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Leading article

Coeliac syndrome: biochemical
mechanisms and the missing peptidase
hypothesis revisted

'A powerful idea communicates some of its strength to him who challenges
it' [Marcel Proust]

Shortly after the recognition by Dicke that wheat proteins, in particular
gluten, are the specific precipitant of a relapse in children with coeliac
disease, it was suggested that this disorder was because of a failure of the
small intestinal mucosa of coeliac patients to detoxify gluten. Frazer
showed by careful feeding studies that, whereas a peptic tryptic-pancreatic
digest of gluten induced a relapse in these patients, after incubation with
normal intestine, the resultant mixture was no longer toxic. Since that
period the missing peptidase hypothesis has waxed and waned in
popularity, waging a love-hate relationship with the so-called
immunological hypothesis.

Various ingenious methods have been applied to test the missing
peptidase hypothesis. Early whole body studies were performed by
administering large quantities of gluten to normal volunteers and to
patients with coeliac disease with subsequent measurements of amino
acids, in particular glutamine concentrations in the serum, in the hope that
they would reflect altered handling of the peptides by the brush border. 1-3
Serum glutamate concentrations were found to be significantly higher in
the coeliac patients and it was concluded that gluten digestion was not
specifically impaired. It was, however, clear that this approach lacked
sensitivity because of the various factors affecting postprandial amino acid
concentrations in the peripheral blood and biochemical techniques were
therefore applied directly to the jejunal mucosa.

Examination of mucosal digests of gluten peptic-tryptic fractions showed
a distinct peptide finger print when coeliac mucosa was compared with
control intestine. Staining studies suggested that this peptide was rich in
proline.4 5 Douglas and Booth6 repeated these studies and failed to find
any difference between normal and coeliac mucosal digests. This should
have laid the peptidase hypothesis to rest, but there have been subsequent
conflicting reports in this area. Cornell and colleagues7-9 examined gluten
mucosal digests by column chromatography and claimed to have identified
a toxic peptide fraction. They suggest that the toxic fraction caused
lysosmal labilisation,10 at alteration found in coeliac mucosa by
cytochemical" and biochemical techniques. 12
The important paper from Woodley and colleagues in this issue of Gut13

also examines the possibility of impaired gluten proteolysis by coeliac
mucosa. Using isolated brush border membranes from normal and coeliac
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mucosa in conjunction with a novel highly sensitive assay for glutamate
release from gluten peptides, the authors did not detect differences
between membranes from normal subjects and patients with coeliac
disease in remission. Although this is further evidence against the
peptidase hypothesis, certain reservations remain. It is, for instance, of
some concern that 80% of the brush border was lost during the purification
procedure and enzyme rates were determined over a 60 minute incubation
period. Furthermore, there is always a nagging concern whether the
putative peptidase remains stable in the incubation medium. It is also
possible that examination of the products of gliadin proteolysis may fail to
detect a subtle, highly specific defect in gliadin hydrolysis.

Gluten is an unusual protein in that it contains approximately 45% of its
residue in the form of glutamine. This is responsible for its unique
properties in bread making and also, presumably, for its pathogenic role in
coeliac disease. This high glutamine content has focused interest on
peptidases implicated in the cleavage of this residue. It is clear from the
elegant studies of Woodley that overall glutamate release from gluten
peptides is normal in coeliac mucosa. Other enzymes are, however,
implicated in glutamine metabolism. The principal activity which has been
investigated in this respect is y-glutamyl transferase. Subcellular
localisation studies have shown that most of this activity has a brush border
localisation but some activity is found in the cytosol and basal lateral
membrane.'4 Careful studies using subcellular fractionation techniques
have shown reduced brush border y-glutamyl transferase activity in coeliac
mucosa returning to normal values with successful gluten withdrawal.'5
Reports of normal activities in untreated coeliac disease'6 17 or persistently
reduced activities in treated patients'8 remain unexplained. Further studies
of the properties of this enzyme and the associated y-glutamyl hydrolase
activity'9 would clearly be interesting. This enzyme shows the most striking
villus to crypt gradient20 and studies of its development during intestinal
morphogenesis could be of considerable interest.

Peptide hydrolysis does not occur solely at the brush border and
activities are found in the lysosomal, cytosolic and basal-lateral membrane
locations.21 It is possible that a selective defect in one or more of these
other organelles might be implicated. Similarly, attention has been focused
mainly on gluten degradation by the enterocytes but defects in the
metabolism of the protein, or more likely of certain peptide fragments,
may involve intramucosal elements including crypt, lymphoid, vascular, or
other interstitial cells. This point is particularly relevant following the
demonstration, both in vitro:2 and in vivo,23 of a persistently increased
permeability of the intestinal mucosa of patients with coeliac disease in
complete remission, to low molecular probes (<1000 daltons), similar in
size to that of the smallest toxic gluten fragment. In a recent reappraisal it
is considered that up to 10% of lumen peptides may be absorbed intact.24

It is now clear that protein digestion is a multi-step process with
progressive luminal, brush border and cytosolic hydrolysis of peptides. Of
paticular interest is the demonstration by Matthews and colleagues of
peptide carriers at the brush border membrane. Defects in these peptide
transporters could interfere with glutaminyl residue metabolism by
affecting their cellular compartmentalisation. Simple measurements of
peptide hydrolysis in tissue homogenates, or with solubilised cell
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membrane components would not show such defects, if they existed, in
coeliac mucosa.
An alternative biochemical approach to explain the toxicity of gluten

was formulated with the lectin hypothesis which postulates the existence of
abnormal brush border glycoproteins to which gluten, or a fraction
thereof, binds because of its lectin properties.25-28 Cell damage is initiated
with a compensating increase in cell turnover, the immature cells being
even more susceptible to gluten toxicity because of less complete
glycoproteins on the cell surface. According to the hypothesis, the binding
is a passive process and only possible because of faulty glycosylation of
membrane proteins. An alternative, related possibility, has more recently
been raised: whether an enzyme exists which is capable of facilitating
gluten binding to membrane components: transglutaminase is an obvious
candidate. This enzyme, which shows as absolute requirement for Ca2 ,
cross-links adjacent polypeptides by forming a peptide bond between the
E-amino groups of lysine residues of one chain with the y-carboxyl group of
glutamine residues in another.29 30 Transglutaminase activity has long been
recognised in other tissue sites. Plasma fibrin stabilising activity (factor
XIII) has been shown to be due to transglutaminase activity31 and the
enzyme has been implicated in cell-cell interaction,32 keratin
formation,33 34 endocytosis35 36 and cell proliferation and neoplasia,37 as
well as in fibrin3' and seminal plug38 stabilisation. It has also been
implicated in lymphocytes,39 macrophages40 and erythrocytes41 42 and in
drug43 reactions. Gliadin would be expected to be an excellent substrate
for this enzyme and indeed has been found to be so.44
An early observation, little studied at present, is that gluten which has

been selectively deamidated - that is, in which the amides of the glutamine
residues are cleaved without effecting the polypeptide backbone, is no
longer toxic to patients with coeliac disease.45 This observation strongly
implicates defects in the metabolism, or binding of the glutamine residues
in the pathogenesis of coeliac disease. Transglutaminase is an enzyme with
such a role and deamidation of gluten renders it no longer a substrate for
this enzyme.44 Transglutaminase activity has been shown in normal jejunal
biopsy specimens in man,46 which may explain the toxicity of gluten to
normal volunteers when given in sufficient quantities.47 Moreover, the
enzyme activity is increased in biopsies from patients with coeliac disease
in remission and in relapse44 and thus it might have an important role in
gluten cell membrane interactions, a key step in most hypotheses of coeliac
disease. These studies also raise the question of whether we have been
searching for an enzyme defect, when increased activity may more
adequately explain the pathological picture. Further studies, including the
cellular and subcellular localisation of the activity, are necessary in normal
and in coeliac mucosa. These observations do, however, indicate new
biochemical approaches to the study of coeliac disease
Recent interest in glutamate and glutamine metabolism by rat small

intestine have stressed the importance of intracellular (cytosolic and
mitochondrial) glutaminase, glutamate dehydrogenase and aspartate and
alanine amino-transferases in enterocyte intermediate metabolism.48 49 50
There is a clear need for similar studies in man of normal and
gluten-sensitive subjects.
There is therefore a need for a new detailed examination of gluten
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degradation. transfer, binding and metabolism by intestinal mucosa from
control subjects and particularly from patients with coeliac disease in full
remission. In vitro techniques with organ culture procedures should be
coupled with in vivo perfusion, or metabolic balance studies. This
approach should have preceded the large number of in vitro gliadin
cytotoxicity studies, which so far have yielded only conflicting and
confusing results. It is surely to the benefit of immunological and
biochemical protagonists, that the basic biochemistry of gliadin handling
by the small gut be elucidated in detail.
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