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Objective. To develop a method for predicting concurrently both hospital survival
and length of stay (LOS) for seriously ill or injured patients, with particular attention to
the competing risks of death or discharge alive as determinants of LOS.
Data Sources. Previously collected 1995–1996 registry data on 2,646 cases of injured
patients from three trauma centers in Maine.
Study Design. Time intervals were determined for which the rates of discharge or
death were relatively constant. Poisson regression was used to develop a model for each
type of terminal event, with risk factors on admission contributing proportionately to the
subsequent rates for each outcome in each interval. Mean LOS and cumulative survival
were calculated from a combination of the resulting piecewise exponential models.
Principal Findings. Age, Glasgow Coma Scale, Abbreviated Injury Scores, and spe-
cific mechanisms of injury were significant predictors of the rates of death and dis-
charge, with effects that were variable in different time intervals. Predicted probability of
survival and mean LOS from the model were similar to actual values for categorized
patient groups.
Conclusions. Piecewise exponential models may be useful in predicting LOS, espe-
cially if determinants of mortality are separated from determinants of discharge alive.

Key Words. Mortality, length of stay, prediction, injury, trauma, piecewise expo-
nential models, Poisson regression

Predicting the outcome of serious illness or injury is increasingly important for
the planning and assessment of interventions in the health-care system, as well
as for its more traditional role in providing a prognosis for individual cases.
Mortality is obviously one important outcome variable, but the use of additional
outcome variables might allow different perspectives in comparing groups of
patients or evaluating interventions. In particular, hospital length of stay (LOS)
is a potentially useful measurement of morbidity and a major determinant of
the cost of medical care.
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Constructing models to predict LOS will be more complicated in the
presence of a significant mortality risk. In this case, the hospital stay can be
terminated either by an undesirable event (death) or by a desirable event
(discharge alive). The least sick patients will have relatively short LOS, and
somewhat sicker patients will have longer LOS, but the sickest patients will also
have short LOS terminating in death. Factors increasing the rate of one
outcome may have no effect or an opposite effect on the rate of the other
outcome, and effects may not be uniform throughout the hospital stay.

We have previously described an approach that distinguishes between
these ‘‘competing risks’’ by using time to discharge alive as an outcome variable
(Clark and Ryan 1997). The cumulative incidence of this desirable event can be
estimated using standard software by considering the time until this event
occurs to be infinite for patients who die. This formulation provides a simple
way to evaluate both LOS and mortality, and is particularly useful for graphical
comparisons. However, time to discharge alive is not by itself a measure of
morbidity or cost.

In this study, we have continued the adaptation of traditional time-to-
event methods (Cox and Oakes 1984) to produce a model for the prediction of
LOS itself, with provision for the problem of competing risks and the possibility
that risk factors will affect LOS differently in survivors and nonsurvivors. We
present below some concepts of piecewise exponential modeling and an
application to patients hospitalized in trauma centers. This approach may be
particularly suited to the study of seriously injured patients and others for
whom a significant hospital mortality must be anticipated.

Piecewise Exponential Models

Consider a cohort of seriously injured or ill patients admitted to a hospital,
whose hospital stay may be terminated either by death or discharge alive
(Figure 1). The simplest predictive model of this sort would assume that the
hazard (instantaneous rate) for leaving the hospital is equal to some constant,
multiplied by a factor involving various risk factors or covariates. This would
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result in an exponential proportional hazards model for each outcome. That is,
if the hazard function h(t) is equal to some constant k, the proportion of the
original cohort remaining at time t will be exp()kt). The parameter k can be
estimated from the regression model

logðkÞ ¼ c0 þ c1x1 þ c2x2 þ . . .þ cnxn

where c1 . . . cn are coefficients corresponding to the covariates x1 . . . xn. A
Poisson regression model (Kleinbaum et al. 1988) is mathematically equivalent
to an exponential proportional hazards model, and may be more familiar or
easier to use.

If we disregard the nature of the event that terminates the hospitalization,
a single proportional hazards model could be constructed to predict the effect
of risk factors on LOS, and this simplification might be reasonable when the
number of deaths is small. When hospital mortality is significant, however, it
makes more sense to construct a separate proportional hazards model for each
outcome, especially since factors affecting the probability of one outcome may
have no effect or even an opposite effect on the other.

In practice, the baseline hazards for discharge or death will rarely be
constant. We are particularly considering patients with serious injuries or
illnesses who would be unlikely to go home immediately after admission, might
be more likely to go home after treatment in the next several days or weeks, but
then might be less likely to go home if they remain in the hospital many weeks or
months. Conversely,we might expect that the early death rate would be relatively
high, followed by a period of stabilization, and finally the death rate of those who
could not be discharged from the hospital might gradually increase. However, if
the rates for certain intervals of time were relatively constant, we might still be

Figure 1: A multistate model showing hospitalization resulting either in death

or discharge alive. Note that the transition rate (hazard) for each outcome

may vary with time
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able to construct valid exponential proportional hazards models for each of
these intervals, and then combine them into a ‘‘piecewise’’ exponential model.

Piecewise exponential models can be very flexible. Although analysis of
their mathematical properties is somewhat more involved than for simple
exponential models, the necessary calculations are not difficult. If time intervals
are made progressively shorter, a piecewise exponential model becomes
approximately equivalent (at least in large sample settings) to a nonparametric
Cox proportional hazards model (Friedman 1982), although the conceptual
and computational advantages from using the exponential function will
diminish if more than a few time intervals are used. If the number of time
intervals is not too large, a model can be constructed with different regression
coefficients (or even different values for the covariates) in different intervals.

For a given set of covariates determined at the time of hospital admission,
the present study estimated rates of death and discharge alive as constants, kd

and ka, for each of several time intervals. For a hospitalized cohort entering an
interval at time ti, the proportion still hospitalized at time t later in the same
interval can thus be estimated as expð�½kd þ ka�½t � ti�Þ. Further calculations
based upon a piecewise exponential model using the combined hazards allow
estimation of the mean time spent in the hospital (mean LOS) and the
cumulative proportion discharged alive (probability of survival).

We used Stata (Stata Corporation 2001) for model estimation, and
Mathematica (Wolfram 1996) for other programming and graphing. Further
details of the theoretical background and programming used in this study are
described in the corresponding software manuals.

Methods

Data on hospitalized injured patients in Maine have been collected in a
statewide trauma registry since 1995, using the same software (HTR, Cales
Associates, Alameda, CA) for all participating hospitals. These data have been
periodically sent to Maine Emergency Medical Services (MEMS) and electron-
ically imported into a system trauma registry (STR, Cales Associates).

The STR data from 1995 to 1996 from the three largest hospitals in the
state (which have since been designated as trauma centers) were used for this
study, following MEMS confidentiality rules. Cases transferred from a trauma
center to another hospital were excluded, as were cases for which a data
element was missing or out of range. The maximal Abbreviated Injury Scores
(Keller et al. 1971) for each of six body regions (head, face, chest, abdomen,
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extremities, and general) were calculated from International Classification of
Diseases, 9th revision (ICD-9) diagnosis codes by the STR. Indicator variables
(1 ¼ yes, 0 ¼ no) were created for motor vehicle crashes (ICD-9 E-codes E810–
E819), burns (E890–E899, E924), and penetrating injuries (E920, E922, E955,
E956, E965, E966). Glasgow Coma Scale scores (Teasdale and Jennett 1976)
were categorized such that Categories 0–4 corresponded respectively to raw
scores of 3, 4–5, 6–8, 9–12, and 13–15. An indicator variable was set equal to 1 if
admission systolic blood pressure was less than 90. If a patient had been
transferred from another hospital to a trauma center, an indicator variable was
set equal to 1 and the variable LOS was set equal to the LOS at the receiving
hospital, otherwise LOS was equal to the LOS at the first and only hospital. If a
LOS of 0 was recorded, this was replaced with an LOS of 1 day.

The time scale was arbitrarily apportioned into ten intervals of LOS,
attempting to place similar numbers of events into each interval while also
allowing for the entire range of values to be represented (Table 1). A Poisson
regression model, without covariates but including time at risk for each case
within each time interval, was estimated for each type of terminating event
(death or discharge alive). The model was progressively simplified to involve
only five time intervals by assigning the same indicator variable to adjacent
intervals (starting with the longest LOS) as long as a likelihood ratio test showed
no significant difference (p>0.05) as a result of consolidating the intervals.

Table 1: Arbitrary categorization of hospital length of stay (LOS), with the

number of cases entering that time interval, days at risk, deaths, and discharges.

Days at risk exclude days for patients who have died or been discharged prior to

or during a given time interval, and are used as a denominator to calculate daily

incidence rates for each outcome

LOS
Number
entering

Days at
risk

Deaths
(rate)

Discharges
(rate)

1 2,646 2,646 64 (0.0242) 495 (0.1871)
2 2,087 2,087 13 (0.0062) 300 (0.1437)
3 1,774 1,774 6 (0.0034) 288 (0.1623)
4 1,480 1,480 5 (0.0038) 251 (0.1696)
5–6 1,224 2,256 6 (0.0027) 345 (0.1530)
7–9 873 2,217 7 (0.0032) 323 (0.1457)
10–14 543 2,119 11 (0.0052) 247 (0.1166)
15–22 285 1,647 8 (0.0049) 139 (0.0844)
23–43 138 1,790 4 (0.0022) 80 (0.0447)
44–172 54 1,465 4 (0.0027) 50 (0.0341)
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Having thus determined with some objectivity the number of time
intervals which fairly reflected variations in baseline incidence rate for each
possible outcome, we subsequently assumed that the daily baseline incidence
rates were constant during each interval. Models were constructed for each
outcome (death or discharge alive) with indicator variables for each time
interval. Covariates were added in a stepwise fashion (Cox and Oakes 1984),
and temporarily retained in a model if the Wald p-value associated with that
term was no more than 0.10. Squared terms were evaluated for categorized
variables, but more complicated data transformations were not attempted. A
few clinically relevant interactions between covariates were considered, but
were not significant.

Basic predictive models were constructed without interaction terms
between covariates and time intervals. Covariates were retained in the basic
model for each outcome if the Wald p-value associated with that term was less
than 0.05 for either outcome.

After exploratory modeling, a final Poisson model for each outcome was
then developed containing indicator variables for each interval, all covariates
which had been significant in any individual model, and terms for the
interaction of each time interval with each covariate. For each outcome, the full
modelwithallpossible timeinterval interactionswas thensimplifiedinastepwise
fashion (againstartingwith the longestLOS),byeliminatingcovariates thatwere
not statistically significant in a given time interval and combining the covariate
effects from adjacent intervals wherever these modifications did not significantly
change the likelihood ratio, with significance again taken as p < 0.05.

For any set of covariates (e.g., those for any given case or category),
expected time in the hospital (LOS) and the cumulative incidence of each
outcome were then calculated from a piecewise exponential model with the
hazard in each interval equal to the sum of the hazards for death and for
discharge alive. The LOS predicted by combining the best fitting piecewise
exponential models was compared with the actual LOS for each case using
ordinary linear regression. Mean predicted LOS and predicted survival were
compared with actual LOS and survival for several subgroups of the patient
population.

Results

There were 2,847 patient records in the STR contributed by one or another of
the three trauma centers. After the exclusions described above, 2,646
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(92 percent) were available for analysis. Of these 2,646 cases, 952 (36 percent)
had been transferred from other hospitals to a trauma center, while the
remaining 1,694 had been primarily admitted to one of the centers. Included
were 1,611 (61 percent) male and 1,035 female. One hundred twenty-eight (5
percent) died in hospital, while the remainder were discharged alive after an
LOS ranging from 1 to 172 days (median 4 days). Other characteristics of this
population are shown in Table 2.

Modeling incidence rates without covariates for discharge alive, with
progressive simplification of the model as described above, resulted in
consolidation of the ten arbitrary time intervals (Table 1) to five intervals
with distinct incidence rates, corresponding to t1 ¼ 1, t2 ¼ 9, t3 ¼ 14, and
t4 ¼ 22. A similar process for death rates distinguished a difference only
between the first day and the rest of the hospitalization. However, in
subsequent modeling with covariates, the five intervals were retained for both
outcomes.

Piecewise exponential models without covariates showed a good fit when
compared graphically to Kaplan-Meier plots based on time to death and time to
discharge alive. The crude daily incidence rates (not considering risk factors)

Table 2: Characteristics of study population, with comparison of actual to

predicted results from the final model with time-varying parameters for the

categories shown. LOS ¼ Mean actual LOS, LOSpred ¼ Mean LOS predicted

by the model, SURV ¼ Actual percentage surviving, SURVpred ¼ Probability of

survival predicted by the model

CASES LOS LOSpred SURV SURVpred

Age < 55 1,830 (69%) 6.73 7.09 .966 .968
55 � Age � 70 355 (13%) 8.63 7.93 .961 .958
Age > 70 461 (17%) 8.90 8.96 .889 .902

Penetrating 143 (5%) 4.76 5.95 .902 .911
Burns 92 (3%) 15.47 15.85 .978 .975

Vehicle Crashes 944 (36%) 9.69 10.02 .918 .931
HeadAIS > 2 609 (23%) 10.76 11.37 .865 .876
FaceAIS > 2 19 (1%) 19.21 16.56 1.000 .992
ChestAIS > 2 347 (13%) 12.90 13.92 .841 .861
AbdomenAIS > 2 131 (5%) 12.77 14.84 .870 .874
ExtremityAIS > 2 557 (21%) 10.54 9.88 .953 .955
GeneralAIS > 2 15 (1%) 24.40 28.98 .933 .935

Best GCS < 13 250 (9%) 14.26 14.77 .664 .707
Worst SBP < 90 86 (3%) 10.62 13.72 .709 .812

All Cases 2,646 7.36 7.53 .952 .955
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for death were 0.0242 in the first time period and 0.0038 thereafter. The crude
daily incidence rates for discharge alive from the hospital in the five time
periods were respectively 0.1871, 0.1537, 0.1166, 0.0844, and 0.0400. The
observed curves for survival and the cumulative incidence of discharge alive are
compared to the models without covariates in Figure 2.

When covariates were added to the models, squares of the categorized
GCS and the maximal AIS scores for each body region produced better fitting
models than the untransformed variables, consistent with the known nonlinear
effect of anatomic injury severity on outcomes (Baker 1974). Age, decreased
GCS, and increased severity of head, chest, or abdominal injury had the
expected effects of decreasing time to death while increasing time to discharge
alive. Hypotension and penetrating trauma independently increased mortality
rate but not rate of discharge alive; transfers and burns did not result in an
increased mortality rate but had a reduced rate of discharge alive. More severe
facial or skeletal injuries had both a lower rate of death and a lower rate of
discharge alive (Table 3).

The models with time-varying parameters showed interesting differences
from one time period to another, as well as between the two potential causes

Figure 2: Plots of the actual survival curve from the data and actual cumulative

incidence of discharge alive from the data, with superimposed theoretical

piecewise exponential curves from the model without covariates
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of leaving the hospital (Table 4). Physiologic or anatomic evidence of severe
neurologic injury was a strong predictor of death in the first few days. Patients
with penetrating injuries and those with serious thoracic or abdominal
injuries were more likely to die, but hypotension was no longer an
independent predictor of death. Patients who survived transfer from other
hospitals were less likely to die in the first 9 days, but more likely to die
thereafter. Older patients tended to stay in the hospital longer, and increased
severity of injury in each body region was also associated with increased LOS.
Patients with penetrating trauma still in the hospital after 9 days were less
likely to go home during days 10 to 22. Burn patients and patients transferred
from other hospitals stayed longer in the trauma centers. Patients injured in
motor vehicle collisions were more likely to go home on the first day, but less
likely thereafter.

Outcome curves (survival and cumulative discharge alive) were graphed
for numerous theoretical patient cohorts (e.g., Figures 3 and 4). In these

Table 3: Estimated covariate effects for daily rates of leaving the hospital,

when effects were assumed uniform over all time intervals. Point estimates with

95% confidence intervals (in parentheses) are given. A negative value indicates

that the event is less likely in the presence of a given covariate, while a positive

value indicates that the event is more likely

COVARIATE

OUTCOME

Discharged Alive Died

Age (years) �0.013 (�0.015, �0.011) 0.031 (0.024, 0.039)
(GCSmax)2 0.056 (0.040, 0.072) �0.166 (�0.203, �0.128)
(HeadAIS)2 �0.041 (�0.050, �0.032) 0.037 (0.013, 0.060)
(FaceAIS)2 �0.056 (�0.089, �0.023) �0.236 (�0.419, �0.052)
(ChestAIS)2 �0.055 (�0.067, �0.044) 0.055 (0.028, 0.081)
(AbdomenAIS)2 �0.084 (�0.100, �0.068) 0.029 (�0.012, 0.070)
(ExtremityAIS)2 �0.071 (�0.083, �0.059) �0.074 (�0.129, �0.020)
(GeneralAIS)2 �0.039 (�0.062, �0.016) �0.109 (�0.225, 0.006)
Penetrating �0.006 (�0.199, 0.187) 1.171 (0.506, 1.836)
Burn �1.496 (�1.728, �1.264) 0.570 (�0.899, 2.034)
Vehicle Crash �0.178 (�0.270, �0.086) 0.439 (�0.013, 0.891)
Transfer �0.232 (�0.318, �0.146) 0.015 (�0.372, 0.403)
Hypotension 0.158 (�0.103, 0.418) 0.592 (0.081, 1.103)

Day 1 0.396 (0.187, 0.605) 3.339 (2.540, 4.138)
Days 2–9 0.471 (0.281, 0.661) 1.562 (0.747, 2.378)
Days 10–14 0.551 (0.334, 0.768) 1.464 (0.520, 2.408)
Days 15–22 0.451 (0.210, 0.692) 1.236 (0.235, 2.238)
Constant �1.764 (�2.091, �1.436) �7.230 (�8.342, �6.119)
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graphs, the expected probability of survival for a given cohort is seen as the
height where the curves meet, while expected LOS corresponds to the area
between the curves.

Linear regression of actual LOS against predicted LOS for the combined
model without time-varying parameters showed a relatively weak ability to
predict the actual LOS. The fitted equation was

actual LOS ¼ 4:19 þ 0:37 predicted LOS, with R2 ¼ 0:12:

The combined model allowing for time-varying parameters showed better
accuracy and better (although still modest) precision. The fitted equation was

actual LOS ¼ 0:81 þ 0:87 predicted LOS, with R2 ¼ 0:18:

Results for different subsets of patients are given in Table 2.

Table 4: Estimated covariate effects for daily rates of leaving the hospital

during the specified time intervals. Parentheses indicate estimates that have

been grouped in adjacent intervals as described in the text. Effects of variables

not listed or left blank in a given interval were not statistically significant

COVARIATES 1 day 2–9 days 10–14 days 15–22 days >22 days

For discharge alive
Age (years) �0.023 (�0.010 �0.010 �0.010 �0.010)
(GCSmax)2 (0.065 0.065 0.065)
(HeadAIS)2 �0.066 (�0.039 �0.039 �0.039 �0.039)
(FaceAIS)2 �0.186 (�0.036 �0.036 �0.036 �0.036)
(ChestAIS)2 �0.156 �0.060 (�0.024 �0.024 �0.024)
(AbdomenAIS)2 �0.246 �0.094 (�0.051 �0.051)
(ExtremityAIS)2 �0.131 �0.076 �0.033 �0.033 �0.033)
(GeneralAIS)2 (�0.042 �0.042 �0.042 �0.042 �0.042)
Penetrating (�1.436 �1.436)
Burn (�1.727 �1.727) (�0.876 �0.876 �0.876)
Vehicle Crash 0.020 (�0.222 �0.222 �0.222 �0.222)
Transfer (�0.223 �0.223 �0.223 �0.223)
Constant �0.906 �1.520 �1.758 �0.967 �1.805

For death
Age (years) (0.020 0.020) (0.064 0.064 0.064)
(GCSmax)2 �0.248 (�0.089 �0.089 �0.089 �0.089)
(HeadAIS)2 0.036 0.109
(FaceAIS)2 (�0.259 �0.259 �0.259 �0.259 �0.259)
(ChestAIS)2 (0.057 0.057 0.057 0.057 0.057)
(AbdomenAIS)2 (0.051 0.051 0.051 0.051 0.051)
Penetrating (0.731 0.731 0.731 0.731 0.731)
Transfer (�0.387 �0.387) (0.917 0.917 0.917)
Constant �2.660 �6.639 (�9.085 �9.085 �9.085)

640 HSR: Health Services Research 37:3 (June 2002)



Discussion

We have previously described some of the problems with implementation of
time-to-event methods in the presence of competing risks (Clark and Ryan
1997). Nevertheless, proportional hazards methodology is a powerful tool (Cox
and Oakes 1984), and the piecewise exponential approach presented here
retains its ability to express the effect of risk factors in an understandable way,
while allowing for competing risks and time-varying effects. Mullins et al. (1997)
have pointed out the need to separate predictors of early and late hospital
mortality from trauma. Blackstone (1996) has advocated the use of hazard
functions (incidence rates) to analyze LOS after valvular heart surgery. Our
adaptation of these suggestions may be useful in predicting outcomes for
seriously injured patients and others in whom hospital mortality is not
infrequent.

With reference to Table 4, for example, the model with time-varying
effects predicts that a hypothetical 80-year-old man admitted directly to one of
our centers with multiple rib fractures (AIS ¼ 4) but normal GCS (category 4)
would have a risk of dying on the first day approximately equal to
expð80 	 0:020 � 16 	 0:248 þ 16 	 0:057 � 2:660Þ ¼ 0:016, then a risk of

Figure 3: Predicted survival curve and cumulative incidence of discharge alive

for patients 80 years of age with serious injury to the chest (AIS ¼ 4)
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dying during each of the next 8 days approximately equal to
expð80 	 0:020 � 16 	 0:089 þ 16 	 0:057 � 6:639Þ ¼ 0:004. His chance of
being discharged alive on the first day would be predicted as
expð�80 	 0:023 þ 16 	 0:065 � 16 	 0:156 � 0:906Þ ¼ 0:015. Figure 3 shows
the theoretical curves representing the proportion of such patients expected to
die or to be discharged alive over time. The area between these curves
represents expected LOS (9.5 days), and the height of their convergence
represents expected survival (92.6 percent). If our theoretical patient also
suffered a serious head injury (AIS ¼ 4) with moderate neurologic impairment
(categorized GCS ¼ 3, corresponding to a raw GCS of 9 to 12), the outcome
curves shown in Figure 4 enclose an expected LOS of 13.1 days and converge to
an expected survival of only 48.9 percent.

The models demonstrate effects of several covariates that agree with
clinical intuition, including several that affect one outcome but not the other.
Although it may initially seem paradoxical that increased severity of facial injury
should reduce mortality, inclusion in the model is conditioned upon admission
to a trauma center, so that patients admitted because of a severe (but generally
nonlethal) facial injury requiring specialized surgery will be at lower risk for

Figure 4: Predicted survival curve and cumulative incidence of discharge alive

for patients 80 years of age with serious injury to the chest (AIS ¼ 4) and head

(AIS ¼ 4, GCS category 3)
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death than the majority of patients admitted with head or truncal injury. We
expect that with a larger set of data, especially with more victims of penetrating
injury, it would be possible to demonstrate more of an effect from physiologic
variables on early mortality. The differing registry inclusion criteria of hospitals
in Maine may also be obscuring some effects, especially those anticipated in the
first few days. The small number of patients still hospitalized after 22 days
hinders estimation of covariate effects in the last time interval.

Any model involves simplification of reality, while attempting to retain its
essential features. This process includes minimizing the number of parameters
to be estimated. A theoretical argument could be made that our models for
death and discharge alive should have the same covariates if they are to be
combined. However, when interactions with multiple time intervals were also
being considered, we felt that it was preferable to estimate a single
parsimonious model for each outcome. Some of the ‘‘insignificant’’ param-
eters are thereby included in the constant term for a given outcome and time
interval.

Others have attempted to model hospital length of stay after acute
trauma, and have also encountered the problems we have discussed.
MacKenzie et al. (1989) limited analysis of LOS to survivors, predicting the
logarithm of LOS from ordinary linear regression of explanatory variables. In
the published discussion of this study, MacKenzie stated that model complexity
had forced them to abandon the original intent to include nonsurvivors. Siegel
et al. (1994) adapted this approach, including mortality as the most influential
of several predictors of LOS; however, using one outcome (mortality) as an
independent variable to predict another outcome (LOS) complicates inter-
pretation of the model.

Schwartz et al. (1996) limited their attention to patients with hip
fractures. They first estimated a probability of survival, p, for each case
(presumably derived using logistic regression) and then included p and p2 in
regression models to predict LOS. This allowed both low and high values of p
to affect their models, but they did not report which was more influential. They
also found that a logarithmic transformation of LOS did not produce better
fitting models, and obtained values of R2 ranging from 0.04 to 0.17.

Rutledge and Osler (1998) created an International Classification of
Diseases Injury Severity Score (ICISS) and adapted it to predict LOS for injured
patients. Their approach involves linear regression of up to 15 diagnoses and 15
procedures against the observed values of LOS for each of several hundred
diagnoses or procedures coded using ICD-9 and contained in a large reference
database. While the authors were able to demonstrate good correlation
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between predicted and actual LOS in hospital discharge data (R2 ¼ :50), their
model also includes information not available on admission (e.g., procedures
performed during hospitalization).

None of the above approaches is comparable to ours. In particular, the
use of certain outcomes (such as death or procedures during hospitalization)
to explain another outcome (LOS) cannot be compared to predictions using
only data available at the time of admission. While the former approach may
have some useful purposes, interpretation is problematic since death must be
considered as an outcome, not a predictor. Procedures performed during
hospitalization also may reflect variation in medical practice or be influenced
by intermediate outcomes (complications). We would also emphasize that one
should be cautious about the use of R2 in evaluating nonlinear models
(Kvalseth 1985), and cannot use this statistic to compare models constructed
from different data.

More recently, Ho et al. (2000) have studied outcomes after hip fracture
using a competing risks model, which shares theoretical features with our
approach. The authors assumed an underlying log–logistic hazard function,
and estimated constant covariate effects on rates of death and discharge alive.
They did not calculate LOS or probability of survival for given patient cohorts,
but found that increased age, male sex, and several premorbid conditions
increased the rate of death and decreased the rate of discharge alive.

We believe that piecewise exponential models such as we have described
are conceptually and computationally easier, are able to model underlying
hazards more flexibly, can incorporate time-varying effects, and are therefore
preferable for implementation of a competing risks analysis. Since our
formulation essentially describes a multistate model, it could furthermore be
generalized to include outcomes in addition to death and discharge alive (e.g.,
rehabilitation hospital or nursing home).

We have been primarily interested in exploring theoretical and compu-
tational issues, and recognize that our sample may not be large enough to make
strong inferences about specific effects of covariates on the outcomes of injured
patients. A model of this sort could be made more precise by applying it to a
larger database, which would also enable more specific categorization of
mechanisms of injury, physiologic data, premorbid conditions, and descriptors
of injury. Interactions and other data transformations might provide additional
insight into the factors responsible for mortality or prolonged hospitalization.
Subsequent testing of such an improved model on an independent database
would then be warranted, and might allow it to be used more generally for
predicting injury outcomes.
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