Skip to main content
. 2006 Mar 6;7:110. doi: 10.1186/1471-2105-7-110

Table 1.

Mean accuracy and standard error of the mean of various classifiers, using three features derived from the alignment of the sequences to be compared. 100-fold jackknife resampling was employed. "± " denotes the standard error of the mean.

SVM classifier
Accuracy Precision True Positives True Negatives False Positives False Negatives

99.55% ± 0.008 99.31% ± 0.015 1897.1 ± 0.21 1887.9 ± 0.28 13.1 ± 0.28 3.9 ± 0.21

RBF network classifier

Accuracy Precision True Positives True Negatives False Positives False Negatives

99.33% ± 0.011 98.91% ± 0.019 1896.5 ± 0.22 1880.1 ± 0.38 20.9 ± 0.38 4.6 ± 0.22

3-feature linear classifier

Accuracy Precision True Positives True Negatives False Positives False Negatives

99.42% ± 0.011 99.22% ± 0.020 1893.8 ± 0.35 1886.0 ± 0.39 15.0 ± 0.39 7.2 ± 0.35