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ABSTRACT We present a generic computational framework for the simulation of viral capsid assembly which is quantitative
and specific. Starting from PDB files containing atomic coordinates, the algorithm builds a coarse-grained description of protein
oligomers based on graph rigidity. These reduced protein descriptions are used in an extended Gillespie algorithm to
investigate the stochastic kinetics of the assembly process. The association rates are obtained from a diffusive Smoluchowski
equation for rapid coagulation, modified to account for water shielding and protein structure. The dissociation rates are derived
by interpreting the splitting of oligomers as a process of graph partitioning akin to the escape from a multidimensional well. This
modular framework is quantitative yet computationally tractable, with a small number of physically motivated parameters. The
methodology is illustrated using two different viruses which are shown to follow quantitatively different assembly pathways. We
also show how in this model the quasi-stationary kinetics of assembly can be described as a Markovian cascading process, in
which only a few intermediates and a small proportion of pathways are present. The observed pathways and intermediates can
be related a posteriori to structural and energetic properties of the capsid oligomers.

INTRODUCTION

Viruses are the cause of some of the deadliest diseases today.

In fact, the lethality of viruses emanates from their simplic-

ity; as the ultimate nonautonomous parasites, viruses cannot

replicate without a host cell and are therefore immune to

standard antibacterial drugs. Basically, a virus consists of

two components: genetic material (DNA or RNA) and a pro-

tective protein shell, the capsid. In a self-referencing loop,

the viral nucleic acids encode the proteins that form the viral

capsid. Once the virus penetrates a host cell, it hijacks the

cellular machinery of the host and uses it to replicate the viral

genome and to express the viral protein(s), which then as-

semble into capsids. As a result, the infected cell acts as a

replicator of new viruses instead of performing its normal

tasks (1).

Another remarkable feature of viruses is that capsids are

commonly quasi-spherical with icosahedral symmetry (1,2).

Although other viral structures, such as cigar-shaped and

partial sheets, are possible, we restrict our investigation to

icosahedral capsids. Because encoding a large protein to

envelop the whole genome is not physically realizable, iden-

tical copies of the same protein are used in a symmetric ar-

rangement. Therefore, symmetry is used to economize the

number of distinct proteins encoded in the viral genomes.

This was formalized beautifully in the classic theory of

quasi-equivalence (2,3), which broadly predicts the manner

in which identical asymmetric protein units can be used to

form a symmetric capsid. Quasi-equivalent viruses are char-

acterized by their T-number, the number of proteins in each

asymmetric unit (Fig. 1). This leads to icosahedral capsids

with 60 T proteins, where geometrical constraints dictate that

T ¼ h2 1 hk 1 k2, with h and k nonnegative integers.

Clearly, viral capsids with larger T-values enclose a larger

volume while maintaining icosahedral symmetry.

The assembly of the capsid, a crucial step in the virus life

cycle, could provide an opportunity to interfere with the

process of virus replication (4). However, although there is a

wealth of structural capsid data from x-ray crystallography

and cryo-electron microscopy, the assembly pathways re-

main largely uncharted. It is known that inside the cell the

capsid is assembled around the virus genome (DNA or RNA)

with only limited or no assistance from other biomolecules

(1). Even more remarkable, for some viruses self-assembly

can take place in vitro, in the absence of the genome and

outside the cellular environment, and still lead to stable

capsids that are indistinguishable from those created in vivo.

The role of the genome in the assembly process is not fully

clarified and it may well be that in vivo and in vitro assem-

blies follow different routes (5).

Because detailed experimental data on assembly routes is

at present difficult to obtain (5–9), modeling and simulation

approaches have come to play an important role in the un-

derstanding of this process. In particular, one would like to

identify the pathways by which the oligomers combine to

form the final capsid and the factors that can influence the

process. Previous theoretical work has approached different

aspects of the assembly process using a variety of tech-

niques: from dynamic to static models, both microscopic and

macroscopic (4,6,10–19).

Ideally, a fully dynamic view of the assembly process

could be achieved by performing molecular dynamics (MD)

simulations with a full atomic description of the proteins in
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aqueous solution. However, the computational cost of

full MD restricts its applicability to simplistic models of

proteins—essentially, balls with sticky pods under Brownian

motion. Schwartz et al. and Berger et al. (6,10) performed

such a dynamical simulation of capsid formation, where they

showed that the assembly can be completed using only local

information in the incomplete capsid. Recently, Rapaport (11)

has presented more realistic MD results that capture some of

the salient features of a generic virus self-assembly process, but

still lacking the necessary detail to investigate specific viruses.

Quantitative results for specific viruses can only be

obtained through the use of a more detailed protein model.

However, it is currently infeasible to simulate explicit dy-

namics of such a large ensemble of hydrated proteins due to

the size and complexity of the units. This has led to micro-

scopic approaches in which the partially completed capsid is

investigated as it is assembled quasi-statically. The assump-

tion here is that the relative positions (and thus, the inter-

actions and energies) in the incomplete capsid are identical to

those found in the complete capsid. However, this is itself

a computationally hard problem due to the combinatorial

number of assembly pathways. Horton and Lewis (12) were

the first to use combinatorial optimization to find substruc-

tures with the most favorable association energies. This

scheme was further extended by Reddy et al. (13) with a

more refined method for calculating the energies. Beyond

purely energetic considerations, structural concepts have

been used to characterize protein assemblies: Sitharam and

Agbandje-McKenna (14) have used combinatorial and com-

putational algebra to create models based on static geometric

and tensegrity constraints, while Hespenheide et al. (15) have

investigated rigid protein assemblies as likely candidates to be

long-lived.

Alternatively, other theoretical studies have concentrated

on more macroscopic approaches. Some studies have fo-

cused on the static mechanical structure of the full capsid

rather than the dynamics of the assembly (20–22). Recent

work of Bruinsma et al. (23,24) (see also (5) for more

qualitative ideas) is based on statistical mechanics calcula-

tions of free energies that take into account the curvature

of the capsid. Finally, the macroscopic kinetic approach

pursued by the group led by Zlotnick (4,16–18) (see also

(19)) describes capsid assembly through empirical, law-of-

mass-action differential equations for the concentration of

the different oligomers. However, although the results can be

related to bulk concentration measurements, this kinetic ap-

proach is still unable to provide information about micro-

scopic pathways. In recent work, Endres et al. (25) have

concluded that only a few out of the combinatorially many

intermediates play any role and that these cannot be pre-

dicted by considering minimal energy configurations alone.

In this article, we develop a modeling framework that in-

corporates atomic detail of proteins into an explicit imple-

mentation of the kinetics of capsid assembly as a stochastic

process. Our model starts from atomic descriptions of the

protein oligomers, available from databases such as VIPER

(26), and simplifies the representation through a reduction of

the degrees of freedom based on graph rigidity measures

with the aid of the software FIRST (27). These reduced

oligomer descriptions are used to simulate stochastically the

process of capsid formation, without allowing for malformed

structures, through an extended Gillespie algorithm (28). Our

scheme includes both diffusive association and dissociation

reactions whose reaction rates are derived using the reduced

graph representations. Although our algorithm does not

implement dynamics explicitly, it provides the stochastic

time evolution of the system and the quasi-steady oligomer

distribution. This information can be analyzed to infer which

pathways are important in the assembly of specific viruses

and the role that protein structure and chemical environment

play in the assembly process.

Reduced protein descriptions from full
atomic models

To incorporate sufficient molecular detail, our computational

framework starts from the detailed atomic structure of

FIGURE 1 The icosahedral geometry of a T ¼ 1 capsid. (a) There are 60
symmetrically equivalent lattice positions, each one occupied by an asym-

metric protein. For the 1stm virus, the protein positioned at 1 has bonds with

those positioned at 2, 3, 6, 38, and 37 (but not with 4), with energies as

shown in Table 1. (b) A flattened view of the icosahedron above.
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proteins as determined by crystallographic experiments. An

invaluable resource is the database VIPER (26), which

provides protein structures, transformation matrices, maps

for adjacent proteins, and binding energies for a large

number of viruses. This full atom description of the protein

oligomers needs to be simplified to make it tractable for

computational purposes. The basic physical idea underlying

our simplified protein model is the assumption that rigid

substructures will effectively move as a block. This implies

a reduction in the number of degrees of freedom and,

consequently, in the effective size of the problem.

The initial step is the addition of hydrogen atoms to the

PDB structure using the software WHAT IF (29). We then

characterize the full atom structure of each oligomer with

FIRST, a computational tool for the analysis of proteins de-

veloped by Jacobs et al. (27). FIRST uses standard potentials

to identify covalent and hydrogen bonds, salt bridges, and

hydrophobic tethers in the structure, and represents the pro-

tein as a bond-bending network. This graph representation,

where nodes are atoms and edges indicate constraints intro-

duced by bonds, is then analyzed with a computationally

efficient algorithm (the pebble game) to identify flexible

(underconstrained) and rigid (overconstrained) regions (30).

FIRST also calculates the energies for all the bonds in the

protein network.

The output from FIRST can be used to produce a

flexibility index Fi for each amino acid (27). When Fi # 0,

the amino acid is overconstrained, and therefore rigid; when

Fi . 0, the amino acid is floppy (underconstrained). We then

group adjacent residues with the same binary rigidity into

rigid and floppy domains. As shown in Fig. 2, a protein

typically consists of long, rigid domains separated by short,

floppy hinge segments. It is important to point out that be-

cause graph rigidity is a nonlinear property, the rigidity of a

protein may change as the aggregation proceeds, even

though none of the atoms has moved relative to its neighbors.

When two proteins bind, new constraints are added to the

graph, usually leading to a more rigid network (see Fig. 3).

The procedure outlined in this section amounts to a sig-

nificant coarse-graining of the model: it starts from a full

description (PDB file) with several thousand atomic coordi-

nates for each protein and it outputs a representation con-

sisting of a few rigid blocks (on the order of a few tens per

monomer). It is this reduced representation (illustrated in

Fig. 2) that we use to implement the stochastic kinetics of

self-assembly.

Stochastic kinetics of capsid assembly

Studying the time evolution of the assembly process by

integrating the equations of motion is computationally infea-

sible even for reduced representations like those described

above. There are two main obstacles for the implementation

of a fully dynamical approach: first, the combinatorial ex-

plosion of the number of intermediates for large aggregates

of proteins—a problem that cannot be overcome by sheer

computational power and that must be addressed at the

modeling stage; and second, the lack of tested and rigorous

coarse-grained potentials for explicit dynamics of reduced

protein models, especially when diffusion plays a significant

role. To circumvent these problems, we consider instead the

stochastic kinetics of the assembly process through an

extended version of Gillespie’s stochastic algorithm in which

we consider dissociation and association events modulated

by diffusion.

Gillespie’s classic algorithm (28,31) was introduced in

1976 as a computational tool for the stochastic simulation of

chemical reactions. Recently, Gillespie’s algorithm has had a

vigorous revival due to its relevance to many biological

systems, where only small numbers of molecules are present.

The theoretical basis for a stochastic formulation of chemical

reactions is the chemical master equation which describes the

FIGURE 2 Coarse-grained description of the 1stm

coat protein. (a) A view of the 1stm monomer created

using RasMol (51). The protein consists of more than

4000 atoms in 157 amino acids. (b) The backbone of the

1stm protein. The gray scale represents rigidity as deter-

mined by the software FIRSTwithEcut¼�0.7 kcal/mol:

dark means rigid and light means floppy (27). Adjacent

amino acids with equal binary rigidity are grouped into

rigid or floppy domains, leading to the typical pattern in

capsid proteins: floppy ends and rigid domains separated

by short floppy domains at the center. (c) Schematic

representation of the domain structure in panel b. Here,

rigid domains are drawn as rectangular vertices and

floppy domains are drawn as ellipses. The numbers

represent the number of amino acids in each domain. The

thick lines represent the covalent bonds in the backbone

while the thin lines are hydrogen bonds. Note that the

domain structure is only needed for the dissociation

rates—the association rates can be computed directly

from the bond energies.
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probability that a given event (or no event) takes place over

an infinitesimal time interval (32). Unfortunately, the master

equation is not solvable explicitly for systems involving

more than a few different molecules and reactions. Gillespie’s

algorithm addresses this numerically and provides an exact

procedure for a Monte Carlo simulation of a system of re-

acting molecules. As is obvious in Fig. 4, the complexity of

the pathways increases combinatorially with the size of the

oligomers. The propensity of each reaction is a product of a

combinatorial factor, dependent on the number of reactant

molecules available for the reaction, and a rate constant,

dependent on properties (such as size, velocity, and mass) of

the molecules involved in the reaction (33).

Association events

During capsid assembly, there are association and dissoci-

ation events. The association events are elementary (bi-

molecular) reactions in which two oligomers collide to form

a new complex. The association process of structured mole-

cules in solution can be modeled as a succession of two inde-

pendent processes: first, two oligomers must meet through a

diffusive process; next, they must overcome a barrier to

aggregate and reach the final bound state (34,35). In its

standard form, the Gillespie algorithm assumes that the re-

actants are dilute, perfectly mixed, structureless molecules in

vacuum. This is obviously not a good approximation in our

case, and we have extended the algorithm to take into account

diffusion, the influence of water, and geometric and entropic

factors. Our approach is simpler than the explicit stochastic

simulation of the spatiotemporal reaction-diffusion process

using computationally intensive voxel models (36,37), yet it

captures the relevant physical features.

To account for the diffusive rate, we use concepts from

Smoluchowski’s theory of rapid coagulation (38). In its sim-

plest form, this theory was developed for spherical colloidal

particles and hence needs to be corrected when applied to

protein aggregates with specific geometry and binding sites

(34,39). It can be shown that the modified Smoluchowski

rate is

k
assoc

ij ¼ k
hs

ij k ¼ ð4pDijRijninjÞk; (1)

where khsij is the Smoluchowski diffusive rate for hard

spheres. Here, ni and nj are the unit concentrations of particle
types i and j, and the diffusivity DijRij ¼ D1r1(ri

�1 1 rj
�1)

(ri 1 rj) is related to D1 and r1, the diffusion coefficient and

radius of the monomer, and to ri and rj, the radii of particle
types i and j. Based on a simple geometric scaling argument

valid for disk-shaped oligomers, it can be assumed that the

radius increases as the square root of the number of mono-

mers. The dimensionless parameter k is a form factor, which

reflects the probability that a collision between two oligo-

mers will result in the formation of a complex. It accounts for

the fact that the proteins will attach at a lower rate than

homogenously sticky particles due to their geometry and

specific binding sites. It can also be interpreted as a generic

entropic barrier that needs to be surmounted for association

(35).

The aggregation of oligomers can occur in a number of

different ways with different association energies E
ðaÞ
ij for

the specific pairings (see Table 1). When forming a new

oligomer we assume the proteins to be at the positions that

they attain in the complete capsid. This means that our model

does not account for malformed capsids. Neither does it

include the maturation or conformational changes that are

FIGURE 3 Change of rigidity as the assembly

proceeds. (a) In T ¼ 1 viruses, each cell in the

icosahedral lattice (Fig. 1) accommodates one protein:

here we show a 1stm monomer in its reduced

description, as in Fig. 2 c. As the assembly proceeds,

the rigidity of every oligomer is recalculated with

FIRST from the full atomic data. The existence of

intermolecular hydrogen bonds in the 1stm dimer (b)

and trimer (c) modifies the rigidity of the constitutive

monomeric units.

FIGURE 4 The combinatorial assembly tree of 1stm. A tree representing

all the possible monomers, dimers, and trimers in the assembly of 1stm. The

thin lines are possible assembly paths by the addition of one monomer at a

time. The thick lines represent the pathways that are actually observed in the

simulations (compare with Fig. 7). The number of possible pathways

explodes combinatorially as the size of the oligomer grows.
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known to occur in some viruses. To model the fact that olig-

omers with large negative association energies are more

likely to be formed, we multiply the rate in Eq. 1 by a

Boltzmann factor exp(wE
ðaÞ
ij =kBTÞ, where kB is the Boltz-

mann constant, T is the temperature, and E
ðaÞ
ij is the asso-

ciation energy. The association energy is modified to include

the effect of water shielding. Because the protein is sur-

rounded by water, the effective energy of interprotein hydro-

gen bonds is reduced, since there exists the alternative of

forming bonds with water molecules instead. It is important

to note that both the form factor k and the water-shielding

factor w can be estimated from experiments or molecular

dynamics simulations (34,40,41).

The energies can be obtained from different sources but,

for simplicity, we have used throughout this article the

energies as calculated by FIRST. We remark, however, that

our algorithm is modular and more sophisticated energy

calculations could be easily incorporated into our computa-

tional framework, e.g., CHARMM energies from VIPER

(26,42). For completeness, we have carried out a comparison

between the association energies from FIRST and VIPER.

We have checked that although the energies can differ

significantly in absolute numbers (as shown in Table 1),

both the ordering of the bond strengths and the localiza-

tion of the bonds are broadly consistent between FIRST and

VIPER.

Dissociation events

In addition to aggregating, oligomers can also break up into

smaller units with a dissociation rate, which is an indication

of the longevity of an oligomer. The propensity of a disso-

ciation event depends on the energy required to break the

bonds that hold the oligomer together, but is also related to

the redistribution of energy into the internal modes of the

oligomer. It is in this context that our reduced description of

protein oligomers becomes most helpful.

We base our modeling of the dissociation process on

transition-state theory as applied to the escape from a multi-

dimensional well. In this framework, the escape rate from a

well with N vibrational degrees of freedom is given by (43)

k
dissoc ¼ 1

2p

QN

i¼0 l
ð0Þ
iQN

i¼0 l
ðbÞ
i

expð�E
ðbÞ
=kBTÞ; (2)

where l
ð0Þ
i are the eigen-frequencies at the bottom of the well

and l
ðbÞ
i are the eigen-frequencies when the particle is at the

point of escape (i.e., at the top of the barrier of height E(b)).

The generic Eq. 2 can be related to the reduced protein model

introduced in the previous section. If we view the oligomer

as a harmonic network, where each domain is treated as a

point mass and the bonds connecting domains as linear

springs, then the original oligomer represents a local min-

imum in the energy landscape and escape from this well

represents the physical process of splitting the oligomer.

The eigen-frequencies of the system at equilibrium, l
ð0Þ
i ,

are obtained by diagonalizing the system Mẍ1Kx ¼ 0,

where M is the diagonal matrix of domain masses and K is

the weighted Laplacian matrix of the graph. Each weight

Kij is the stiffness of the bond-connecting domain i and j
obtained from Hooke’s law, Kij ¼ 2Eij/xij

2, with Eij being the

energy of the bond and xij the equilibrium distance of the

bond. The diagonal elements of the stiffness matrix, Kii, are

given by the condition that the sum of the elements in each

row is zero. In our reduced network, there are two types of

bonds to be included in the analysis: hydrogen bonds and

covalent bonds. The energies are provided by FIRST:

hydrogen bonds are of the order of �5 kcal/mol once they

have been multiplied by the water-shielding prefactor w, and
we assume the covalent bonds to be �74 kcal/mol, a value

close to the typical energies of C–N and C–C bonds. (Note

that this energy is not multiplied by w, since there is no

option for the covalent bonds to form bonds with the sur-

rounding water molecules.) If two domains are linked by

both hydrogen bonds and covalent bonds, only covalent

bonds are considered since they are an order-of-magnitude

stronger.

To obtain the dissociation rate in Eq. 2 for a given split, we

first calculate the eigen-frequencies of the original system

l
ð0Þ
i via the generalized eigen-value problem of the unmod-

ified network. The eigen-values of the system at the barrier,

l
ðbÞ
i , and the barrier height, E(b), are obtained by examining

the possible partitions of the graph. A given partition is

characterized by the minimal set of edges that is required to

split it into two subgraphs. The total energy of the removed

edges is equal to E(b) and the li
(b) are obtained as the gen-

eralized eigen-values of the partitioned graph. Indeed, when

the graph is partitioned, one eigen-value becomes zero,

which explains why the numerator and denominator do not

run over the same indices. For most oligomers, the most fa-

vorable splits have an eigen-mode ratio of ;10�2, although

this ratio can be up to five orders-of-magnitude larger in

some cases. Similarly to the association events, each split is

then considered within our Gillespie algorithm as an inde-

pendent event with its own characteristic propensity, with

rate kdissoc given by Eq. 2.

TABLE 1 Association energies from FIRST and VIPER

Interface Symmetry

E
ðaÞ
ij VIPER

(kcal/mol)

E
ðaÞ
ij FIRST

(kcal/mol)

1–6 Quasi-fivefold �21.0 �9.0

1–38 Quasi-fivefold �21.0 �9.0

1–37 Quasi-twofold �29.0 �48.7

1–2 Quasi-threefold �33.0 �24.7

1–3 Quasi-threefold �33.0 �24.7

A comparison of the association energies for the Satellite Panicum Mosaic

Virus (SPMV, PDB code 1stm) computed using VIPER 26 and with FIRST

with Ecut ¼ �0.7 kcal/mol. The interfaces are shown in Fig. 1 a. Note that

in the simulations these energies are multiplied by the water shielding factor

w ¼ 0.17 to account for protein hydration.
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Clearly, there are many ways of splitting an oligomer. For

example, the trimer in Fig. 3 c can split in three different

ways with different propensities. Since the total number of

possible splits grows combinatorially with the number of

domains in the oligomer, we have reduced the complexity by

imposing two constraints on the partitions: only hydrogen

bonds are allowed to break, and only bipartitions (i.e., splits

into two fragments) are considered. The latter is not an

extreme assumption, as splits resulting in more fragments

can be composed of a number of subsequent bipartitions.

Under these restrictions, and due to the sparsity of the in-

termonomer connections in the icosahedral lattice, the number

of partitions grows subexponentially—the exact rate depend-

ing on the topology of the oligomer. The eigen-value cal-

culation for the dissociation events is the most time-consuming

step in our simulations. To speed up the calculations, we

have devised a data structure that stores the results of known

events for use in subsequent runs.

Results of the simulations

Our modeling framework is generic and can be applied to

any icosahedral virus. In this section, we illustrate the output

of the current version of the program with two small plant

viruses: the T ¼ 1 virus, Satellite Panicum Mosaic Virus

(SPMV, PDB code: 1stm) and the T ¼ 3 virus, Southern

Bean Mosaic Virus (SBMV, PDB code: 4sbv). Interestingly,

SBMV is known to be capable of self-assembly in vitro (44),

whereas SPMV is not. Before we present some numerics, we

make two technical points regarding the simulations.

One advantage of our computational model is that it has

relatively few, physically meaningful parameters. Table 2

presents a summary of the parameters:

1. The temperature and concentration.

2. The average radius and diffusion coefficient of a mono-

mer in order to calculate the diffusion rate in Eq. 1.

3. The bond constants used to derive the eigen-frequencies

for the dissociation rate in Eq. 2.

All these quantities are directly related to physical

variables. There are three additional parameters that, al-

though physically motivated, are of a more conceptual

nature. First, Ecut is an input parameter for the software

FIRST that specifies the cutoff energy for a hydrogen bond

to exist. This can be loosely related to temperature and under

standard conditions it is ;�0.7 kcal/mol (27). Second, the

fact that proteins are surrounded by water means that the

effective strength of the hydrogen bonds is reduced by a

factor w, which has been estimated to be 10–25% using

detailed MD calculations (41). This parameter is related to

pH and to the ionic strength of the solution. Third, the form

factor k used in the modified Smoluchowski equation (Eq. 1)

has been estimated to be in the range 10�3–10�5 through

computer simulations of diffusing proteins (34, 40). This

parameter is related to the specific geometry and docking of

the oligomers.

The second technical point refers to size limitations in

the software used. Our current implementation uses version

3.1 of the software FIRST, which is limited to analyzing

protein structures with a maximum of 75,000 atoms (27).

This limitation is not intrinsic to the method (only to version

3.1) and future releases will extend its capabilities. This

effectively means that, at present, we do not investigate

dissociation paths for oligomers larger than 20 proteins even

if the computations are fast. Therefore, our full simulations

(including both association and dissociation propensities) are

run up to the formation of oligomers of size 20. However, we

will also present simulations of the completion of the full

capsid obtained from runs with association paths alone,

which do not rely on the use of FIRST.

The starting point for the simulations is a state where all

proteins are present as monomers. The system then evolves

toward aggregation into larger units. There is an initial

transient during which a large amount of reactions involving

monomers take place. Relatively quickly, the concentration

of a few key oligomers builds up and the system then settles

into a quasi-steady state, in which the concentration of the

different oligomers remains relatively constant—except, of

course, for monomers and completed capsids (size larger

than 20). Effectively, monomers are transformed into capsids

via restricted pathways that do not alter significantly the

average concentrations of the intermediates. We explore and

characterize this cascading process in what follows.

The quasi-steady solution

We first illustrate some of the results through the analysis of

the quasi-steady state in the assembly of the T ¼ 1 SPMV

virus (1stm). Each simulation starts with 1000 monomers. To

eliminate the transient, we do not collect statistics until the

first oligomer of size larger than 20 is formed. At this point,

we consider the system past the transient state, we remove

the large oligomer and we record the time-weighted concen-

tration average of all oligomers until the next .20-mer is

TABLE 2 Parameter values for the simulations

Parameter Value Units

Temperature, T 300 K

Initial monomer concentration, C 5 mM

Monomer diffusion coefficient, D1 0.1 nm2/s

Monomer radius, r1 1 nm

Covalent bond strength �74 kcal/mol

Covalent bond length 1.5 Å

Hydrogen bond length 3 Å

H-bond effective strength, w 0.17 —

FIRST cutoff energy, Ecut �0.7 kcal/mol

Besides those in the table, there is an additional parameter in the sim-

ulations: the form factor k, which is initially chosen to be 10�4 for 1stm and

2 3 10�5 for 4sbv. The dependence of the results on k is shown in Figs. 10

and 11.
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formed. We repeat this procedure 1000 times and average the

results, which are presented in Fig. 5. It is important to note

that we have also run simulations where, starting from an

empty system, we add monomers at a constant rate and

remove oligomers larger than size 20. Once this open system

reaches a quasi-steady state, we have checked that it behaves

in the same way on average as the one starting from a fixed

number of monomers.

Inspecting the simulations, we find that there are very

few distinct oligomers with a significant presence throughout

the process (Fig. 5). Only monomers, dimers, and hexamers

are present in any significant concentration during the for-

mation of the capsid. The concentrations of all other olig-

omers are negligible. A similar conclusion was also reached

by Endres et al. (25). Interestingly, this is not just the result

of the difference in the association energies; Fig. 5 shows

that all oligomers have similar association energies (per

monomer).

The simulation data also yield information about the

processes governing the kinetics of the system. Oligomers

larger than hexamers are quite rare and as soon as one is

created it tends to participate in a series of rapid reactions

leading to a.20-oligomer. This cascading behavior emerges

because large intermediates tend to follow from favorable

association energies and also tend to be stable with respect to

dissociation. This view of the assembly as a cascading

process is in good agreement with other dynamical simula-

tions (11,16).

Oligomers with a significant concentration (monomers,

dimers, and hexamers) tend to fluctuate around a mean value.

On the other hand, oligomers with negligible concentrations

are not present most of the time and they react and disappear

quickly when present. These two types of behavior are

illustrated in Fig. 6 where we plot the average probability

distributions of the concentration of dimers, tetramers, and

hexamers at quasi-steady state. The distribution of dimers is

Gaussian-like around a high concentration, whereas tetra-

mers show the characteristics of a Poisson-like distribution.

Hexamers display less clear features. Indeed, although all the

underlying elementary stochastic processes of aggregation

and dissociation are Markovian, the structure of the kinetic

network leads to a variety of quasi-steady distributions for

the different intermediates. In Discussion and Conclusions,

we provide a simple theoretical argument of how these dis-

tinct behaviors emerge.

The simulations of the assembly of 1stm can be used

to extract further details about the pathways in use in the

network of reactions. To make this more explicit, we cal-

culate the average transition probability of association and

dissociation events as derived from the numerics. These

probabilities form a transition matrix, which we present in

Fig. 7 a as a heat map. The upper triangular section of the

matrix corresponds to association processes while the lower

triangular section corresponds to dissociation reactions. Note

that virtually all the dissociation events are confined to the

FIGURE 5 Simulations of the quasi-stationary state of 1stm lumped by

oligomer size. (a) Average time-weighted concentration of the different

oligomer sizes obtained in the Gillespie simulation (crosses). The solid line

is a guide to the eye. Note the high concentration of dimers and hexamers.

The circles (and dashed line) show the prediction from the quasi-stationary

Markov process (Eq. 3), which shows good agreement with the simulation.

(b) Average time-weighted association energy per monomer of the different

oligomer sizes. The error bars are hardly visible, indicating that all different

conformations of a given size have almost identical association energies.

Hexamers lie at a local minimum, a clear signal that they are stable

oligomers, relatively more favorable than heptamers and octamers. Note

the missing data points for size 11, as no 11-mers are observed in the

simulations.

FIGURE 6 Different concentration distributions in the simulations of the

1stm assembly. (a) Most oligomers are present at very low concentrations

with Poisson-like distributions as exemplified by the 1stm tetramers. This

means that low concentration is connected with short persistence. (b) A few

oligomers have significant concentrations at all times in the quasi-steady

state, such as the 1stm dimers and hexamers shown. Their distributions have

Gaussian-like characteristics. Although there are three distinct 1stm dimers,

almost all dimers in the simulation are of the most energetically favorable

type (the one circled in Fig. 7).

Stochastic Kinetics of Viral Assembly 3035

Biophysical Journal 90(9) 3029–3042



small oligomers. One of the reasons that small oligomers are

easier to split is that they have fewer intermonomer bonds

per protein. This can be understood from Eq. 2, where the

Boltzmann factor has a large impact on the dissociation rate.

Using these data, we show in Fig. 7, b and c, that the as-
sembly proceeds via a few pathways that thread through

the combinatorially complex association/dissociation tree

shown in Fig. 4. These reactions lead to significant quasi-

steady concentrations only for monomers, dimers, hexamers,

10-mers, 16-mers, and 20-mers. A mere inspection of the

binding energies before the simulations would not lead to

this outcome, although it can be understood, a posteriori, in

terms of the properties of the oligomers. For instance, almost

all the 1stm dimers formed correspond to the dimer circled in

Fig. 7 b, which has a bond with twofold icosahedral sym-

metry in the full capsid (see Fig. 1 and Table 1). Since the

other bonds involved in dimers are significantly weaker,

there will hardly be any other dimers present. The predom-

inance of this dimer has consequences: the dominant

hexamer can, in turn, be viewed as a combination of three

of the twofold symmetrical dimers bound by the weaker

threefold symmetrical bonds. One of the conclusions of the

stochastic simulations is that predicting the prevalent in-

termediaries cannot be based on energetic considerations

alone. It is possible that stable and favorable intermediates,

as determined by the static analysis, are never reached be-

cause the necessary kinetic steps are not accessible.

A key idea behind our method is to study how chemical

properties at the molecular level (as recorded in the protein

atomic structure) lead to differences in the assembly path. To

illustrate how our computational framework can help explore

these connections, we analyze the assembly of the T ¼ 3

virus SBMV (4sbv) in direct comparison to the results

obtained above for the T ¼ 1 virus SPMV (1stm): Fig. 8

shows the quasi-steady time-averaged concentrations and

association energies for all the oligomer sizes, whereas Fig. 9

presents the heat map of transitions and the relevant

pathways of assembly. The results are averaged over 1000

runs of the quasi-steady formation of a .20-mer, as before.

The average concentrations, association energies, and heat

maps of 4sbv reveal that trimers, hexamers, 9-mers (and, in

general, all multiples of three) have local maxima in the

concentration plot and corresponding local minima in the

association energy plot. This is also visible in the heat map as

a checkerboard pattern. In this case, and contrary to 1stm,

trimers are the effective units in the assembly of 4sbv, in

agreement with Reddy et al. (13) and expected not only for

reasons of symmetry, but also from considering the bond

energies. Interestingly, Reddy et al. (13) conjecture that the

symmetric 15-mer will be the most stable oligomer. Al-

though the analysis with FIRST indicates that this oligomer

is favorable both in terms of association energies and of

dissociation propensity, we find no evidence of significantly

higher concentration than for other large oligomers. This

could mean that although stable, this oligomer might not be

kinetically easy to access. However, it is also possible that

this is a result of our evaluation of the energies with FIRST,

as opposed to the use of energies from VIPER.

Comparing the quasi-steady concentrations of 1stm and

4sbv in Figs. 5 and 8, it is clear that the concentration of

monomers is significantly higher for 4sbv. Moreover, from

the heat map (Fig. 9) it is evident that there are more reac-

FIGURE 7 Stochastic sampling of the assembly pathways for 1stm with

k¼ 10�4. (a) The heat map illustrates the observed frequency of the reactions

in the assembly: open squares indicate no reactions involving the two sizes,

while darker shades indicate many reactions of that type. Reactions above

the diagonal represent associations (Mi 1Mj /Mk, where k ¼ i1 j), while

reactions below the diagonal correspond to dissociations (Mk / Mi 1 Mj,

with k¼ i1 j). For example, the (1, 1) square in the top left corner represents

a monomer-plus-monomer association reaction, and the square to the right

(1, 2) is the association of monomer plus dimer. Meanwhile, the (2, 1) square

represents dimers splitting into two monomers. (b) Using the heat map in

panel a, we represent the most common oligomers of size 6 or less and the

transitions between them. Dashed arrows represent dissociation reactions.

Only reactions with a frequency above a given threshold are represented.

The thickness of the arrows is proportional to the logarithm of the frequency

of the reaction, which means that the vast majority of the reactions involve

forming or breaking up oligomers of size 6 or smaller. The majority of

reactions in the system merge monomers to form dimers. Most hexamers are

formed by merging three dimers. But there is also a second pathway where a

trimer and a dimer form a pentamer that later adds a monomer to complete

the hexamer. (c) A lumped, schematic representation of the pathways in

panel b (inside the dotted rectangle) showing also the higher steps of

the cascade.
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tions involving large oligomers. The cascading behavior is

therefore less pronounced for 4sbv than for 1stm, as it is less

rare to find two large oligomers present at the same time in

the solution. This behavior stems from the fact that the bonds

in the symmetric 4sbv trimer are significantly stronger than

the bonds linking the trimers. Thus, it is less favorable for a

large 4sbv oligomer to react than it is for a large 1stm

oligomer. This is also reflected in the heat map: since large

oligomers react more slowly, there will be more dissociation

events (i.e., shaded squares below the diagonal in Fig. 9 a)
involving large oligomers for 4sbv.

The formation of the full capsid

Up to now, we have focused on the properties of the quasi-

steady state, where we assume that the supply of monomers

is constant and the cascading process of assembly leads to a

stable output of capsids. We will now examine the kinetics of

formation of a full icosahedral capsid from a finite amount of

monomers.

As explained above, our dissociation calculations have

an upper limit of 20-mers, due to the use of Vers. 3.1 of the

software FIRST. However, the cascading behavior described

above for the 1stm virus implies that, once large oligomers

are formed, it is unlikely that they will split and thus the dis-

sociation paths might be ignored without much change in

the observed behavior. We have explored this idea in more

detail by studying the sensitivity of the stochastic kinetics to

the form factor k, which modulates the balance between

the association and dissociation pathways. Increasing k

increases all association rates, which implies that the

dissociation events will become less likely. Fig. 10 shows

the ratio between the number of dissociation events and the

total number of events in the assembly of 1stm as a function

of k. For low k there are almost as many dissociation as

association events, and the assembly proceeds very slowly or

not at all. In this regime, a dimer will almost immediately be

broken up once it has formed and the assembly process is

FIGURE 8 Simulations of the quasi-stationary state of 4sbv lumped by

oligomer size. (a) Average time-weighted concentration of the different

oligomer sizes. There are peaks for trimers, hexamers, and other multiples of

3, indicating that the trimer is an important building block in the assembly.

Compare with 1stm in Fig. 5. (b) Average time-weighted association energy

per monomer of the different oligomer sizes. The error bars are hardly

visible, because all different conformations of a given size have almost

identical association energies. Oligomers formed by multiples of 3 tend to

occupy local minima of the energy, a hint of their enhanced stability. Note

the missing data points for sizes 8, 14, 17, 19, and 20 since these oligomers

are never observed in the simulations.

FIGURE 9 Stochastic sampling of the assembly pathways for 4sbv with

k ¼ 2 3 10�5 3 (a) The heat map shows the frequency of the reactions

taking place. Note how the pattern differs from that of 1stm (Figs. 7 and 11).

There is a variety of large oligomers present at any given time in the system

and the cascading behavior is less pronounced. The checkerboard pattern

indicates that reactions involving multiple-trimer oligomers are the most

common. (b) A schematic view of the most common reactions for 4sbv

deduced from the heat map in panel a. Again, note the differences with the

assembly of 1stm (Fig. 7).
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never able to get started. As k increases, there is a relatively

sharp drop in the number of dissociation events. Eventually,

the number of dissociation events becomes negligible and

the assembly process proceeds almost exclusively by asso-

ciation.

Fig. 11 shows the quasi-steady concentrations and the

reaction pathways that appear in the assembly of 1stm for

different values of the form factor k. The key feature of these

simulations, however, is that the same types of reactions

occur for all values of k; that is, the main pathways remain

unchanged even if there are many dissociation events. Under

the current setup for this virus, dissociation appears to slow

the progress of aggregation by splitting small oligomers but

it does not prompt the assembly to proceed through alter-

native pathways.

A direct consequence of the particular kinetics of 1stm is

that forward (association) reactions are qualitatively similar

for a range of values of k . If the value of k is relatively high,

the rare dissociation events can be neglected. We can then

run simulations with association paths alone (no longer

capped by the size limit in FIRST) that lead to the explicit

formation of complete capsids. In Fig. 12, a and b, we show
the concentration of the oligomers over time after the tran-

sient has been removed for k ¼ 10�3. As expected, only

monomers, dimers, hexamers, and full capsids have any sig-

nificant presence, whereas all other intermediate oligomers

do not appear in any persistent way. We also show in Fig.

12 c that the rate of capsid formation saturates as the con-

centration of monomers decreases. The overall shape of this

curve is in good agreement with experiments and other

theoretical models (16,17). If we consider the almost linear

section at the outset, we can derive an approximate capsid

formation rate of 1.5 3 10�4 M s�1, which is of the same

order of magnitude as the model by Endres and Zlotnick

(16).

As a final comment, it is interesting to note that 4sbv

(SBMV) can form capsids at significantly lower k-values

than 1stm (SPMV), as seen in Fig. 10. This conclusion

cannot be drawn easily from the association energies alone:

the most favorable 1stm dimer and 4sbv dimer have asso-

ciation energies of �48 and �38 kcal/mol, respectively.

However, when a 4sbv dimer is formed, a favorable reaction

to form a symmetric trimer tends to follow immediately. On

the other hand, despite their higher binding energy, the 1stm

dimers have no such favorable aggregation pathway to form

a stable large oligomer.

DISCUSSION AND CONCLUSIONS

Understanding the quasi-steady solution
as a Markov process

Our Gillespie simulation of the kinetics of the network has

shown that although the full assembly tree (Fig. 4) is ex-

tremely complex, only a few pathways are crucial for the

assembly. In other words, our extended Gillespie algorithm

provides us with a stochastic sampling of the reaction net-

work, unknown a priori, which leads to an estimate of the

transition probabilities in the system.

We can use the estimated transition matrix (represented in

Figs. 7 a and 9 a as heat maps), to investigate the description

of the reaction network as a nonhomogeneous Markov pro-

cess. To check the consistency of the quasi-steady solution

obtained numerically in Figs. 5 and 8, we apply the results

of Darroch and Seneta (45) for quasi-stationary Markov

FIGURE 10 Impact of the form factor k on the speed of assembly. The

figure shows the average proportion of dissociation events for 1stm (3) and

4sbv (*) calculated over 350 independent runs, with the standard deviation

indicated by the error bars. As k increases (making the association more

likely), the proportion of dissociation events decays from 0.5 toward zero.

Therefore, k is directly related to the overall speed at which the assembly

proceeds. If k is small, the cascading process is not initiated and the

assembly stalls. Clearly, detailed models for the calculation of the form

factor k would be of importance. Note the different k-values at which both

viruses would start to assemble, which is reminiscent of their proclivity to

self-assembly in vitro.

FIGURE 11 Impact of the form factor k on the pathways of assembly.

Heat maps depicting the pattern of reactions for 1stm with (a) k ¼ 10�3 and

(b) k ¼ 10�5. As compared to Fig. 7, note that the overall cascading pattern

of reactions and pathways remains broadly unchanged. In panel a, larger k

means that there are fewer dissociation events, i.e., fewer dark squares below

the diagonal (see Fig. 10). In panel b, smaller k means more dissociation

events, but the pattern of association for the larger oligomers is similar for all

three 1stm heat maps.
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processes taking the stoichiometry into consideration (46).

The system is only quasi-stationary, because ultimately there

is an absorbing state where all monomers are part of com-

pleted capsids. However, in the transient state, the quasi-

stationary distribution (QSD) can be calculated as the fixed

point p* of the equation

bðpÞ ¼ p
T
Q

�1

p
T
Q

�1
e
0p

�T ¼ bðp�Þ; (3)

where p is the distribution of concentrations, e is the vector
of ones, and Q is the transition rate matrix as derived from

the simulations (47). There are two interpretations of the

QSD (45): it can be viewed as a conditional stationary

distribution (i.e., the stationary distribution provided that the

Markov process is in the transient), or as the expected time

spent in each state divided by the total time to absorption.

Fig. 5 a shows that the QSD p* is close to the average

empirical distribution p from the simulations. The transition

rate matrix derived using the stochastic sampling is therefore

consistent with the observed quasi-steady distribution under

the assumption of a nonhomogeneous semi-Markov process.

This description also provides us insight into why some

oligomers have a Gaussian-like distribution while others

present Poisson-like features. In a system where the total

number of monomers is fixed, the (quasi) stationary distri-

bution will be multinomial (48). In the limit of large N and

small pi, the distribution of oligomer i can be approximated

by a Poisson distribution. For large N and intermediate pi,

the Gaussian distribution is a good approximation.

Explaining the probabilistic features
of the cascading behavior

In the cascading process, a few oligomers are relatively long-

lived while all other oligomers survive for only very short

times before reacting. The existence of Gaussian-like and

Poisson-like distributions is related to this cascading process

and can be understood through a simplified kinetic model.

Consider a toy model of the early stages of aggregation of

1stm consisting of three oligomers (M2, M4, and M6), which

FIGURE 12 Kinetics of the completion of

the full capsid for 1stm. (a) Average con-

centration of all oligomer sizes as a function

of time. At t ¼ 0 all proteins are monomers

and they rapidly react to form larger oligo-

mers. The most conspicuous feature of the

distribution is that there are very few olig-

omers of intermediate sizes. (b) Concentra-

tion of themost common oligomers: 1- (solid
line), 2- (dashed line), 6- (3), and 60-mers

(s) as a function of time. All other oligomers

have negligible concentrations. (c) Time

for the completion of SPMV capsids with

k ¼ 10�3. For this value of k, the number

of dissociation events is almost negligible,

as shown in Fig. 10.

Stochastic Kinetics of Viral Assembly 3039

Biophysical Journal 90(9) 3029–3042



can be thought of as analogs of the dimers, tetramers, and

hexamers, respectively:

B/
kH

M2

2M2 /
kL

M4

M2 1M4 /
kH

M6

M6 /
kL

B:

(4)

The first and last reactions correspond to creation from a

source and decay to a sink and there are two reaction rates,

kH � kL. We simulate this system using the Gillespie

algorithm. The resulting stationary distributions, shown in

Fig. 13, present similar characteristics to those discussed in

the 1stm assembly process (see Fig. 6). This can be

understood as follows: the creation rate of the dimers M2 is

much higher than the rate at which they are consumed,

leading to a Gaussian steady state, as predicted by the linear

noise approximation of van Kampen (32,49). On the other

hand, the tetramers M4 have a low creation rate and there

are always dimers available with which they can react at

a high rate. This leads to a Poisson-like distribution for

the tetramers. Finally, tetramers disappear quickly to create

hexamers M6, which decay at a very low rate and thus have

a Gaussian-like distribution.

Summary and future work

This article presents a modular framework for the study of

the stochastic kinetics of viral capsid assembly. The calcu-

lations are based on structural crystallographic protein data

and use rigidity analysis to produce a reduced mechanical

description of the protein oligomers. Rates for association

and dissociation reactions based on the protein descriptions

are then used within an extended Gillespie algorithm to ex-

plore the kinetics of capsid assembly.

Because of its biophysical motivation, our model has rel-

atively few parameters and most of them are directly related

to physical variables: temperature, concentration, diffusion

coefficients, protein radius, covalent bond energies, and bond

lengths. We have checked the dependence of our simulations

on these physical variables. For instance, if the temperature

is increased, dissociation events will become more likely

and the overall rate of assembly will drop. In addition, the

relative difference in association energies between oligomers

decreases. This means that the population of oligomers will

become more varied and more reaction pathways will

become important; that is, as the temperature increases, the

assembly tree will be explored more homogeneously. Sim-

ilarly, lowering the concentration decreases the association

rate. If the concentration is too low, the dissociation events

become prevalent and there will be no assembly. However,

the characteristics of the assembly pathways are unchanged

by concentration.

There are three additional parameters (Ecut, k, and w) that
have physical meaning and motivation, but are not easily

related to a single physical variable. We have discussed in

depth the effect of the form factor k in the preceding sec-

tions. In addition, we have checked that the results of our

analysis do not depend qualitatively on the cutoff energy Ecut

or the water-shielding constant w. Increasing the cutoff en-

ergy for hydrogen bonds in FIRST reduces the number of

hydrogen bonds in the system. This produces the same

overall effect as increasing the temperature since all energies

in the system are lowered. It also leads to floppier proteins

with a higher eigen-ratio in Eq. 2, and thus more dissociation

events. Increasing the water-shielding w means stronger

hydrogen bonds, which is equivalent to lowering the tem-

perature. The assembly will thus proceed along low energy

pathways, with a small variety of oligomers and a reduced

number of dissociation events. This discussion indicates that

changes in both Ecut and w can be qualitatively understood

as an effective change of temperature. Note, however, that

the effect of the form factor k is different. Physically, the

increase of k is equivalent to lowering the barrier for two

oligomers to form a larger oligomer with no influence on the

dissociation process. Therefore, the likelihood of the disso-

ciation events is reduced and the assembly is sped up.

A key feature of the proposed framework is that it is both

modular and extensible, i.e., the algorithms that make up

the different components of the model can be exchanged

seamlessly at different levels. A number of refinements to the

model should be pursued to improve the oversimplifications

of this initial work. Indeed, the bond energies could be

calculated more precisely using more detailed potentials.

This can have far-reaching implications for the pathways and

intermediates deduced from the simulations and a variety

of energy calculations should be explored carefully when

FIGURE 13 Different oligomer distributions in a simple cascading sys-

tem. The simple cascading reaction Eq. 4 involves only three different types

of oligomers: dimers (M2), tetramers (M4), and hexamers (M6). In the quasi-

steady state, dimers and hexamers have Gaussian-like distributions, while

the distribution of tetramers is Poisson-like (compare with Fig. 6).

3040 Hemberg et al.

Biophysical Journal 90(9) 3029–3042



dealing with specific viruses (50). A key ingredient of the

protein model is the derivation of a reduced representation

from the full PDB data. In this work, we have used FIRST

for protein partitioning as a conceptual tool based on ideas

from graph rigidity. However, one could use methods based

on normal modes (full atom, elastic, or Gaussian models) or

principal component analysis to obtain coarse-grained repre-

sentations of proteins. Another important set of refinements

should concentrate on the description of the association pro-

cess. In particular, a more sophisticated model of the protein

docking, including its entropic aspects, would be necessary

to improve the physical realism of the form factor k. More-

over, it would be important to refine the association rates to

parallel more closely the kinetics of chemical assembly. The

dissociation model itself could also be improved by taking

explicitly into account entropic features and incorporating

the geometric content of the graph when computing the

eigen-frequencies. Finally, it would be important (although

nontrivial) to extend our model to allow for nonicosahedral

symmetries and for malformed capsids (10,11).

In summary, our work introduces a description of viral

capsid formation as a stochastic assembly of protein oligo-

mers. An important aspect is that our framework is data-

driven, starting from molecular detail, and exhibits different

assembly behaviors for different viruses, as exemplified by

the results for 1stm and 4sbv presented here. Importantly, no

assumptions are made about specific intermediates through

which the assembly has to proceed—all such phenomena

emerge from the data. Our methodology bridges the gap

between the static and dynamic models of viral assembly by

using a stochastic sampling algorithm to investigate the

assembly pathways. The sampling is done using an extended

version of the Gillespie algorithm, which is derived from

fundamental physical principles. This enables a mesoscopic

simulation of the kinetics which is less computationally

intensive than a microscopic MD simulation. Alternatively,

this algorithm provides a physically based sampling of the

assembly tree, as opposed to computationally intractable com-

binatorial optimization techniques (12,13). We are currently

in the process of extending and refining our framework in

several of the above directions as we pursue a general

exploration of other icosahedral viruses in different families.
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