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ABSTRACT We have extended the Gouy-Chapman theory of the electrostatic diffuse double layer by considering the
finite size of divalent cations in the aqueous phase adjacent to a charged surface. The divalent cations are modeled as
either two point charges connected by an infinitely thin, rigid “rod” or two noninteracting point charges connected by an
infinitely thin, flexible “string.” We use the extended theory to predict the effects of a cation of length 10 A (1 nm) on
the zeta and surface potentials of phospholipid bilayer membranes. The predictions of the rod and string models are
similar to one another but differ markedly from the predictions of the Gouy-Chapman theory. Specifically, the extended
model predicts that a large divalent cation will have a smaller effect on the potential adjacent to a negatively charged
bilayer membrane than a point divalent cation, that the magnitude of this discrepancy will decrease as the Debye length
increases, and that a large divalent cation will produce a negative zeta potential on a membrane formed from
zwitterionic lipids. These predictions agree qualitatively with the experimental results obtained with the large divalent
cation hexamethonium. We discuss the biological relevance of our calculations in the context of the interaction of
cationic drugs with receptor sites on cell membranes.

INTRODUCTION

The Gouy-Chapman-Stern theory, with its assumption
that ions in the diffuse double layer are point charges,
adequately describes the effects of alkaline earth cations on
the electrostatic potential adjacent to phospholipid bilayer
membranes (1, 2). The finite size of large divalent cations,
such as the ganglionic blocker hexamethonium, however,
cannot be ignored because the charges are separated by
~10 A (1 nm), a distance comparable with the Debye
length in a physiological, decimolar sodium chloride solu-
tion. Our objective is to describe theoretically the electro-
static potential adjacent to a membrane when the aqueous
phase contains large divalent cations. OQur analysis incorpo-
rates the finite size of the divalent-cation into the Gouy-
Chapman theory.

ANALYSIS

There are five major assumptions in the Gouy-Chapman theory: the
clectrical potential can be described by the combination of the Poisson
and Boltzmann equations, the dielectric constant is uniform throughout
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the aqueous phase, the discrete charges at the interface may be replaced
by a surface of uniform charge density, image charge effects are
negligible, and the finite size of the ions in the aqueous phase may be
ignored. These and other assumptions have been discussed in detail in
various reviews (3-13). We modify only the last assumption. Specifically,
we extend the Gouy-Chapman theory by considering a divalent cation to
be either two point charges connected by a thin, rigid rod of length a or
two charges connected by a thin, flexible string of length a. In the rod
model we ignore any interactions between the rods. In the string model we
ignore intramolecular Coulomb interactions between the charges, interac-
tions between strings, and interactions between the string and the surface.
For simplicity, we assume that the aqueous solution contains a single
species of a monovalent cation, a monovalent anion, and a large divalent
cation. The monovalent ions are represented by point charges. We also
assume that none of the ions adsorb to the phospholipids comprising the
membrane; the validity of this assumption is discussed in the accom-
panying paper (14). The Poisson equation for a one dimensional system is,
in SI units,

d’y(x)
dxz

- - (/e 2 qi(x), ()

where Y(x) is the mean electrostatic potential in the aqueous diffuse
double layer a distance x from the surface located at x = 0, g; is the charge
of each species, p;(x) is the mean number density of ions of species i at a
distance x from the surface, ¢, is the dielectric constant, and ¢, is the
permittivity of free space. We label the two charges on the divalent cation
as A and B. By symmetry the local density of A will equal that of B, p,(x)
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= pp(x). For our system the summation on the right-hand side of Eq. 1
then becomes

2_awi(x) = elpm(x) — px(x) + 204(x)], )]

where e is the magnitude of the electronic charge, M represents a
monovalent cation, and X a monovalent anion. Integrating Eq. 1 once,
using the boundary conditions that dy//dx — 0 as x — =, we obtain

dy(x) -
g = U/ee) [T Y an(). ®)
Using the boundary conditions that y(x) and x[dy(x)/dx] — 0 as x — =
and integrating by parts, we obtain the identity

dy(x) - d*¥(y)
W) =x ==+ [T O
Substituting Eqgs. 1 and 3 into Eq. 4 yields
W) = (1/ee) [ dyx — y) a0 ). )

Eq. 5 is solved numerically, subject to the following boundary condition
- dy
= - (V) = — €6, — 6
o ./o‘dy;q.ﬂ()’) €] |x_°. )

Eq. 6 states that the surface charge, o, must be balanced by the net charge
in the aqueous diffuse double layer for the condition of electroneutrality to
be satisfied. The Boltzmann equation predicts that

pm(x) = puexp[— Bed(x)] )]
px(x) = pxexp[Bed(x)], 8)

where 8 = 1/kT, T is the absolute temperature, k is the Boltzmann
constant, py = py(), and px = px(«). In the Appendix we derive the
following expression for p,(x)

pa(x) = polexp[— Bey(x)]}(exp[— Bed(2)]),  (9)

where pp = p,() is the mean number density of divalent ions, D, in the
bulk aqueous phase. Eq. 9 has the following simple interpretation.
pa(x)/pp, which is the probability of finding a given end of the divalent
cation at a position x normalized to the probability of finding it at x = o,
is simply exp[ — Bey(x)] weighted by the configurations of the other end
of the molecule. When x > a, the length of either the rod or the string, the
weighting is obtained by integrating over either the surface of a sphere of
radius a for the rod model or the volume of a sphere of radius a for the
string model. Specifically, in the rod model the weighting is given by the

spatial average, [1/(20)] " “ dz = ( ), of the probability the other
end of the molecule is a distance z from the surface, which is
exp[— Bey(z)]. In the string model the weighting is given by the spatial

average, [3/(4a")] ||~ “dz (@ — 7 = (), of expl— Bev(2)]. When x

< a the weighting is subject to the restriction that the other end of the
molecule cannot penetrate the interface, and Eq. 9 becomes, in general,

oa(x) = polexp(— Bep(x)]}
A/Qa 237 dzexpl— Bey(a} (10)
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in the rod model and

pa(x) = PD{eXP[— Be(x)]}

/a2 de(a - D) expl- By} (11)

in the string model. The combination of Egs. 5, 7, 8, and either Eq. 10 or
11, subject to the electroneutrality boundary condition, is an integral
equation in one variable, ¥(x), which is solved numerically following the
method of Carnie et al. (15).

RESULTS

In this section we present the results of a numerical
analysis of Egs. 5-11. We determine the profiles of the
electrostatic potential adjacent to membranes with dif-
ferent surface charge densities, varying the concentrations
of monovalent and divalent cations in the aqueous phase.
We assume that the temperature is 25°C and that the
length of the divalent cation, a, is 10 A (1 nm) in all
calculations. Once this length is set, the theory contains no
adjustable parameters.

The set of Eqs. 5-11 can be rewritten in differential
form to obtain a second-order nonlinear differential equa-
tion with advanced and retarded arguments for y(x). It is
not easy to solve such equations. When written in integral
form, however, Eqs. 5-11 are similar in structure to the
integral equations used in a double-layer theory where the
ions were modeled as charged hard spheres. Carnie et al.
(15) developed numerical methods to solve such equations,
and we use a similar, straightforward numerical method to
solve Egs. 5-11. The concentration and potential profiles
are represented by their values at regular intervals on the
positive x axis, the integrals calculated by Simpson’s rule
and the equations solved by iteration (15). The electroneu-
trality condition is enforced by rescaling the diffuse dou-
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FIGURE 1 The electrostatic potential predicted by the Gouy-Chapman
(solid curve, —) and rod (dashed curve, ---) models, plotted as a function
of the distance from the membrane. The concentrations of both the
monovalent and divalent cations are assumed to be 0.1 M, and the charge
density, o, is assumed to be —1/70 A? (—1/0.7 nm?. Note that the
potential decays more rapidly in the rod than in the Gouy-Chapman
model.
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FIGURE 2 The predicted value of the zeta potential, the electrostatic
potential a distance 2 A (0.2 nm) from the surface of a bilayer membrane,
plotted as a function of the concentration of divalent cation in the aqueous
phase, [D**]. The predictions of the Gouy-Chapman model are illus-
trated by the solid curves (—), the predictions of the string model by the
dotted curves (- - -), and the predictions of the rod model by the dashed
curves (---). (4) ¢ = —1/70 A? (—1/0.7 nm?), [M*] = 0.1 M. (B) ¢ =
—1/420 A? (—1/4.2 nm?), [M*] = 0.01 M.

ble-layer charge resulting from each iteration step before
using it as an input for the next step.' The decay of the
potential is illustrated in Fig. 1 for the rod (dashed curve)
and the Gouy-Chapman (solid curve) models. An impor-
tant feature of the numerical method is the analytical
incorporation of the correct long-range behavior of the
potential and concentration profiles. Specifically, we note
that the decay length for the rod model differs from the
value given by the Gouy-Chapman theory. Failure to
include this deviation leads to a violation of the electroneu-
trality condition.’

We intend to compare the theoretical predictions of the
Gouy-Chapman, rod, and string models with the experi-

"The usual mixing of iterates is also required. A mixing parameter equal
to 0.5 is generally adequate (15, 16).

To determine the actual decay length of the potential profile, we consider
Eq. 5 for large values of x. Assuming that y(x) decays exponentially, we
can substitute Egs. 2, 7, 8 and 10 into either Eq. 5 or Eq. 1 and linearize
the exponential functions. This procedure is valid because the integral in
Eq. 10 is of finite range. We obtain an equation that ensures consistency
between the left and right-hand sides. For the rod model the actual decay
length, 1/x, is given by the solution to the equation

é-.&[l +2R+RM], (12)

Ka

where «, is the reciprocal of the Debye length in the case where there are
no divalent cations in the solution, and R is the ratio of the divalent and
monovalent cation concentrations. For the string model we obtain

cosh(xa)

(xa)’

_ sinh(xa)] (13)

s xi[l +2R + 3R )

Note that Eqgs. 12 and 13 reduce to the Gouy-Chapman result, x* = £(1 +
3R), when a = 0. The deviations due to the length of the divalent cation
can be significant. For example, for 0.1 M monovalent salt and R = 1, «
exceeds 2x, by 14% in the rod model (Fig. 1).
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FIGURE 3 The predicted value of the zeta potential plotted as a function
of the concentration of divalent cations in the aqueous phase, [D**]. The
predictions of the Gouy-Chapman model are illustrated by the solid
curves (—) and the predictions of the rod model by the dashed curves
(). (4) o = —1/420 A2 (—1/4.2nm?), [M*] = 0.1 M. (B) ¢ = —1/420
A?(-1/4.2 nm?, [M*] = 0.001 M.

mental zeta potential and surface potential measurements
presented in the accompanying paper (14). The surface
potential cannot be measured directly but the zeta poten-
tial, the electrostatic potential at the hydrodynamic plane
of shear, can be determined experimentally from electroki-
netic mobility measurements on vesicles. The available
evidence (14, 17) indicates that the plane of shear is 2 A
(0.2 nm) from the surface of a phospholipid bilayer vesicle
in a decimolar monovalent salt solution.® For this reason we
illustrate the electrostatic potential 2 A (0.2 nm) from the
surface of the membrane predicted by the point (Gouy-
Chapman), string, and rod models in Figs. 2 and 3. Fig.
2 A illustrates these predictions when the vesicle is formed
from a negative lipid (e.g., phosphatidylserine) that has a
surface area of 70 A? (0.7 nm?) and the monovalent salt
concentration is 0.1 M. The predictions of the string
(dotted curve) and rod (dashed curve) models differ signif-
icantly from the predictions of the Gouy-Chapman (solid
curve) model: the finite size of the cation decreases its
ability to screen the surface charges and reduce the
magnitude of the potential. There is little difference
between the predictions of the string and rod models; thus
the flexibility of the molecules does not significantly affect
their screening ability.

The results illustrated in Fig. 2 4 may be compared
with the results illustrated in Fig. 2 B, where the monova-

Recent results (1, 14, 18) indicate that the magnitude of the zeta
potential of a phospholipid vesicle does not increase as much as predicted
by the Gouy-Chapman-Stern theory when the concentration of monova-
lent salt is decreased from 0.1 t0 0.01 and 0.001 M if one assumes that the
plane of shear remains 2A (0.2 nm) from the surface. If one assumes that
the plane of shear shifts out to ~4 A (0.4 nm) ina 0.01M and 10 A (1 nm)
in a 0.001 M monovalent salt solution, the theoretical predictions are
consistent with the data. Neither this shift in the plane of shear nor the
adsorption of monovalent ions to the membrane (17) are included in the
rod and string models because these phenomena have no bearing on the
main points we wish to make concerning the effect of size on the
electrostatic behavior of divalent cations. For example, if one recalculates
the quantities plotted in Fig. 2 B assuming that the plane of shear is 4 A
(0.4 nm) rather than 2 A (0.2 nm) from the membrane, the resulting
curves can be shifted to less negative values on the ordinate by 8.2 mV to
produce agreement, within 2%, with the curves illustrated in Fig. 2 B.

CARNIE AND MCLAUGHLIN Divalent Cations and Electrostatic Potentials 327



lent salt concentration is reduced from 0.1 to 0.01 M. The
magnitude of the charge density is also reduced, from
—1/70 A? (—~1/0.7 nm?) to —1/420 A% (—1/4.2 nm?), to
maintain the zeta potential in the absence of divalent
cations at —87 mV. The Gouy-Chapman, the string, and
the rod models all predict that divalent cations screen the
surface charge more effectively when the concentration of
monovalent salt is decreased. The feature of Fig. 2 B we
wish to stress, however, is that the predictions of the rod
and string models agree more closely with the prediction of
the Gouy-Chapman theory when the monovalent salt
concentration is lower. For example, when the divalent
cation concentration is 0.01 M, the Gouy-Chapman and
the rod models predict zeta potentials that differ by 13 mV
in 0.1 M and by 8 mV in 0.01 M monovalent salt. It is
intuitively apparent why this is true: the Debye length
increases from ~10 A (1 nm) to 30 A (3 nm) when the
monovalent salt concentration decreases from 0.1 to 0.01
M, and the finite size of the divalent cations becomes less
important when the Debye length increases.

Figs. 3 A and B illustrate the zeta potentials predicted
by the Gouy-Chapman and the rod models when the
membrane has a charge density of —1/420 A% (—1/4.2
nm?) and the monovalent salt concentrations are 0.1 and
0.001 M. The predictions of the string model, which are
not illustrated, are very similar to the predictions of the rod
model.

Figs. 4 and 5 are similar to Figs. 2 and 3, except the
potential at the surface of the membrane, rather than the
potential at a distance of 2 A (0.2 nm) from the membrane,
is graphed as a function of the log of the concentration of
divalent cation. The qualitative features of the predicted
zeta and surface potential curves are very similar. Specifi-
cally, the predictions of the Gouy-Chapman (solid curve)
and rod (dashed curve) models differ significantly in 0.1 M

SURFACE POTENTIAL (mV)
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FIGURE 4 The surface potential plotted as a function of the concentra-
tion of divalent cation, [D**]. The predictions of the Gouy-Chapman
model are illustrated by the solid curves (—) and the predictions of the
rod model by the dashed curves (—). (4) ¢ = —1/70 A% (-1 /0.7 nm?),
[M*] = 0.1 M. (B) o = —1/420 A? (~1/4.2 nm?), [M*] = 0.01 M.
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FIGURE 5 The surface potential plotted as a function of the concentra-
tion of divalent cation [D**]. The predictions of the Gouy-Chapman
model are illustrated by the solid curves (—), the predictions of the rod
model by the dashed curves (——-). (4) ¢ = —1/420 A? (—1/4.2 nm?),
[M*] = 0.1 M. (B) ¢ = —1/420 A? (—1/4.2 nm?, [M*] = 0.001 M.

salt (Fig. 4 A). The flexibility of the molecules has little
effect on the surface potential: the predictions of the rod
(dashed curve) and string (dotted curve) models in Fig.
4 A are similar. When the monovalent salt concentration is
reduced, the Debye length increases and the predictions of
the Gouy-Chapman and rod models are in better agree-
ment (Fig. 4 B).

The experimental zeta potential results, as well as the
surface potential results from *'P nuclear magnetic reso-
nance (NMR) measurements on vesicles, compensation
potential measurements on monolayers, and nonactin and
gramicidin measurements on planar bilayer membranes,
which are presented in the accompanying paper (14), are
in accord with the theoretical predictions illustrated in
Figs. 2-5. We can also use the extended theory to examine
the effect of cations on the potential adjacent to bilayers
formed from a phospholipid with zero net charge. The
Gouy-Chapman theory predicts that addition of a nonad-
sorbing divalent cation will not change the zeta potential of
a phospholipid vesicle formed from a zwitterionic lipid,
such as phosphatidylcholine. The rod and string models,
however, predict that the concentration of the divalent
cation adjacent to the surface will be lower than in the bulk
aqueous phase; this decrease in the concentration of cations
leads to an excess of negative charges in the region
adjacent to the membrane, which manifests itself as a
negative zeta potential in electrokinetic measurements.
Specifically, the rod model predicts that when 0.1 M of a
large divalent cation (@ = 10 A [1 nm]) is added to a
solution of vesicles formed from a zwitterionic lipid in a 0.1
M monovalent salt, the zeta and surface potentials should
decrease from 0 to —2 mV.* The experimental results

“It is not possible to solve Eqs. 5-10 by the technique used here when the
charge density on the membrane is zero. However, both the potential at
the surface of the membrane and the potential 2 A (0.2 nm) from the
surface depend linearly on the charge density when the potential is small
(<10 mV). By plotting the surface potential and the zeta potential as a
function of the charge density and extrapolating the linear region of the
curves to zero charge density, we conclude that both the zeta and surface
potentials should be —2 mV when [D**] = [M*] = 0.1 M. In the
Gouy-Chapman model the surface and zeta potentials are predicted to be
zero when the charge density on the membrane is zero.
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obtained with hexamethonium agree qualitatively with this
theoretical prediction (14).

The biological activity of large divalent cations such as
curare, hexamethonium, and decamethonium lies not with
their screening ability but with their ability to adsorb to
specific receptor sites such as the acetylcholine receptor in
a muscle membrane. The ability of these drugs to adsorb to
a receptor depends on the local concentration of the drug.
The aqueous concentration of a large divalent cation at the
surface of the membrane should be predicted more accu-
rately by either the rod or the string model than by the
Gouy-Chapman model. Fig. 6 illustrates the normalized
probability, pA(x)/pp, of finding a given end of a large
cation a distance x from a membrane formed from lipids
that have no net charge when the bulk aqueous phase
contains monovalent ions and only a trace concentration of
the divalent cation. The Gouy-Chapman theory predicts
that the surface and the bulk concentrations are identical
(solid line). The rod and string models predict that for x <
a =10 A (1 nm), the normalized probability decreases as x
decreases, reaching a value of 0.5 at x = 0. We term this
reduction in concentration near the membrane, which is
due to the limitation on the integrals in Egs. 10 and 11,
“entropic repulsion.”

The dashed line in Fig. 7 illustrates the normalized
probability of finding a given end of a large divalent cation
a distance x from the membrane when the membrane
bears a negative charge. Note that when x > a = 10 A (1
nm), the value of p,(x)/pp predicted by the rod model is
greater than the normalized probability of finding a point
divalent cation at this distance, which is exp[— 28ey(x)]
(solid line), i.e., the probability of finding a given end of a
large divalent cation a distance x from the membrane is
greater than the probability of finding a point divalent
cation at this distance. This is because the other end of the
large divalent cation can sample the energetically favor-
able region closer to the membrane than x (Eq. 9). Fig. 7
also illustrates that when x < a = 10 A the entropic
repulsion reduces the concentration of the divalent cation
until, at x = 8 A (0.8 nm) in this example, a crossover
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FIGURE 6 The probability of finding a given end of a large divalent
cation a distance x from the membrane with no net charge, normalized to
the probability of finding the molecule at x = «, plotted as a function of
distance from the surface. The solid line (—) is the prediction of the
Gouy-Chapman model. The dashed line (—) is the prediction of the rod
model, and the dotted curve (- - -) is the prediction of the string model.

DISTANCE (R)

FIGURE 7 The probability of finding a given end of a large divalent
cation a distance x from the membrane, normalized to the probability of
finding the cation at x = =, plotted against the distance. The solid curve
(—) is the prediction of the Gouy-Chapman model, and the dashed curve
(--) is the prediction of the rod model. The concentration of divalent
cation in the bulk aqueous solution is assumed to be sufficiently low that it
does not affect the surface potential (Fig. 5 4). The charge density, o, is
assumed to be —1/420 A? (—1/4.2 nm?) and the monovalent salt
concentration, [M*], is assumed to be 0.1 M. The surface potential
predicted by the Gouy equation is —46 mV.

occurs: {exp[— Bey(z)]) = exp[— Bey(x)] in Eq. 9, and
the normalized probability of finding a given end of the
molecule at x = 8 A (0.8 nm) is equal to the normalized
probability of finding a point divalent cation at this
distance. When x = 0, the rod model predicts that p,(0)/op

= lexpl— Bew(OIN[1/a) f; dz exp[— Bew(2)]}
(dashed line), which is less than exp[— 28ey(0)], the
prediction of the Gouy-Chapman model (solid line). In the
example illustrated in Fig. 7, the probability of finding a
given end of a large divalent cation at x = 0 is a factor of 4
less than the probability of finding a point divalent cation
at the origin.

The prediction of the string model is similar to the
prediction of the rod model (results not shown). When x >
a = 10 A (1 nm), the string model predicts that the value of
pa(x)/pp lies between the values predicted by the rod and
the Gouy-Chapman models. When x < a = 10 A (1 nm),
pa(x)/pp is larger for the string than for the rod model.
Specifically, the value of p,(x)/pp predicted by the string
model is ~20% larger than the value predicted by the rod
model when x < 5 A (0.5 nm). The values for p,(x)/pp
predicted by the string model form a smoother curve than
the dashed curve in Fig. 7. This result is consistent with the
results of Fig. 6, which illustrate that the entropic repulsion
is less abrupt in the string than in the rod model.

DISCUSSION

We have extended the Gouy-Chapman theory by consider-
ing the finite size of the divalent cations in the diffuse
double layer. The divalent cation is represented by two
point charges joined by either rigid rods or flexible strings
that do not occupy any volume and do not interact with
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each other. These assumptions are obvious oversimplifica-
tions, as are several other assumptions common to the
Gouy-Chapman theory (3—13) and our models. In spite of
these theoretical limitations, the results of recent Monte
Carlo computer experiments on a model of an electrical
double layer indicate that the “the Gouy-Chapman theory
as modified by Stern is found to work surprisingly well”
(19). Bearing in mind the aphorism “if it works don’t fix
it,” we note that four experimentally testable predictions
emerge from our models. First, a large, nonadsorbing
divalent cation should have a smaller effect on the zeta and
surface potentials of negatively charged bilayer mem-
branes than a hypothetical point divalent cation. Second,
the discrepancy between the experimentally observed
effects of the large divalent cation and the theoretical
predictions of the Gouy-Chapman model should decrease
as the monovalent salt concentration decreases. Third, a
large divalent cation should produce a negative zeta poten-
tial on membranes formed from zwitterionic lipids. Fourth,
as the size of a nonadsorbing divalent cation is reduced, the
experimental results should agree more closely with the
predictions of the Gouy-Chapman theory. The experi-
ments described in the accompanying paper (14) are
consistent with these four predictions.

The calculations presented here suggest that the finite
size of many biologically active divalent cations, e.g.,
decamethonium, hexamethonium, saxitoxin, and curare,
plays an important role in their interactions with receptors
on membranes. Consider, for example, the elegant study of
Henderson et al. (20) of the effect of calcium on the
apparent binding constants of monvalent and divalent
toxins with the sodium channel. If it is assumed that
tetrodotoxin, (TTX), a monovalent cation, and saxitoxin
(STX), a divalent cation, are point charges, then the
Boltzmann equation can be used to relate the apparent
binding constants to the intrinsic binding constants of these
molecules. Henderson et al. (20) calculated the change
produced by calcium in the surface potential adjacent to
the sodium channel in nerve membranes by measuring the
change in the ratio of the apparent binding constants of
TTX and STX upon addition of calcium. There is also
evidence for the existence of negative charges adjacent to
or on the acetylcholine receptor is muscle membranes
(21-23). Van der Kloot and Cohen (24) compared the
literature values for the relative affinities of acetylcholine
and curare with the acetylcholine receptor. They treated
acetylcholine, a monovalent cation, and curare, a divalent
cation, as point charges and used the Boltzmann equation
to calculate changes in the surface potential when the
concentration of inorganic ions was changed. They applied
the Gouy-Chapman theory (Grahame equation) and esti-
mated the value of the surface potential to be about —50
mYV. One problem with this approach is illustrated in Fig.
7, which presents the predictions of the rod (a = 10 A [1
nm]) and the Gouy-Chapman models for a membrane with
a surface potential of about —50 mV bathed in a 0.1 M
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monovalent salt solution. The rod model predicts that the
surface concentration of charged sites on the divalent
cation will be enhanced by only a factor of 10 relative to the
bulk concentration; the Gouy-Chapman model predicts
that the surface concentration will be enhanced by a factor
of 40. We conclude that the entropic repulsion of the large
cation may have caused a serious error in the previous
estimates of the surface potential.

Three additional problems arise in the application of
any simple theory to the interaction of these large divalent
cations with membranes: the orientation of the binding site
on the receptor, its distance from the bilayer framework of
the membrane, and the location of the charges responsible
for the potential at the binding site are all unknown. As
procedures for the reconstitution of purified acetylcholine
receptors and sodium channels into bilayer membranes of
defined charge become established (25), it should be
possible to assess experimentally the importance of each of
the above factors.

APPENDIX

Rod Model

Consider a line drawn from charge A to charge B. As illustrated in Fig. 8,
the angle this line makes with the normal to the surface is 6. The mean
number density of A at a distance x from the surface, p,(x), is the product
of the number density of A in the bulk aqueous phase, p,, and the
probability that the charge A will be at a distance x from the surface

pa(x)
Jrrde fprit=== X/ 49 sin 9 g(x + 0.5a cos 6, 0)
Jde [ dosino

where g(r,0) is the probability of finding a molecule D with its center a
distance r from the interface making an angle 6 with the normal, and
cos~'(—x/a) is the maximum angle 8 can obtain if x < a (Fig. 8) because
we assume that the ions are confined to the aqueous phase.

The quantity g(r,0) is related to the potential of the mean force of the
molecule, W(r,0), by the equation

— BW(r,0) = In[g(r,0)].

» (A1)

= PA

(A2)

MEMBRANE | AQUEOUS
PHASE PHASE

FIGURE 8 Diagram of the divalent cation, of length a, with its center a
distance r from the interface. The end A is a distance x from the interface
and the line drawn from charge A4 to charge B makes an angle of 8 with
the normal to the surface.
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In Gouy-Chapman theory the potential of mean force of a point ion at r is
replaced by the mean electrostatic potential at ». In a similar way, we
write the potential of mean force of molecule D as the sum of the mean
electrostatic potentials at each charged site of the molecule

— BW(r,0) =— Bey(r — 0.5a cos 0)

— Bey(r + 0.5a cos 6). (A3)

Eq. A3 can be regarded as a one-particle analogue of the interaction site
models of molecular fluids (26). Writing x = r — 0.5a cosd (Fig. 8) and z
= X + a cosf we obtain

g(r.0) = exp[— Bey(x)]exp[— Bey(2)],r > x/2  (A4)

and g(r0) = 0,r < x/2 (i.e,cos 0 > —x/a).

Inserting Eq. A4 into Eq. A1 and recalling that p, = pp, Where pyp is the
mean number density of divalent cations in the bulk aqueous phase, we
obtain Eq. AS, which is identical to Eq. 10 in the body of the text

pa(x) = pplexp[— Bey(x)]}
(01/Qay) 1" dzexpl— Beb(@)]). (AS)

Eq. AS can be derived in a different way. The quantity p,(x)/pp is the
normalized probability of finding a given end of the molecule a distance x
from the membrane, exp[— Bey(x)], weighted by the configurations of
the other end of the molecule. This weighting is given by the spatial
average of the probability the other end of the molecule is at z, which is
exp[— Be¥(z)]. The spatial average is easily calculated by considering a
cylindrical coordinate system with its axis perpendicular to the mem-
brane. An infinitesimal unit of area, dA4, on a sphere of radius a is d4 =
2xa(sinf)a df = 2xa’ d(cosf) = 2xa dz. If the integration over the surface
of a sphere of radius a with its center a distance x from the membrane is
subject to the restriction that the other end of the molecule cannot
penetrate the interface, the limits on z become x + a and the maximum
value of 0, x — a. Eq. AS follows directly.

String Model

In this case the spatial average of the probability the other end of the
molecule is at z is calculated by integrating over the accessible volume in a
sphere of radius a located a distance x from the membrane. An
infinitesimal unit of volume, dV, in a sphere of radius a is x(a* — 2%) dz. If
the integration is subject to the restriction that the other end of the
molecule cannot penetrate the interface, Eq. 11 follows directly. This
treatment is equivalent to assuming that the string joining the two charges
does not interact with the surface. That is, no atttempt is made to count
the allowed conformational configurations of the string. Alternatively,
our string model is equivalent to assuming that the two charges are joined
by an infinitely thin, freely telescoping rod of maximum length a. This
means that we have accounted for the possible change in the length of the
molecule but not the details of the molecular conformations.
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