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Progress report

Bicarbonate (HCO3) delivery to the
gastroduodenal mucosa by the blood: its
importance for mucosal integrity

Recent results from our laboratory,'-3 as well as data reported by others,4'
have shown that gastroduodenal blood flow functions not only provide 0210
and substrates, but also deliver HCO3 to the mucosa. This may be of
particular relevance to the pathogenesis of stress ulceration. Sepsis and
haemorrhagic shock are frequently associated with systemic acidosis and
reduced arterial HCO3 concentration. The recent decline in the rate of
severe bleeding from acute gastroduodenal lesions may in part be explained
by the more aggressive approach to promptly correct any imbalance of the
acid base status in these patients.'"

It is clear that reduction of blood flow increases the susceptibility of the
gastric and duodenal mucosa to the injurious actions of luminal acid.'2 13 In
many experimental models gastric mucosal ulceration after luminal acid
exposure alone can only be achieved when blood flow is artificially
reduced.4 17 Bile salt or aspirin injury is enhanced by concomitant reduction
of blood flow. lR20
The gastric mucosa appears to be relatively resistant to changes in blood

flow compared with the duodenum.'5 Thus a 60% reduction of baseline
blood flow was necessary to produce damage in a model of hypotensive
shock in the rat, whereas the duodenal mucosa ulcerated after relatively
minor changes in blood flow. Conversely, increasing blood flow by intra-
arterial infusion of isoproterenol decreased gastric mucosal damage caused
by bile salts, haemorrhagic shock or aspirin in the dog.2122 The fact that
sympathectomy attenuated the decrease in blood flow during haemorrhagic
shock and also reduced gastric lesion formation is consistent with the
protective role of blood HCO3.23 A direct effect on other protective
mechanisms such as cellular HCO3 transport mechanisms may also be
involved as this has been shown to be under sympathoadrenergic control in
the isolated mucosa.24 5 Similar arguments apply to the action of prosta-
glandins (PG) which effect both the vasculature as well as having direct
effects on HCO3 transport by the mucosal cells. Whittle reported an
increase in blood flow and associated protection against bile salt and
indomethacin induced damage after iv administration of a variety of
prostaglandin analogues. Direct infusion of PGI2 into the coeliac artery
supplying an in vivo chambered gastric mucosal flap prevented taurocholate
and macroscopic acid induced damage in indomethacin pretreated dogs, and
this was associated with a large increase in mucosal blood flow. 6 A later
report from the same laboratory, however, showed that surface cell damage
was induced by taurocholate and acid alone emphasising the importance of
microscopic evaluation in the assessment of damage.'714 We do not know
whether increased blood flow protects against damage of the surface
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epithelium because all the above studies only used macroscopic assessment
of lesions.

Increased H+ back diffusion stimulates blood flow to the gastric and
duodenal mucosa.A27 28 In the rabbit stomach this increase seemed to occur
in apparently undamaged mucosa and was proposed to prevent tissue
acidification.28 Careful histological studies evaluating surface damage were,
however, not done in these experiments. In the duodenum histologic
damage to the villous tips was not prevented and a relative decline in blood
flow was only seen when damage reached the base of the villi.13 These
findings suggest that at least in the duodenum an increase in mucosal blood
flow is not protective for the superficial layer of the mucosa. Similar results
were obtained by Cheung et aoP who found that the increase in blood flow
associated with increased H+ loss from the gastric lumen was correlated with
the magnitude of gastric mucosal damage after aspirin, taurocholate, or
ethanol. McGreevy3 also found an increase in blood flow in areas of aspirin
induced erosions compared with macroscopically undamaged mucosa.
The increase in blood flow after damage has occurred may be important in

limiting the degree of mucosal acidosis by buffering and diluting back
diffusing H+ and in facilitating rapid repair by creating an alkaline milieu
underneath the layer of fibrin, mucus, and necrotic cells. Direct evidence for
such a mechanism has recently been obtained by Kivilaakso8 in the rat after
taurocholate damage. Using subepithelial pH sensitive micro-electrodes,
surface cell damage was associated with an intense alkalinisation (after a
transient drop in pH) that was blocked by haemorrhagic shock, suggesting
outpouring of HCO3 rich fluid from subepithelial blood vessels in response
to mucosal injury. Increase in HCO3 effusion may also be important for
epithelial repair after damage of the amphibian isolated gastric mucosa with
hypertonic NaCl and in the rabbit isolated duodenum after acid damage3 1-33
as recovery depends on the presence of HCO3 in the serosal bathing
solution.

Experiments using pH sensitive microelectrodes have shown that in the
rabbit gastric mucosa reduction of blood flow by haemorrhagic shock or
vasopressin was accompanied by a reduction of pH in the lamina propria
that exceeded the fall in blood pH suggesting H- back diffusion.6`` When
submucosal pH dropped below 6-9 mucosal ulceration occurred. Ischaemia
alone in the absence of luminal acid and associated fall in mucosal pH did not
lead to macroscopic damage. These results indicated that mucosal acidosis
may be more important in the development of mucosal lesions than the
limitation in 02 supply. This hypothesis is further supported by the
experimental findings that acid secreting stomachs were more resistant to
injury by comparison with non-secreting preparations and had a lesser
degree of intramural acidosis, presumably because of increased serosal
HCO3 produced by the parietal cells.35 Thus HCO3 is extruded across the
basolateral membrane and readily available for buffering back-diffusing. H+
Microvascular architecture appropriate to accomplish the transport of
HCO3 from the gastric glands to the surface cells has been shown.36 Similar
results showing that the secreting stomach is more resistant to injury have
been obtained invitro. 37 38

Recent experiments in the frog gastric mucosa in vitro using pH-sensitive
fluorescent dye have directly shown a profound alkalinisation of the lamina
propria upon onset of acid secretion.39 Using the same technique to measure
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pH actually within cells of rabbit gastric glands showed these cells to be
sensitive to alteration of extracellular pH.4' When the basolateral membrane
was exposed to Ringers solutions of different pH, glands seemed to tightly
regulate their intracellular pH over the range between extracellular pH 7-0
and pH 7.8. Outside this range the intracellular pH varied linearly with the
pH outside. It is therefore to be expected that changes in pH in the lamina
propria of the intact tissue below pH 7 cause intracellular acidosis with
ensuing cell damage and death.
The combined effects of acidosis and low blood flow are certainly

deleterious to the gastric mucosa. Prevention of acidosis can attenuate
gastric mucosal injury. As early as 1948, Cummins and Grossman4' showed
that HCO3 infusions can prevent ulcer formation induced by continuous
acid instillation into the stomach of dogs. Studies in vitro and in vivo have
further confirmed the concept that nutrient HCO3 is essential for the gastric
mucosa to withstand luminal acid.277384243 This buffer species cannot be
substituted by other buffers because phosphate, HEPES, MES or TES in
vitro, and TRIS and phosphate in vivo were without effect.243 In a study of
acute gastric lesion formation in the rat, however, it was clearly shown that
preventing the fall in gastric mucosal blood flow during hemorrhagic
hypotension using intra-arterial PGI2 did not prevent gross mucosal
ulceration, but correction of the accompanying acidosis by infusion ofHCO3
inhibited the development of haemorrhagic lesions despite low blood flow.2
These results indicated that it is the availability of HCO3 that is the critical
factor in the development of lesions even in states of reduced blood flow
rather than the limited 02 supply or flow per se.
There are no data available on the dependence of gastric HCO3 secretion

in the lumen on blood flow, but experiments in our laboratory have clearly
shown that changes in blood flow are directly related to changes in alkaline
secretion from the duodenal mucosa.' When arterial HCO3 concentration
was also considered and bicarbonate availability ([HCO3] art x blood flow)
was plotted against alkaline secretion, the fitted curve demonstrated a
saturable process. Thus alkaline secretion was independent of HCO3
delivery to the mucosa above 4 mmol/cm2/min, but extremely sensitive to a
reduction below this value (Fig. 1). Because alkaline secretion in this model
is also an important determinant of acid induced injury and directly
correlated to the extent of damage, it seems reasonable to conclude from
these data that at least in the duodenum, HCO3 availability is of primary
importance for the mucosa to withstand luminal acid.3 Similarly, when
HCO3 delivery to the rat gastric fundus during haemorrhagic shock and
PGI2 and/or HCO3 infusions (data calculated from ref. 2) are plotted against
the percentage of stomachs ulcerated a linear correlation is found (Fig. 2),
suggesting that HCO3 delivery to the gastric mucosa is also a critical factor in
the development of lesions. The mechanism of action of nutrient bicarbo-
nate in the stomach is less clear, however, than in the duodenum where
luminal buffering by alkaline secretion is the single most important factor in
the defence against luminal acid.3`
HCO3 secretion from the gastric mucosa is relatively small, amounting to

<5% of maximal acid secretion. Under basal conditions, acidification of the
lumen down to pH 2 causes a two to three fold increase of luminal HCO3
appearance which can completely account for the H+ disappearance
measured under these conditions.7 The concentration of acid used in
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these experiments4` was rather small, however (10 mmol/l HCl), and the rate
of H+ loss in this model (dog Heidenhain pouch) is linearly dependent on
luminal H+ concentration up to 150 mmol/l.
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Fig. 1 Correlation ofalkaline secretion andHCO3
delivery in rabbitduodenum. Mucosal bloodflow
determined with radioactive microspheres. Alteration of
bloodflow and arterialHCO3 concentration with iv infusion
ofvasopressin, HCO3 and NH4Cl.
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Fig. 2 Dependence ofgastric mucosal damage (expressed
aspercent ofstomachs ulcerated) on HCO3 delivery by
bloodflow (mucosal bloodflow determined with radioactive
microspheres) in stomachs ofrats subjected to haemorrhagic
shock with and without infusion ofPGI2 andHCO3 (points
represent means ofeach experimental group, ref2).

The essential remaining question is where and when HCO3 acts to prevent
damage and facilitate repair. The pre-epithelial 'mucus bicarbonate' barrier
may not be of primary importance in the stomach because the gradient
measured with microelectrodes readily dissipated at luminal pH 1.5 or less,
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values frequently encountered in the in vivo situation.404'52 Also luminal
stirring and shear forces are likely to reduce surface unstirred layers even
further in the intact stomach.53 54 The actual thickness of the adherent mucus
gel varies enormously and may be as thin as 5 ,tm.55
There are several recent data indicating that the permeability of the apical

plasma membrane to H+ is low and this, together with efficient mechanisms
to regulate intracellular pH, would mean that complete neutralisation of HI
at the cell surface is unnecessary.5657 Nutrient HCO3 is intimately involved in
these pH regulatory mechanisms.40 56 58

Basal HCO3 secretion in the stomach is low and stimulation by luminal
acid, sham feeding or prostaglandin only increases measurable alkali output
by a small amount (two to three fold).5962 Increases in secretory rate in the
duodenum are much greater.635 In the stomach damage to the surface
epithelium is associated with a comparatively large flux of alkali from the
interstitium into the lumen. Such an increase in passive HCO3 effusion has
been shown to occur after damage in variety of models.9 33 59 668 Thus HCO3
in conjunction with a thick layer of mucus and necrotic debris probably acts
to limit damage by facilitating rapid repair of minor disruption of the
epithelial cell layer that occurs during everyday life.6x 69 70

In summary, HCO3 delivery to the gastroduodenal mucosa is necessary to
maintain its structural and morphological integrity. In the stomach the main
function of HCO3 probably lies in its role in intracellular pH-regulation and
in passive effusion after even minor injury. In the duodenum transepithelial
secretion of HCO3 and intraluminal buffering is the predominant defence
mechanism against luminal acid.
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