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A stem-loop mutation between ccpA and motP in the Bacillus subtilis ccpA-motPS operon increased motPS
transcription and membrane-associated MotPS levels, motility, and number of flagella/cell when MotPS is the
sole stator and the MotPS contribution to motility at high pH, Na�, and viscosity when MotAB is also present.

Hetero-oligomeric “Mot” complexes composed of MotA and
MotB or their homologues form rings around individual bacterial
flagella. The Mot complexes are stators for the flagellar rotor and
also constitute ion channels that couple the energy of transmem-
brane ion gradients of either H� or Na� to rotation (2, 12, 20).
Some bacteria have dual flagellar and/or Mot systems that are
adaptive to different swimming modes, e.g., in liquid versus on
surfaces, or certain physical-chemical conditions, e.g., salinity, pH,
and viscosity (1, 11, 14, 15). In Bacillus subtilis, a single flagellar
rotor system is powered by two Mot complexes that are coupled
to fluxes of different cations, such that MotAB is H� coupled and
MotPS is Na� coupled (10, 11). MotAB is dominant in laboratory
strains of B. subtilis, which are only slightly motile when motAB is
disrupted (11). However, a variant with increased motility (up-
motile mutant) that exhibited robust MotPS-dependent swim-
ming on soft agar plates when MotPS was the sole stator, was
isolated; motility was highest at elevated viscosity, pH, and NaCl
concentrations (11). Here, we clarified the molecular basis for the
up-motile phenotype affecting MotPS-dependent motility, the ef-
fect of the mutation on the number of flagella/cell, and its effect
on the contribution of MotPS to the motility of B. subtilis pos-
sessing a wild-type motAB locus.

The motPS genes are downstream of the ccpA gene, which
encodes a central regulator of carbon metabolism, forming a
putative ccpA-motPS operon (6, 7, 16). Coordinated expression of
ccpA and motPS could represent a multipronged response to
alkali stress, since both Na�-coupled MotPS-dependent motility
and increased metabolic production of acids are adaptive to high
pH (11, 13). Sequence analysis of the up-motile mutant
(AB::Tn-M) selected in a motAB mutant strain (AB::Tn) showed

no mutations in the ccpA and motPS coding sequences (strains
are listed in Table S1 in the supplemental material). However, a
point mutation (G3A) was found at the 33rd nucleotide follow-
ing the stop codon of the ccpA gene, within a stem-loop structure
in the intergenic region between ccpA and motP that has the
potential to serve as an intrinsic transcriptional terminator. The
mutation is predicted by the Mfold program (22) to change the
free energy (�G) of the RNA secondary structure from �18.5
kcal/mol to �12.3 kcal/mol. This mutation was confirmed to be
sufficient to confer the up-motile phenotype after deletion of the
native ccpA-motPS operon from B. subtilis AB::Tn using the
method described previously by Horton (8), producing strain
AB::Tn�CPS. Upon introduction of the mutant or wild-type
ccpA-motPS operon into the amyE locus of this strain, the mutant
ccpA-motPS locus supported the same up-motile phenotype as
the original up-motile strain on soft agar plates, whereas the
strain expressing the wild-type locus did not (shown in Fig. S1 in
the supplemental material together with a diagram of the muta-
tion site; primers and details of strain construction are available
on request).

The levels of MotP and MotS in the membranes of the
up-motile AB::Tn-M strain that lacks motAB, its AB::Tn par-
ent strain, and the wild-type strain were analyzed by Western
blots of sodium dodecyl sulfate–10% polyacrylamide gels (17)
carried out using a chemiluminescence protocol according to
the manufacturer’s instructions (Amersham Biosciences). The
polyclonal anti-MotP or anti-MotS antibodies used for detec-
tion were raised in rabbits against synthetic peptides corre-
sponding to residues 88 to 100 of MotP (SLSDHARKHGLL)
and to residues 1 to 14 of MotS (MKLRRERFERRNGS),
with an additional cysteine added to the C terminus to facili-
tate conjugation to keyhole limpet hemocyanin (Operon Bio-
technologies, Inc., Tokyo, Japan); a purified immunoglobulin
G fraction (Melon Gel IgG Spin purification kit; Pierce Bio-
technology, Inc., IL) was used. The intensity of the MotP and
MotS bands was comparable in the wild-type and AB::Tn sam-
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ples, as expected, while the levels of MotP and MotS were
increased 3.8 and 2.1 times, respectively, in the AB::Tn-M
samples (Fig. 1A).

Transcript levels for ccpA and motPS were measured for the
motAB� strains CPS and CPS-M that express the wild-type or
mutant ccpA-motPS locus, respectively, only from the amyE
locus, with a �CPS strain as a negative control. RNA was
prepared as described previously (9), and Northern analysis
was carried out using digoxigenin RNA probes (DIG RNA
labeling kit, SP6/T7; Roche Applied Sciences). Both the motPS
and ccpA probes (Fig. 1B and C) hybridized to a 2.7-kb band
in RNA from both CPS and CPS-M (Fig. 1C). This size corre-
sponds to the expected size for ccpA-motPS mRNA and was the
only band observed with the motPS probe. The amount of the
2.7-kb mRNA in CPS-M cells was about twofold higher than that
in CPS cells. In addition to the 2.7-kb ccpA band, a significant
amount of ccpA-containing mRNA in the CPS strain was found in
two bands around 1.1 kb in size, the expected size for a monocis-
tronic ccpA transcript. A much weaker 1.1-kb mRNA signal was
observed in the CPS-M mRNA (Fig. 1C, left). These results
indicated that ccpA and motPS form an operon, since both ccpA
and motPS probes hybridized to the 2.7-kb transcript. Consistent
with a transcriptional termination function for the intergenic
stem-loop, transcription of ccpA alone occurred at a higher level
than transcription of the entire operon in the wild-type strain,
whereas the level of the polycistronic ccpA-motPS mRNA is in-
creased in the up-motile mutant, and little monocistronic ccpA
mRNA was detected.

To better define the influence of the stem-loop element on
transcription, ccpA-lacZ and motPS-lacZ fusions were gener-
ated in the wild-type (motAB�) strain using the pMutin4 inte-
gration plasmid (18) to fuse lacZ to the ccpA gene upstream of
the stem-loop or to motS downstream of either a wild-type
stem-loop (motPS-lacZ) or an up-motile mutant stem-loop

(motPS-lacZ-M) (Fig. 2A). The resulting strains grew compa-
rably at 37°C in 2� TY medium (10) (Fig. 2B). Samples were
taken at different points during growth for measurements of
�-galactosidase activity (4). The most striking feature of the
expression patterns was that motPS-lacZ transcriptional activ-
ity was significantly lower than that of ccpA-lacZ, whereas the
transcriptional activity of motPS-lacZ-M was close to that of
ccpA-lacZ, with a 3.6-fold increase relative to the motPS-lacZ
fusion (Fig. 2C). These results are consistent with the obser-
vation that the up-motile mutation results in increased levels of
ccpA-motPS polycistronic mRNA.

A microscopic examination was carried out on negatively
stained preparations (21) of four motile strains (wild type,
AB::Tn-M, �PS, and CPS-M) and three nonmotile strains

TABLE 1. Number and length of flagella of B. subtilis mot
strains at pH 7.0

Strain Stator(s)c

No. of
flagella/cella

Length of
flagella (�m)b

Range of
values Avg Range of

values Avg

Wild type MotAB, MotPS 9–11 9.9 6.9–8.3 7.7
AB::Tn MotPS 4–7 5.8 5.4–7.6 6.7
AB::Tn-M MotPS-M 10–13 11.6 6.8–8.3 7.3
AB::Tn�PS None 2–3 2.2 3.5–4.7 4.3
�AB MotPS 4–6 5.0 6.2–7.6 6.9
�PS MotAB 6–8 6.8 5.8–7.5 6.8
CPS-M MotAB, MotPS-M 11–14 12.6 7.0–8.3 7.6

a Flagella were counted in five cells. The standard deviations of the average
values shown were less than 2 for all values.

b Measurements were made for cells. The standard deviations of the average
values shown were between 0.6 and 1.1.

c MotPS designates expression from a wild-type ccpA-motPS locus, and
MotPS-M designates expression from an up-motile mutant locus.

FIG. 1. Western and Northern analyses of MotP and MotS in the wild type, AB::Tn, AB::Tn-M, and �AB�PS. The cells were grown in 2� TY
medium at 37°C. (A) Western analyses using antibodies against peptides corresponding to regions of MotP and MotS. The strain is indicated above
each lane, with Wt representing the wild type. A quantitative imaging system, Pluor-S MAX (Bio-Rad), was used for detection and analysis of a
chemiluminescence image. (B) Schematic diagram of the ccpA-motPS region of the B. subtilis chromosome indicating the probes used for Northern
analyses. (C) Results of the Northern analyses, with the strain indicated above each lane and the probe used for the particular blot indicated below
the panel. The expected sizes for ccpA mRNA and ccpA-motPS mRNA are indicated by a gray arrow and a black arrow, respectively.
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(AB::Tn, AB::Tn-�PS, and �AB). Strains expressing motPS
from the up-motile mutant ccpA-motPS locus had an average
of 12 flagella/cell whether or not MotAB was also present, a
number of flagella/cell that was similar to that of the wild-type
strain (average of 10) and higher than the number of flagella/
cell in cells expressing only MotAB (average of 7) or MotPS
(average of 5) from the wild-type ccpA-motPS locus (Table 1).
The inability of the MotPS-only cells to swim in liquid, in
contrast to the MotAB-only cells, is probably due to lower
numbers of Mot complexes in the former cells, and that num-
ber is increased by the up-mutation. The motAB motPS double
mutant had an average of 2 flagella/cell and was the only strain

in which flagellar length was also significantly shorter than that
of the wild type (Table 1). Calvio et al. (3) recently identified
the B. subtilis swrA gene of the dicistronic swrAB operon as the
locus of the ifm mutation that increases flagellar number and
results in hypermotility (5). We verified that up-motile strains
contained no changes in the swrAB sequence. Our results sup-
port other evidence that the presence of Mot complexes influ-
ences flagellar assembly (10, 19) and indicate that the presence
of either the MotAB or MotPS stator is sufficient to allow
normal flagellar biogenesis in B. subtilis.

Finally, the contribution of MotPS to the swimming speed
under different conditions was assessed (10) in three strains

FIG. 2. Expression of ccpA-lacZ and motPS-lacZ fusions in wild-type and �motAB strains. (A) Schematic diagram of the integrated pMutin
plasmid locus in the ccpA-motPS region. Each construct was inserted into the pMutin plasmid upstream of the stem-loop structure at the intergenic
region of ccpA and motP. (B) Growth curves of strains. BR151MA (wild type), E; W-ccpA-lacZ, ; W-motPS-lacZ, ‚; W-motPS-lacZ-M, .
Growth in 2� TY medium at 37°C was monitored by A600. (C) �-Galactosidase activity of the ccpA-lacZ and motPS-lacZ fusion constructs
(indicated at the top of each panel) at different times during growth. Activity is expressed as nanomoles o-nitrophenyl-�-D-galactopyranoside
hydrolyzed per minute per milligram protein. The strains used for the experiment are indicated below the panel. The error bars indicate the
standard deviations of the values.
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that have wild-type motAB loci but differ in motPS status:
wild-type B. subtilis; CPS-M, expressing a mutant ccpA-motPS
operon in the amyE locus; and �PS, lacking motPS. First, cells
grown at pH 7.0 in TY medium (which contains 14 to 17 mM
Na�), with or without the addition of 200 mM NaCl, were
transferred into TY medium without added NaCl, at different pH
values. The effect of the Na� channel blocker 5-(N-ethyl-N-iso-
propyl)-amiloride (EIPA), which selectively inhibits MotPS-de-
pendent swimming (11), was assayed. Indeed, EIPA did not sig-
nificantly inhibit the motility of a strain lacking motPS (�PS)
under any condition of pH or Na� content, whereas inhibition
was observed in the motPS-containing strains (see Fig. S2 in the
supplemental material). The inhibition by EIPA as a function of
pH and pregrowth with 200 mM added Na� showed that MotPS
has a significant role in motility in the up-motile MotPS strain
even at pH 6.0 without pregrowth with added Na�, whereas

MotPS expressed from the wild-type locus contributed to swim-
ming at pH 6.0 only if cells were pregrown with added Na� (Fig.
3A). At all pH values, the role of MotPS, as assessed by percent
EIPA inhibition, was greater in the strain expressing the up-
motile ccpA-motPS locus. Next, the contribution of MotPS to
swimming of the motAB� strains at a low protonmotive force
(lowered by protonophore carbonyl cyanide m-chlorophenyl-
hydrazone [CCCP]) or elevated viscosity (achieved by the addition
of polyvinylpyrrolidone [PVP]) was studied in cells pregrown and
assayed in the presence of 200 mM NaCl at pH 8.5, conditions
that maximized the MotPS contribution (see Fig. S2 in the sup-
plemental material). Under these conditions, MotPS clearly con-
tributed to swimming in the presence of added CCCP or PVP,
with the mutant ccpA-motPS locus conferring greater adaptability
than the wild-type locus to either low protonmotive force or
elevated viscosity (Fig. 3B).

The swimming-speed assays show that MotPS plays a role
in the motility profile of wild-type B. subtilis with a func-
tional MotAB stator, especially once the organism is exposed
to elevated Na� levels. The increased impact of the up-motile
MotPS phenotype in strains containing the stem-loop mutation
is most evident at elevated Na�, pH, and viscosity or at low
protonmotive force, conditions that could select for mutations
of this type when “undomesticated strains” are exposed to
them in the environment.
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