmol/g in Ws, 26 6 11 pmol/g

in trn2-1, and 41 6 9 pmol/g in Col), indicating that there was no

reduction in overall auxin concentration in trn shoots. To assess

the role of the TRN genes in auxin response, wild-type and

trn leaves were treated with a-naphthaleneacetic acid and the

Figure 5. (continued).

(A) 5-Bromo-4-chloro-3-indolyl-b-D-glucuronide (X-Gluc) staining of the PATHB8:GUS marker gene activity in 5-, 6-, 7-, and 8-d-old first leaves of wild-

type and trn2-1 plants. mv, midvein; sv, secondary veins; tv, tertiary veins; vi, vascular island.

(B) Activity of PCYCB1-1:GUS in trn1-1. pc, procambium.

(C) PDR5:GUS activity in 5- to 8- and 24-d-old first leaves (left) and 10- to 12-d-old third leaves (right) of wild-type (top) and trn2-1 (bottom) plants. df,

distal focus; mf, marginal focus. Double-headed arrows indicate ectopic expression.

(D) PDR5:GUS activity in excised 10-d-old Col, trn2-1, and trn1-2 leaves after exposure to 0, 1, and 10 mM a-naphthaleneacetic acid (NAA).

(E) Auxin transport measurements of Ws and trn1-2/lop1 hypocotyls and stem fragments. The hypocotyls or stem fragments were placed either upside-

up (acropetal transport) or upside-down (basipetal ¼ active transport) in [3H]IAA. The pieces were cut in two, and the radioactivity present in the top half

was expressed as a percentage of the total amount of radioactive IAA present in the entire explant. For the upside-up direction, 14 (44) WS and 10 (27)

trn1-2/lop1 hypocotyls (stems) were used; for the upside-down direction, 36 (28) Ws and 41 (80) trn1-2/lop1 hypocotyls (stems) were used. Error bars

indicate SE.

(F) Top, differential interference contrast images of xylem patterning of primary and secondary veins at the top of the cotyledon or first leaf of 3-week-old

seedlings. Bottom, fluorescence microscopy of phloem sieve tubes stained with aniline blue. x indicates the top of the midvein. Bar ¼ 1 mm.
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expression of PDR5:GUS was examined. Ectopic PDR5:GUS

activity was seen at the margins and the wounding site. A similar,

but more intense, response was observed in trn leaves (Figure 5D).

The defective venation patterning, ectopic PDR5:GUS activity,

and altered auxin transport measured in trn1-2/lop1 stem frag-

ments (Carland and McHale, 1996) suggested that auxin trans-

port could also be defective in mutant seedlings. Therefore, the

capacity to actively transport auxin was analyzed in hypocotyls

of 19-d-old seedlings. Auxin transport in etiolated hypocotyls of

trn1-2/lop1 and Ws is summarized in Figure 5E. The amount of

actively transported IAA, expressed as the percentage of basip-

etal minus acropetal transport, was 7.9% in Ws and in trn1-2/

lop1 as well. Also, no differences were observed in polar auxin

transport rates between trn1-1 and C24, and no reduced auxin

transport was measured in trn2-4 compared with Ws hypocotyls.

However, a threefold reduction in auxin transport was measured

in trn1-2/lop1 excised stem fragments compared with Ws frag-

ments. Moreover, we observed a 2.2-fold increase in acropetal

transport (Figure 5E).

DISCUSSION

trn1 and trn2 have similar phenotypes, and double mutant

analysis has shown that they are required for related, overlapping

signaling events. TRN1 contains domains specific for signaling

proteins, and TRN2 is a tetraspanin, a class of proteins known to

be involved in cell-to-cell communication in animals. Further-

more, both proteins are produced only in multicellular organisms.

Therefore, we argue that both TRN1 and TRN2 act in the same

developmental communication pathway.

TRN2/TET1 Is a Member of a Plant-Specific Branch

of the Tetraspanins

We isolated the TRN2/TET1 gene and showed that it is a putative

transmembrane protein belonging to the family of tetraspanins.

These proteins are widely distributed throughout the animal and

plant kingdoms, with several homologs in almost all species,

although plant tetraspanins are mutually more conserved than

their animal counterparts. They all share a very conserved

topology that is important for facilitating the interactions between

different proteins in animals by stabilizing and rendering large

protein complexes functional. Tetraspanins interact with a vari-

ety of proteins, such as other tetraspanins, integrins, proteogly-

cans, growth factors, growth factor receptors, and signaling

enzymes (Maecker et al., 1997; Hemler, 2001, 2003). Specifi-

cally, the ECL2 domain found in animal tetraspanins seems to be

relevant for complex formation with other proteins, as follows

from genetic evidence and chimeric protein analysis (Hemler,

2001, 2003; Stipp et al., 2003). Sequence analysis of the different

trn2 alleles revealed the importance of the main ECL2 and the

C-terminal end in plant tetraspanins, exactly the same domains

considered to be crucial for tetraspanin function in animals. In

contrast with animals, plant tetraspanins share nine rather than

four, six, or eight completely conserved Cys residues. In plants,

these Cys residues could also be involved in the formation of

disulfide bridges, as supported by the missense mutations in the

trn2-2 and trn2-3 alleles. An uncharged amino acid (Pro-164 in

trn2-2 and Gly-177 in trn2-3), closely linked to a highly conserved

region containing three Cys residues, is exchanged for the

charged amino acid Glu. Pro and Gly are important amino acids

for secondary structure determination; therefore, mutating these

amino acids could interfere with the correct folding of the protein

(Cys–Cys interactions). Alternatively, an active site for binding to

other protein(s) could be disturbed upon mutation of Pro-164 and

Gly-177.

The C-terminal tail of both animal and plant tetraspanins is

mostly short (4 to 40 amino acids) and divergent. Nevertheless,

mutational and chimeric studies in animals imply an important

role for this domain, such as targeting to intracellular locations or

interaction with cytoskeletal or signaling molecules, including

protein kinase C, integrins, and mu3A subunit AP-3 (Stipp et al.,

2003). Our data also assign an important function to this very

short domain in plants, because the phenotype of trn2-4, in

which 10 of 14 amino acids from the C-terminal tail were deleted,

is as dramatic as that of the other trn2 alleles.

Animal tetraspanins contain a number of highly polar residues

in TM1, TM2, and TM4 that could be involved in stabilizing the

transmembrane tertiary structure for dimerization or multimeri-

zation to create the tetraspanin web (Stipp et al., 2003). Seven

polar residues are present in TM1 to TM4 of plant tetraspanins

(Figure 1B); three other residues are shared between the 50 and

75% of the sequences tested, which could indicate that plant

tetraspanins also interact with several tetraspanins in a tetra-

spanin web.

The phylogenetic tree shows that the divergence of plant

tetraspanin classes predates the monocot–dicot split and prob-

ably happened before the gymnosperm–angiosperm split (Figure

2). Members of the five distinct classes can be found in mosses,

gymnosperms, and angiosperms and are active in different

tissues and under abiotic stress conditions. Because all of the

absolutely conserved amino acids in plant tetraspanins (Figure

1B) are conserved in the Physcomitrella ESTs as well (http://

www.moss.leeds.ac.uk/blast.html), they likely have been con-

served for >700 million years in all Embryophyta and might be

functionally important. Despite some differences between animal

and plant tetraspanins, the highly conserved protein topology,

protein lengths, and functionality of the ECL2, and the C-terminal

tail make the animal and plant tetraspanins very probably derived

from a common ancestor. Tetraspanins are membrane-localized

in animals (in tetraspanin-enriched microdomains) and partici-

pate in diverse communication processes (Maecker et al., 1997;

Hemler, 2001, 2003). Therefore, it is not surprising that until now

tetraspanins have been restricted to multicellular organisms and

unicellular amoebas that can form multicellular structures (Huang

et al., 2005) and that homologs are lacking for the unicellular

green algae Chlamydomonas and yeast. The patterning and

growth defects caused by the mutations in TRN2/TET1 suggest

that in plants as well as animals, tetraspanins are involved in cell–

cell interactions and signaling.

TRN1 Is a Putative LRR Protein

TRN1 encodes an unknown protein with high similarity to NOD-

LRR proteins and is predicted to be cytoplasmic. TRN1 is also
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homologous with DAPK. However, the kinase domain is not

present. Other LRR proteins without kinase domains, such as

CLAVATA2 and TOO MANY MOUTHS, have been shown to be

required for cellular communication processes that decide

between stem cell fate and differentiation fate (Nadeau and

Sack, 2003). The NOD-LRR proteins are involved in pathogen

resistance in mammals, and a number of these proteins are

cytoplasmic and resemble the R genes in plant pathogen resis-

tance. NOD-LRR and R genes are specificity determinants of

the immune response. They act as regulatory modules for

protein activation because of the presence of a NBS and serve

as protein interaction platforms affected by the LRR domain.

The subsequent signaling cascade leads to gene activation

(Belkhadir et al., 2004). In TRN1, the putative LRR domain is

N-terminally followed by the NBS, which is opposite to the

arrangement of these domains in NOD-LRR and R proteins. In

any case, the presence of these two domains suggests a role for

TRN1 in signaling.

TRNGenes Function in Leaf Symmetry through

Auxin Homeostasis

Both trn1 and trn2 mutants display similar leaf phenotypes that

are related to patterning processes early during leaf develop-

ment (i.e., lateral symmetry, venation patterning, and lamina

outgrowth). TRN2 and TRN1 were epistatic to AS1 with respect

to leaf asymmetry, indicating that TRN2 and TRN1 act upstream

of AS1 either in the SAM at the leaf initiation site or slightly later in

the leaf primordium. Both TRN genes are expressed in the SAM

and the leaf primordia, as shown by in situ hybridization. Dis-

placement and asymmetry of auxin foci, and hence auxin re-

sponse patterns, have been proposed to lead to asymmetric vein

patterns and asymmetric leaf shape in as1 and as2 (Zgurski et al.,

2005). Altered PDR5:GUS expression in trn mutants was not only

reflected in a shifted positioning of the distal and marginal foci,

as in as1; in addition, trn mutants also exhibited an ectopic

and asymmetric distribution of auxin along the leaf margins of

expanding leaves (Figure 5C). Auxin homeostasis is important for

the correct balance between cell proliferation and expansion,

because the sites of highest IAA production coincide with cell

division activity. Moreover, a tight control of auxin homeostasis

appears to be critical for normal leaf growth as well (Ljung et al.,

2001). Thus, the altered auxin distribution in trn mutants could

severely affect cell division and expansion. Indeed, flow cytom-

etry of leaves and histological sections confirmed such changes

in cell division/expansion activity at the stage at which ectopic

PDR5:GUS expression was detected. Changing the balance

between cell division, cell expansion, and cell differentiation

through local induction of either cell cycle genes or expansins in

young leaf primordia resulted in asymmetric leaves with inden-

tations, because of fewer and larger cells and less differentiation

of the vasculature (Wyrzykowska et al., 2002; Verkest et al.,

2005), or leaf outgrowths (Pien et al., 2001). The similar pheno-

types observed in trn suggest that the TRN genes are essential

for the establishment of development, thereby controlling the

interplay between cell cycle progression and differentiation. Both

TRN genes are seemingly required for leaf proliferation and

differentiation in a spatiotemporal context.

TRN Genes Are Crucial in Signaling and Sensing the

Developmental Stage of Cells

The impaired vasculature is not the consequence of altered leaf

morphology because the latter only partially accounts for the

reduced vascular complexity and can explain neither the dis-

continuity nor the incorrect initiation of secondary veins. Fur-

thermore, lamina shape is unaltered in cotyledons, despite the

reduced complexity and discontinuity of the vascular system.

Both TRN genes were synergistic with AS1 concerning venation

patterning, indicating that AS1 and the TRN genes play a role in

the process of lateral symmetry as well as in venation patterning,

but through different pathways. TRN2 acts early because it is the

limiting factor for PATHB8:GUS expression and procambium

formation. Among the different hormones involved in vascular

development, auxin plays a key role in vascular pattern formation

and acts upstream of the regulator of the early procambium

development marker PATHB8:GUS (Baima et al., 1995). The

changed auxin balance in trn mutants is not attributable to an

overall alteration in auxin concentration but rather results from

local changes in auxin reactivity or distribution. trn mutants show

an enhanced PDR5:GUS activity after the external addition of

auxin (Figure 5D), which does not necessarily mean that they are

hypersensitive. An increased signal was expected because both

mutants already had increased activity without the addition of

auxin, indicating that trn mutants are able to respond to auxin.

The initial auxin transport into the young leaf primordia and

basipetal generation of the midvein (Avsian-Kretchmer et al.,

2002; Aloni et al., 2003; Mattsson et al., 2003) all occur in trn

mutants, although the position of the distal focus and, thus, also

the midvein is often shifted toward one side of the leaf. In

hypocotyls, polar auxin transport is not reduced, and antibodies

against different PIN proteins, putative facilitators of auxin efflux,

are correctly localized in 5-d-old primary roots of both trn

mutants (data not shown).

These data argue for normal auxin transport in very young

seedlings and primordia and make it unlikely that the auxin

transport machinery itself is affected directly. However, the

ectopic PDR5:GUS activity at the leaf margins is clearly linked

with the malformation of secondary and higher-order veins.

Auxin is produced ectopically along the margins and may not

be correctly sensed or transported toward the midvein, with

incomplete vasculature as a consequence. Such deficiencies in

auxin response or distribution could also explain the ectopic

PDR5:GUS activity seen in adult leaves. High PDR5:GUS activity

is observed in the wild type along leaf margins when grown on

10mM 1-N-naphthylphthalamic acid and coincides with the abnor-

mal formation of concentrated venation at the margins (Mattsson

et al., 1999). No such concentration of veins along the margins is

observed in trn mutants, arguing against auxin transport being

the limiting factor for the formation of higher-order veins. We

propose that both TRN genes are necessary for the canalization

of the auxin signal into the formation of procambium, either by

sensing/responding to auxin signals or by regulation of the auxin

transport machinery. The prolonged and ectopic expression of

PCYCB1-1:GUS along the vasculature in trn1-1 suggests local

alterations in cell division during vascular development, which

could explain the formation of thicker veins, as is apparent in trn
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mutants. Thus, the TRN genes are important for vascular mer-

istem identity by participating in setting up the correct balance

between cell proliferation and differentiation, which is necessary

to maintain the continuity of vessels and sieve tubes.

Overall organ growth along the different growth axes and the

initiation of vascular tissue occur in trn mutants simultaneously

with those of the wild type. However, the anatomical data, cell

size measurements, PCYCB1-1:GUS activity, and flow cytome-

try profile indicate that on the cellular level, cells in leaf primordia

are not in the same phase of development as in the wild type.

Cells in trn organs might possibly be impaired in their ability to

respond to hormonal and/or additional developmental cues that

are required for the coordinated formation of procambial higher-

order veins. Previously, we have demonstrated the importance of

TRN1 and TRN2/TET1 in the patterning of the primary root

epidermis (Cnops et al., 2000). Root epidermal patterning results

from signaling processes that lead to tissue specification along

the radial axis. Mutants defective in either TRN1 or TRN2/TET1

affect cell fates of both root hair and non–root hair cells. Perhaps

TRN2 and TRN1 act in the same pathway that recognizes a

signaling molecule derived from the underlying cortical cell (or

the intercellular space between two cortical cells), resulting in the

determination of epidermal cell fate. In addition to incorrect

epidermal patterning, both trn mutants also have altered lateral

root cap identity and root growth defects. Based on their similar

roles in patterning and growth in both roots and leaves, the

phenotype conferred by trn1 trn2, and their protein structure, we

postulate that TRN1 and TRN2/TET1 act in the same signaling

process to coordinate patterning and growth at early leaf and

root development.

METHODS

TRN1 Gene Cloning

Websites used for the analysis were as follows: Smart (http://smart.

embl-heidelberg.de), Structural Classification of Proteins (http://scop.

mrc-lmb.cam.ac.uk/scop/), BLAST (http://www.ncbi.nlm.nih.gov/BLAST),

The Institute for Genomic Research (TIGR; http://tigrblast.tigr.org/

tgi/), TMHMM (http://www.cbs.dtu.dk/services/TMHMM/), targetP, (http://

www.cbs.dtu.dk/services/TargetP/), and Pfam (http://www.sanger.ac.

uk/cgi-bin/Pfam). trn1-4 was isolated from mutagenized Arabidopsis

thaliana seed populations transformed with the activation-tagging vector

pSK105 (Weigel et al., 2000). After cosegregation of a single T-DNA

insertion with trn1 phenotypes had been confirmed, the insertion site was

determined by plasmid rescue, followed by sequencing reactions per-

formed with T-DNA–specific primers. The T-DNA insert was found at

position 3826 bp of the TRN1 coding sequence. Homologous genes in

other plant species were determined with the TIGR database and include

sorghum (Sorghum bicolor; accession number TC20671), Medicago

truncatula (TC1111561), rice (Oryza sativa; AAR87265), pine (Pinus taeda;

DR119311), cotton (Gossypium hirsutum; CO082135), maize (Zea mays;

CO449207), and soybean (Glycine max; CO980870).

Sequence Analysis of TRN2 Homologs

MatDB was scanned for TRN2 homologs with BLAST. A hidden Markov

model–based profile was created for these proteins with the HMMER

package (Eddy, 1998) and was used to rescan the in-house database of

predicted proteins in Arabidopsis, built with the EuGène program (Schiex

et al., 2001; http://www.inra.fr/bia/T/EuGene). Automatic annotation of

the selected proteins was improved. First, intron–exon borders were

verified and the transcripts were aligned to the genomic region with Sim4

(Florea et al., 1998). Second, prediction errors were detected by aligning

the proteins with each other. All of this information was compiled with

ARTEMIS (Mural, 2000) and used to decide on the final gene structure.

Phylogenetic Analysis

The GenBank nonredundant protein database and the TIGR gene indices

database (http://www.tigr.org/tdb/tgi) were scanned with BLAST for

sequences homologous with TRN2, and the results were inspected

manually. Sequences were aligned with ClustalW version 1.84, followed

by manual alignment. Trees were constructed on conserved positions of

the alignment by clustered EST sequences that contained a full open

reading frame, full-length cDNA sequences (when available), and pre-

dicted rice and Arabidopsis genes with the neighbor-joining algorithm as

implemented in TREECON (Van de Peer and De Wachter, 1994) and by

Bayesian tree inference with MrBayes (Ronquist and Huelsenbeck, 2003)

using the GTRþg evolutionary model with six Markov chains for 500,000

generations, of which the first 50,000 were discarded. Alignments were

edited and reformatted with ForCon (Raes and Van de Peer, 1999) and

BioEdit (Hall, 1999). The statistical significance of nodes in the neighbor-

joining approach was tested with 500 bootstrap replicates.

Expression Analysis and in Situ Hybridization

Total RNA was isolated from 50 to 100 mg of tissue and isolated with the

RNeasy plant mini kit (Qiagen). cDNA was obtained by reverse transcrip-

tion of 3 to 5 mg of RNA with SuperScript II reverse transcriptase

according to the manufacturer’s instructions (Invitrogen).

Probes were generated by PCR with primers carrying the T7 and T3

RNA polymerase binding sites at the 59 end (TRN1-T7, 59-CCAAGCTTCTA-

ATACGACTCACTATAGGGAGAAGAGAACTACGGGAGACGACTGA-39;

TRN1-T3, 59-AATTAACCCTCACTAAAGGGAGAAGCTGCTCTTTGTTCT-

TGTTC-39; TRN2-T7, 59-CCAAGCTTCTAATACGACTCACTATAGGGA-

GAAACTACCATTTGCCCTGA-39; and TRN2-T3, 59-AATTAACCCTCAC-

TAAAGGGAGAAGCACCCGATAATGTAGACGATAA-39). Labeling with

digoxigenin (DIG) was performed with DIG RNA labeling mix (Roche

Diagnostics) with either T3 or T7 RNA polymerase (Roche Diagnostics)

according to the manual. Labeled probes were dissolved in 100 mL of

water.

Seedlings (7 d old) were fixed in PBS þ 4% paraformaldehyde over-

night at 48C. Material was dehydrated in ethanol and subsequent

HistoClear (National Diagnostics) series. Embedding was performed at

608C by adding paraffin and changing the solution eight times. Embedded

material was cut with a RM2245 microtome (Leica) in 8-mm-thick sections

that were transferred on charged slides. Paraffin was removed in

HistoClear and ethanol series followed by 0.2 M HCl treatment for

20 min. Proteins were digested by treating sections for 20 min with

5 mg/mL proteinase K at 378C, and the tissue was stabilized by fixation

with 4% paraformaldehyde in PBS. Hybridization, washing, and antibody

incubation were performed in an InsituPro VS robot (Intavis). Slides were

treated twice with prehybridization buffer (20% formamide and 2.5% 203

SSC [13 SSC is 0.15 M NaCl and 0.015 M sodium citrate] in water).

Samples were hybridized with antisense and sense probes (15 mL/mL) for

8 h at 508C in hybridization buffer (40% formamide, 25% 203 SSC, 1%

1003Denhardt’s solution [13 Denhardt’s solution is 0.02% Ficoll, 0.02%

polyvinylpyrrolidone, and 0.02% BSA], 1% yeast t-RNA [10 mg/mL], and

100 mg/mL salmon sperm DNA in water). Each washing step was

performed three times: 33 SSC, 1.53 SSC, 0.753 SSC, and 0.33 SSC.

Subsequent steps were done at room temperature. Samples were washed

in Tris-buffered saline (TBS) with 0.2% Triton X-100 (TBST) and blocked

with TBST þ 3% BSA for 1 h. Incubation with anti-DIG-UTP-alkaline
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phosphatase FAB fragments (1:2000; Roche Diagnostics) was done for

2 h. After washing with TBS, samples were equilibrated in detection buffer

(100 mM Tris-HCl, pH 9.5, 100 mM NaCl, and 50 mM MgCl2) and stained

overnight with nitroblue tetrazolium chloride and 5-bromo-4-chloro-3-

indolyl phosphate (Carl Roth) at 0.2 mM final concentration. Slides were

mounted in 50% glycerol and inspected with an inverted microscope

(Zeiss). Images were taken with a digital camera (Zeiss) and processed

with AxioVision LE software (Zeiss).

Plant Material and Growth Conditions

The trn2-1mutation was in Col-4, trn1-1 in C24, trn1-2 in Ws ecotype (see

Table 1 in Cnops et al., 2000), and trn1-4 in a mixed Col-0 and Nossen

background; as1-1 (N3374) was in Col-1 and PATHB8:GUS (N296) was in

Ws; they were obtained from the Nottingham Arabidopsis Seed Stock

Centre. The PDR5:GUS and PCYCB1-1:GUS lines were kindly provided

by B. Scheres (Department of Molecular Cell Biology, Utrecht University)

and L. De Veylder (Ghent University), respectively. Plants were grown as

described by Cnops et al. (2004).

Leaf Morphology and Histology

Cotyledons and fully expanded leaves of 4-week-old seedlings grown in

vitro were cleared with 100% methanol (overnight) and subsequently with

90% lactic acid (overnight), photographed, and analyzed with the com-

puter program Scion Image Beta 3b (Scion Corporation). Epidermal

cell area was measured with differential interference contrast optics on

cleared leaves.

To compare mutant and wild-type measurements, data were intro-

duced into the Statistical Package for the Social Sciences (release 10.0.5;

SPSS) (Cnops et al., 2004). Historesin-embedded leaf blades of fully

expanded leaves were sectioned serially and stained with toluidine blue.

The palisade cell number was determined as described (Nelissen et al.,

2003). For visualization of callose in phloem sieve elements, 20-d-old

seedlings were fixed and stained with 0.005% aniline blue (Carland et al.,

1999).

Two-week-old trn1-1, trn2-1, C24, and Col-4 seedlings containing the

PDR5:GUS marker were incubated in 90% acetone at 48C for 30 min,

washed in 50 mM sodium phosphate buffer with 0.01% Triton X-100,

preincubated in phosphate buffer, pH 7, with 2 mM potassium ferricya-

nide/ferrocyanide for 30 min at 398C, and subsequently incubated in 2 mM

K3/K4 FeCN and 3 mM X-Gluc in phosphate buffer at 378C for 4 h after

15 min of vacuum infiltration. The seedlings were washed and cleared

overnight in 100% methanol. ForPATHB8:GUS, 5- to 8-d-old seedlings of

trn2-1 and Col were incubated in X-Gluc for 2 h, and trn plant material

containing PCYCB1-1:GUS was incubated for 1 h. trn2-1 and Col-4 first

or second leaves containing the PDR5:GUS marker gene were dissected

from 13- and 16-d-old seedlings stained with GUS and fixed overnight at

48C in 2.5% (v/v) glutaraldehyde in 50 mM sodium phosphate buffer. The

leaves were dehydrated stepwise and embedded in Technovit (Heraeus).

The fixed specimens were mounted by stitching a plastic support to the

fixed blocks overnight with Technovit 3040. Sections (5 mm) were

visualized under a dark field. For auxin response analysis, first leaves of

10-d-old seedlings were excised, incubated for 7 h in liquid germination

medium, and histochemically analyzed.

Flow Cytometry

The trn mutants (trn1-2 and trn2-4) were heterozygotes, allowing the

leaves of trn and wild-type segregants from the same plate to be

harvested. For each time point, two biological and three technical re-

peats were performed. The procedure was according to De Veylder et al.

(2001).

Auxin Transport

Transport assays consisted of at least two individual experimental sets of

30 to 50 replicates each. To obtain elongated hypocotyls, 19-d-old plants

were grown in darkness for 24 h. This treatment was performed for 100 h

before hypocotyl excision. Sections of hypocotyl (5 mm) or stem (5 to

10 mm) were incubated upside-up or upside-down in a 500-mL Eppendorf

tube containing 40 mL of growth medium solidified with 0.5% agar and

280 mCi of [3H]IAA (3-[5(n)-3H]indolyl acetic acid; 26 Ci/mmol [GE Health-

care]) and unlabeled IAA (400 pmol; Sigma-Aldrich) to obtain a final IAA

concentration of 2 3 10�5 M. The explant was vertically submerged into

the agar over a length of 2 to 3 mm, incubated for 18 h, removed from the

substrate, and cut into two equal parts: an upper part never in contact

with the substrate, and a lower part continuously incubated. The two

parts were extracted for 24 h in 100 mL of 100% methanol, a 1000-mL

scintillation cocktail was added (Ultima Gold; Packard), and the samples

were assayed for tritium with a liquid scintillation counter (Tri-Carb 1500;

Canberra Packard International). Total radioactivity was calculated as the

sum of the radioactivity present in the upper (free) and lower (substrate)

sites of the segment after incubation. Data are expressed as percentages

of the total radioactivity present in the upper (free) site of the hypocotyl

(stem). Acropetal (basipetal) transport of IAA corresponded to nonspe-

cific (specific) transport from the basal to the apical (apical to basal) end of

the segment obtained by assaying the explants in the upside-up (upside-

down) position. As an additional control, 10�5 M 1-N-naphthylphthalamic

acid (a kind gift from W. Michalke, University of Freiburg) was added in

both positions to block polar auxin transport.

Auxin Analysis

Samples were ground in liquid nitrogen and extracted overnight in 80%

methanol at�208C. As a standard for isotope dilution purposes, 138 pmol

of [13C6]IAA ([phenyl-13C6]indole-3-acetic acid) (Cambridge Isotope Lab-

oratories) was added. IAA was purified by a combined solid-phase

extraction, methylated, and analyzed by micro liquid chromatography-

electrospray (þ)-tandem mass spectrometry (Prinsen et al., 1998).

Accession Numbers

The Nottingham Arabidopsis Stock Centre codes for the trn1-1 and trn2-1

alleles are N9550 and N9551, respectively. The accession numbers of the

genes are At5g55540 (TRN1) and At5g46700 (TRN2).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Map-Based Cloning of TRN2.

Supplemental Figure 2. Alignment of the Arabidopsis TET Proteins,

Functional Domains, and trn Alleles.

Supplemental Figure 3. Sequence Alignment Used for the Phyloge-

netic Tree of Plant Tetraspanins in NEXUS Format.

Supplemental Figure 4. PDR5:GUS Activity in a Transverse Section

of a trn Leaf.
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and De Veylder, L. (2005). The cyclin-dependent kinase inhibitor

KRP2 controls the onset of the endoreduplication cycle during Arabi-

dopsis leaf development through inhibition of mitotic CDKA;1 kinase

complexes. Plant Cell 17, 1723–1736.

Weigel, D., et al. (2000). Activation tagging in Arabidopsis. Plant

Physiol. 122, 1003–1013.

Wyrzykowska, J., Pien, S., Shen,W.H., and Fleming, A.J. (2002). Mani-

pulation of leaf shape by modulation of cell division. Development 129,

957–964.

Zgurski, J.M., Sharma, R., Bolokoski, D.A., and Schultz, E.A. (2005).

Asymmetric auxin response precedes asymmetric growth and differ-

entiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis

leaves. Plant Cell 17, 77–91.

866 The Plant Cell


